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Abstract

In this note we give several methods to construct nontrivial solutions to the equation dyt = σ(yt ) dxt ,
where x is a γ -Hölder Rd -valued signal with γ ∈ (1/2, 1) and σ is a function behaving like a power
function |ξ |

κ , with κ ∈ (0, 1). In this situation, classical Young integration techniques allow to get existence
and uniqueness results whenever γ (κ + 1) > 1, while we focus on cases where γ (κ + 1) ≤ 1. Our analysis
then relies on Zähle’s extension (Zähle, 1998) of Young’s integral allowing to cover the situation at hand.
c⃝ 2017 Elsevier B.V. All rights reserved.
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1. Introduction

Let T > 0 be a fixed arbitrary horizon, and consider a noisy function x : [0, T ] → Rd in the
Hölder space Cγ ([0, T ]; Rd), with γ > 1/2. Let σ 1, . . . , σ d be some vector fields on Rm , a be
an initial data in Rm and consider the following integral equation

yt = a +

d
j=1

 t

0
σ j (yu) dx j

u , t ∈ [0, T ]. (1)
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When σ 1, . . . , σ d are smooth enough, Eq. (1) can be solved thanks to fractional calculus
[12,16] or Young integration techniques [7,8]. Extensions of these methods, thanks to the rough
paths theory (see e.g. [3,4,9]), also allow to handle cases of signals with regularity lower than
1/2.

In the current paper, we are concerned with a different, though very natural problem: can
we define and solve Eq. (1) for coefficients which are only Hölder continuous? Stated in such
a generality the question is still open, but we consider here the special case of a coefficient σ

behaving like a power function.
This problem has quite a long story, and a full answer in the case of a 1-dimensional equation

driven by a standard Brownian motion is given in [6,15]. The basic idea on which Watanabe–
Yamada’s contribution relies, is the following a priori estimate. Consider Eq. (1) driven by a
Brownian motion B, with a non-linearity σ(ξ) = |ξ |

κ where κ > 1/2. Namely, let y be a
solution to

yt = a +

 t

0
|yu |

κ d Bu, t ∈ [0, T ], (2)

where the differential with respect to B is understood in the Itô sense. Then obviously the main
problem in order to estimate y is its behavior close to 0, since elsewhere ξ → |ξ |

κ is a Lipschitz
function. For n ≥ 1 we thus consider an approximation ϕn of the function ξ → |ξ | such that
ϕn ∈ C2

b(R), ϕn ≥ 0 and ∥ϕ
(2)
n ∥∞ ≤ n. Then applying Itô’s formula to Eq. (2) we get

E [ϕn(yt )] = ϕn(a) +
1
2

 t

0
E

ϕ(2)

n (yu) |yu |
2κ


du. (3)

The right hand side of Eq. (3) is then controlled by noticing that, whenever |yu | ≤ 1/n, we have
|ϕ

(2)
n (yu)| |yu |

2κ
≤ n−(2κ−1). This quantity converges to 0 as n → ∞, which is the key step in

order to control E[ϕn(yt )] in [15].
The method described above in order to handle the Brownian case is short and elegant, but

fails to give a true intuition of the phenomenon allowing to solve Eq. (1) with a power type
coefficient. This intuition has been highlighted in [10,11], though in the much more technical
context of the stochastic heat equation. In order to understand the main idea, let us go back
to Eq. (1) understood in the Young sense. Then two cases can be thought of (we restrict our
considerations to 1-dimensional paths in the remainder of the introduction for notational sake):

(i) One expects y to be an element of Cγ , since the equation is driven by x ∈ Cγ . This means
that σ(y) should lie in Cκγ . When κ satisfies κ γ + γ > 1, each integral

 t
0 σ(yu) dxu can

thus be defined as a usual Young integral, and Eq. (1) is solved thanks to classical methods
as in [4,8,12,16].

(ii) Let us now consider the case κ γ + γ ≤ 1. If one wishes to define the integral
 t

0 σ(yu) dxu
properly when yu is close to 0, the heuristic argument is as follows: when yu is small the
equation is basically noiseless, so that σ(y) should be considered as a Cκ -Hölder function
instead of a Cκγ -Hölder function. This means that the expected condition on κ in order to
solve Eq. (1) is just κ + γ > 1.

As mentioned above, this strategy has been successfully implemented in [10,11] in a Brownian
SPDE context. It heavily relies on the regularity gain when y hits 0. In our case, we will follow
two directions which are somehow different in their nature: (i) We will see that if y does not hit
0 too sharply, this condition being quantified in an integral way, then the integrals

 t
0 σ(yu) dxu
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still have a good chance to be defined even if κ γ + γ < 1. One can then construct a solution of
(1) in this landmark. (ii) Another approach consists in quantifying the regularity gain enforced by
Eq. (1) when the solution y approaches 0. In this way, one can get some uniform a priori Hölder
bounds on y and invoke some compactness arguments.

To be more specific, we shall proceed as follows:

(1) We start with a general lemma on Young integration. Namely (see Proposition 2.4 for a
precise statement), we consider η such that (κ + η)γ > 1 − γ . We also consider a path
y ∈ Cγ and a function σ behaving like a power function |ξ |

κ . By adding the assumption
|y|

−1
∈ Lq([0, τ ]) with q =

η
γ (κ+η)

, we prove that
 t

0 σ(yu) dxu is well defined as a Young-
type integral and gives rise to a γ -Hölder function. Notice that we have carried out this
part of our program with fractional integration techniques because the calculations are easily
expressed in this setting. We can however link the integral we obtain with Riemann sums, as
will be shown in Theorem 2.6.

(2) With this integration result in hand, we consider the 1-dimensional version of Eq. (1) and
perform a Lamperti-type transformation yt = φ−1(xt ), where φ(ξ) =

 ξ

0 [σ(s)]−1ds. Then
we prove that y is a solution to our equation of interest by identifying the Young integral t

0 σ(yu) dxu for yt = φ−1(xt ). Our result is valid for any κ such that γ (1 + κ) < 1, and we
refer to Theorem 3.7 for a precise statement.

(3) In case of a multidimensional setting, our global strategy is different. Namely, we will base
our consideration on the fact that when yu is close to 0, its regularity is higher than expected
(as mentioned above). Specifically, our basic a priori estimate for (1) states that whenever a
solution y satisfies |yu | ≤ 2−k for u lying in an interval I , then we also have |yt − ys | of
order 2−κk

|t − s|γ for s, t ∈ I . Our regularity gain is thus expressed by the coefficient 2−κk

above. This gain is sufficient to get to the existence of a γ -Hölder continuous solution to
Eq. (1) in the d-dimensional case. We will then construct a solution which vanishes as soon
as it hits the origin (see Theorem 4.15).

Summarizing the considerations above, we are able to get existence theorems for Eq. (1) with
power type nonlinearities in a wide range of cases. The situation would obviously be clearer
if we could get the corresponding pathwise uniqueness results, like in the aforementioned
Refs. [6,10,11,15]. However, these articles handle the case of Itô type equations, for which
uniqueness is expected. In our Stratonovich–Young case uniqueness of the solution is ruled out,
since both the nontrivial solution we shall construct and the solution y ≡ 0 solve Eq. (1) when
a = 0. We shall go back to this issue below.

Our paper is structured as follows: the Young’s integral related to our power type coefficient
is studied in Section 2. Section 3 deals with its application to the existence of solutions to Eq. (1)
in dimension 1. The other approach, based on the a priori regularity gain of the solution when it
hits 0, is developed in Section 4. Finally, in Section 5 we discuss the application of these results
to the case of stochastic differential equations driven by a fractional Brownian motion.

Notations. Throughout the article, we use the following conventions: for 2 quantities a and b,
we write a . b if there exists a universal constant c (which might depend on the parameters of
the model, such as, γ , κ , η, α, T, . . .) such that a ≤ c b. If f is a vector-valued function defined
on an interval [0, T ] and s, t ∈ [0, T ], δ fst denotes the increment ft − fs .
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2. An extension of Young’s integral

This section is devoted to an extension of Young’s integral using fractional calculus
techniques, which will be suitable to handle Eq. (1) with Hölder-type and singular nonlinearities.
We shall first recall some general elements of fractional calculus.

2.1. Elements of fractional calculus

We restrict this introduction to real-valued functions for notational sake. Consider 0 ≤ a <

b ≤ T and an L1([0, T ])-function f . For t ∈ [a, b] and α ∈ (0, 1) the fractional integrals of f
are defined as

I α
a+ ft =

1
Γ (α)

 t

a
(t − r)α−1 fr dr, and I α

b−
ft =

1
Γ (α)

 b

t
(r − t)α−1 fr dr.

For any p ≥ 1, we denote by I α
a+(L p) the image of L p([a, b]) by I α

a+, and similarly for I α
b−

(L p).
The inverse of the operators I α

a+ and I α
b−

are called fractional derivatives, and are defined as
follows. For f ∈ I α

a+(L p) and t ∈ [a, b] we set

Dα
a+ ft = L p

− lim
ε↓0

1
Γ (1 − α)


ft

(t − a)α
+ α

 t−ε

a

ft − fr

(t − r)1+α
dr


, (4)

where we use the convention fr = 0 on [a, b]
c. In the same way, for f ∈ I α

b−
(L p) and t ∈ [a, b],

we set

Dα
b−

ft = L p
− lim

ε↓0

1
Γ (1 − α)


ft

(b − t)α
+ α

 b

t+ε

ft − fr

(r − t)1+α
dr


. (5)

By [14, Remark 13.2] we have that, for p > 1, f ∈ I α
a+(L p) (resp. f ∈ I α

b−
(L p)) if and

only if f ∈ L p([a, b]) and the limit in the right-hand side of (4) (resp. (5)) exists. In this case
f = I α

a+(Dα
a+ f ) (resp. f = I α

b−
(Dα

b−
f )). It is not difficult to see that, as a consequence of the

proof of [14, Theorem 13.2], the fact that f ∈ L p([a, b]), f (·)
(·−a)α

and


·

a
f (·)− fr

(·−r)1+α dr (resp. f (·)
(b−·)α

and
 b
·

f (·)− fr
(r−·)1+α dr ) belong to L p([a, b]) implies that f ∈ I α

a+(L p) (resp. f ∈ I α
b−

(L p)) and

Dα
a+ ft =

1
Γ (1 − α)


ft

(t − a)α
+ α

 t

a

ft − fr

(t − r)1+α
dr


(6)

resp.

Dα
b−

ft =
1

Γ (1 − α)


ft

(b − t)α
+ α

 b

t

ft − fr

(r − t)1+α
dr


.

Notice that Cα+ε([a, b]) ⊂ I α
a+(L p), with ε > 0. In the same manner, we have Cα+ε([a, b]) ⊂

I α
b−

(L p).
Let g, f ∈ L1([0, T ]) be two functions such that, for some α ∈ (0, 1), f ∈ I α

a+(L1) and
gb−

∈ I 1−α
b−

(L1), where gb−
r = gr − gb−. In this case we say that f is integrable with respect to

g if and only if (Dα
a+ f )D1−α

b−
gb−

r ∈ L1([a, b]). In this case we define the integral
 b

a f dg in the
following way b

a
fr dgr :=

 b

a
(Dα

a+ fr )D1−α
b−

gb−
r dr. (7)
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If f ∈ Cα([a, b]) and g ∈ Cλ([a, b]) (i.e., f and g are α-Hölder and λ-Hölder continuous,
respectively) with α + λ > 1, then it can be checked that

 b
a fr dgr is well-defined, and that it

coincides with Young’s integral defined as a limit of Riemann sums (see [16, Theorem 4.2.1]). We
shall analyze below this integral under hypotheses suited to our purposes (see Proposition 2.4),
that is, to solve Eq. (1).

2.2. The fractional integral

We assume in this section that x is a γ -Hölder continuous and real valued signal. In this
section, as in the remaining of this paper, we assume that γ ∈ (1/2, 1). Consider the following
additional assumption on the coefficient σ : Rm

→ Rm .

Hypothesis 2.1. The function σ : Rm
→ Rm satisfies σ(0) = 0 and

|σ(ξ2) − σ(ξ1)| .
 |ξ2|

κ
− |ξ1|

κ
 , ξ1, ξ2 ∈ Rm, (8)

for some κ ∈ (0, 1) such that γ (κ + 1) < 1.

Remark 2.2. In order to understand the implications of Hypothesis 2.1, note that if σ fulfills
condition (8) and if we consider ξ1, ξ2 ∈ Rm such that |ξ1| = |ξ2|, then we obviously have
σ(ξ2) = σ(ξ1). Thus (8) implies that σ is a radial function, that is, σ(ξ) = ρ(|ξ |), where
ρ : [0, ∞) → Rm . On the other hand, it is not difficult to see that a radial function σ(ξ) = ρ(|ξ |)

such that ρ ∈ C 1((0, ∞)), ρ(0) = 0 and |ρ(1)(y)| . yκ−1, y > 0, satisfies inequality (8).

For a function σ satisfying Hypothesis 2.1, we define

Nκ,σ := sup


|σ(ξ2) − σ(ξ1)|

||ξ2|
κ − |ξ1|

κ |
: ξ2, ξ1 ∈ Rm, |ξ1| ≠ |ξ2|


. (9)

We now label the following auxiliary result for further use.

Lemma 2.3. Assume σ satisfies Hypothesis 2.1. Then we have

|σ(ξ2) − σ(ξ1)| ≤
κ

κ + η
Nκ,σ


|ξ2|

−η
+ |ξ1|

−η

|ξ2 − ξ1|

κ+η ,

for any 0 ≤ η ≤ 1 − κ and ξ1, ξ2 ∈ Rm
\ {0}.

Proof. The case η = 0 or η = 1 − κ is obvious, so we assume 0 < η < 1 − κ . Without loss of
generality, we can assume that |ξ1| ≤ |ξ2|. According to (8), we can write

|σ(ξ2) − σ(ξ1)| ≤ Nκ,σ


|ξ2|

κ
− |ξ1|

κ


= κNκ,σ


|ξ2|

|ξ1|

zκ−1dz ≤ κNκ,σ |ξ1|
−η


|ξ2|

|ξ1|

zκ+η−1dz

≤ κNκ,σ |ξ1|
−η


|ξ2|

|ξ1|

(z − |ξ1|)
κ+η−1 dz,

which yields our claim. �

We are now ready to provide a result on the integral defined in (7). To do this, for any
λ ∈ (0, 1) and η > 0, we introduce the space

Cλ
η ([0, T ]; Rm) = {y ∈ Cλ([0, T ]; Rm) : |y|

−1
∈ Lη([0, T ]; R)} (10)
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and use the convention

∥ f ∥λ := sup
0≤s<t≤T

| f (t) − f (s)|

(t − s)λ
,

for any f ∈ Cλ([0, T ]; Rm).

Proposition 2.4. Assume that σ satisfies Hypothesis 2.1 and 1−γ (1+κ)
γ

< η < 1 − κ . Then the
following results hold true:

(i) If y ∈ Cγ
η ([0, T ]; Rm), then, for any t ∈ [0, T ], the integral

[Λ(y)]t :=

 t

0
σ(ys) dxs,

is well defined in the sense of relation (7).
(ii) Consider y ∈ Cγ

η
γ (κ+η)

([0, T ]; Rm). Then Λ(y) belongs to the space Cγ ([0, T ]; Rm), and the

following bound holds true:

∥Λ(y)∥γ . ∥x∥γ


∥σ(y)∥∞ + Nκ,σ ∥y∥

κ+η
γ

 T

0
|ys |

−
η

γ (κ+η) ds

γ (κ+η)


, (11)

where Nκ,σ has been introduced in (9).

Remark 2.5. Taking into account that the function η →
η

η+κ
is strictly increasing we deduce

that η > 1
γ

− 1 − κ if and only if η
γ (κ+η)

>
1−γ−κγ
γ (1−γ )

. Therefore, the integrability condition for

|y|
−1 in statement (ii) is stronger than that in statement (i).

Proof of Proposition 2.4. Let α be such that 1−γ < α < γ (κ +η), which implies αγ −1
−κ <

η < 1−κ . Let 0 ≤ t1 < t2 ≤ T . Recall that the integral
 t2

t1
[σ(y)]s dxs is defined by formula (7).

To show that this integral exists and to establish suitable estimates, we first analyze the fractional
derivative of xD1−α

t2− x t2−
s

 =
1

Γ (α)

 xs − xt2

(t2 − s)1−α
+ (1 − α)

 t2

s

xs − xr

(r − s)2−α
dr


. ∥x∥γ (t2 − s)α+γ−1

+ ∥x∥γ

 t2

s
(r − s)α+γ−2dr

. ∥x∥γ (t2 − s)α+γ−1, (12)

where we have used the fact that α + γ > 1 for the last step. Hence, we can write t2

t1

[Dα
t1+σ(y)]s D1−α

t2− x t2−
s

 ds . ∥x∥γ


J 1

t1t2 + J 2
t1t2


,

with

J 1
t1t2 = ∥σ(y)∥∞

 t2

t1
(s − t1)

−α(t2 − s)α+γ−1ds

and

J 2
t1t2 =

 t2

t1

 s

t1

|σ(ys) − σ(yu)|

(s − u)α+1 du


(t2 − s)α+γ−1ds.
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It is now readily checked that

J 1
t1t2 . ∥σ(y)∥∞(t2 − t1)

γ . (13)

For the term J 2
t1t2 , invoking Lemma 2.3 and some elementary algebraic manipulations, we get

J 2
t1t2 . Nκ,σ

 t2

t1
(t2 − s)α+γ−1

 s

t1


|ys |

−η
+ |yu |

−η
 |ys − yu |

κ+η

(s − u)α+1 duds

. Nκ,σ ∥y∥
κ+η
γ

 t2

t1
(t2 − s)α+γ−1

 s

t1


|ys |

−η
+ |yu |

−η

(s − u)γ (κ+η)−α−1duds

. Nκ,σ ∥y∥
κ+η
γ

 t2

t1
(t2 − s)α+γ−1

|ys |
−η

 s

t1
(s − u)γ (κ+η)−α−1duds

+

 t2

t1
|yu |

−η

 t2

u
(t2 − s)α+γ−1(s − u)γ (κ+η)−α−1dsdu


. (14)

Notice that η > αγ −1
− κ implies that γ (κ + η) − α > 0. This implies that the integral t2

t1
[σ(y)]s dxs is well defined, provided |y|

−1
∈ Lη([0, T ]; R).

Applying Hölder’s inequality with p−1
= γ (κ + η) and q−1

= 1 − p−1, and assuming
|y|

−1
∈ Lη/(γ (κ+η))([0, T ]; R), yields

J 2
t1t2 . Nκ,σ ∥y∥

κ+η
γ

 t2

t1
|yu |

−pηdu

1/p

×

 t2

t1
(t2 − s)q(α+γ−1)(s − t1)

q(γ (κ+η)−α)ds

1/q

+

 t2

t1
(t2 − u)qγ (κ+η+1)−qdu

1/q


.

Now a simple analysis of the exponents in the above relation implies

J 2
t1t2 . Nκ,σ ∥y∥

κ+η
γ

 T

0
|ys |

−
η

γ (κ+η) ds

γ (κ+η)

(t2 − t1)
γ . (15)

Finally, the estimate (11) follows from (13) and (15). The proof is now complete. �

2.3. The integral via Riemann sums

The next goal is to see that the integral Λ(y) given in Proposition 2.4 can be approximated by
Riemann sums. Towards this end, for any n ≥ 2, we consider a uniform partition Πn = {a =

t1 < t2 < · · · < tn = b} of the interval [a, b] ⊂ [0, T ], such that |Πn| :=
b−a
n−1 = t j+1 − t j for

all j ∈ {1, 2, . . . , n − 1}. For y as in Proposition 2.4(i), we define the following approximation
based on Πn

zn
s =

n
i=2

1
|Πn|

 ti

ti−1

σ(yr )dr


1(ti−1,ti ](s), s ∈ [a, b]. (16)
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We observe that, owing to [16, Corollary 2.3], we have b

a
zn

s dxs =

n
i=2

1
|Πn|

 ti

ti−1

σ(ys)ds


δxti−1ti ,

where the left hand side is understood as in relation (7) and where we recall that δxuv := xv − xu .
The convergence of

 b
a zn

s dxs is given in the following theorem, which is the main result of this
subsection. Here we use the Definitions (10) and (16).

Theorem 2.6. Suppose that σ satisfies Hypothesis 2.1. Let η be such that 1−γ (1+κ)
γ

< η < 1−κ .

Consider y ∈ Cγ
η ([0, T ]; Rm). Then for all 0 ≤ a < b ≤ T we have

lim
n→∞

 b

a
zn

s dxs =

 b

a
σ(ys)dxs,

where zn is defined in (16).

In order to prove this theorem, we first go through a series of auxiliary results.

Lemma 2.7. Let σ satisfy Hypothesis 2.1, y ∈ Cγ ([0, T ]; Rm) and consider [a, b] ⊂ [0, T ].
Then for all s ∈ [a, b] we haveσ(ys) − zn

s

 ≤ Nκ,σ ∥y∥
κ
γ |Πn|

κγ .

Proof. For s ∈ (a, b], the definition of zn givesσ(ys) − zn
s

 =

n
i=2

σ(ys) −
1

|Πn|

 ti

ti−1

σ(yr )dr

 1(ti−1,ti ](s)

≤

n
i=2

1
|Πn|

 ti

ti−1

|σ(ys) − σ(yr )|dr


1(ti−1,ti ](s)

≤ Nκ,σ

n
i=2

1
|Πn|

 ti

ti−1

 |ys |
κ

− |yr |
κ
dr


1(ti−1,ti ](s).

Since y is γ -Hölder continuous, we thus haveσ(ys) − zn
s

 ≤ Nκ,σ ∥y∥
κ
γ

n
i=2

1
|Πn|

 ti

ti−1

|s − r |
κγ dr


1(ti−1,ti ](s)

≤ Nκ,σ ∥y∥
κ
γ

n
i=2

|Πn|
κγ 1(ti−1,ti ](s),

which completes the proof. �

We now estimate the Hölder regularity of our approximation zn .

Lemma 2.8. Let σ and y be functions verifying the assumptions of Theorem 2.6. Then, for
a < u < s ≤ b, we havezn

s − zn
u

 . ∥y∥
κ+η
γ


Φn

u,s + Ψn
u,s


,
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where

Φn
u,s = |Πn|

γ (κ+η)−1


2≤ j<i≤n

 ti

ti−1

|yr |
−ηdr +

 t j

t j−1

|yr |
−ηdr


1(t j−1,t j ](u)1(ti−1,ti ](s)

and

Ψn
u,s =

(s − u)γ (κ+η)

|Πn|


2≤ j<i≤n

 ti

ti−1

|yr |
−ηdr +

 t j

t j−1

|yr |
−ηdr


1(t j−1,t j ](u)1(ti−1,ti ](s).

Proof. Assume s ∈ (ti−1, ti ]. If u lies into (ti−1, ti ] too, then |zn
s − zn

u | = 0 by definition of zn .
We now assume that u ∈ (t j−1, t j ] with j ∈ {2, . . . , i − 1}. Then it is readily checked that

zn
s − zn

u =
1

|Πn|

 ti

ti−1

σ(yr ) dr −

 t j

t j−1

σ(yr ) dr



=
1

|Πn|

 t j

t j−1


σ(yr+ti−1−t j−1) − σ(yr )


dr.

Therefore, thanks to Lemma 2.3 we obtainzn
s − zn

u

 . Nκ,σ

1
|Πn|

 t j

t j−1


|yr+ti−1−t j−1 |

−η
+ |yr |

−η
 yr+ti−1−t j−1 − yr

κ+η dr

. Nκ,σ

∥y∥
κ+η
γ |ti−1 − t j−1|

γ (κ+η)

|Πn|

 t j

t j−1


|yr+ti−1−t j−1 |

−η
+ |yr |

−η


dr,

from which we derivezn
s − zn

u

 .
∥y∥

κ+η
γ (s − u + |Πn|)γ (κ+η)

|Πn|

×


2≤ j<i≤n

 ti

ti−1

|yr |
−ηdr +

 t j

t j−1

|yr |
−ηdr


1(t j−1,t j ](u)1(ti−1,ti ](s).

Our claim is now easily deduced. �

The next result will help to handle some of the terms appearing in Lemma 2.8.

Lemma 2.9. Let the assumptions of Theorem 2.6 prevail, and consider the path Φn
: [a, b]

2
→

R+ introduced in Lemma 2.8. We also introduce the following measure on [a, b]
2

µ(du, ds) = (s − u)−α−1(b − s)α+γ−11{u<s} duds, (17)

where α is such that 1 − γ < α < γ (κ + η). Then Φn converges to zero in L1([a, b]
2, µ), as

n → ∞.

Proof. We can write

∥Φn
∥L1([a,b]2,µ) . |Πn|

−1+γ (κ+η)


2≤ j<i≤n

 ti

ti−1

|yr |
−ηdr +

 t j

t j−1

|yr |
−ηdr



×

 ti

ti−1

 t j

t j−1

(s − u)−1−αduds . I n
1 + I n

2 , (18)
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where

I n
1 = |Πn|

−1+γ (κ+η)
n

i=3

 ti

ti−1

|yr |
−ηdr +

 ti−1

ti−2

|yr |
−ηdr

 ti

ti−1

 ti−1

ti−2

(s − u)−1−αduds

and

I n
2 = |Πn|

−1+γ (κ+η)
n

i=4

i−2
j=2

 ti

ti−1

|yr |
−ηdr +

 t j

t j−1

|yr |
−ηdr



×

 ti

ti−1

 t j

t j−1

(s − u)−1−αduds.

We now bound the terms I n
1 and I n

2 separately.
It is easily seen from the expression of I n

1 that

I n
1 . |Πn|

γ (κ+η)−α
n

i=2

 ti

ti−1

|yr |
−ηdr = |Πn|

γ (κ+η)−α

 b

a
|yr |

−ηdr.

Hence, due to the fact that γ (κ + η) − α > 0, we obtain limn→∞ I n
1 = 0.

As far as I n
2 is concerned, a simple scaling argument entails

I n
2 . |Πn|

γ (κ+η)−α
n

i=4

i−2
j=2

 ti

ti−1

|yr |
−ηdr +

 t j

t j−1

|yr |
−ηdr



×

 i

i−1

 j

j−1
(s − u)−1−αduds,

and roughly bounding the term s − u by i − j − 1 in the integral above, we get

I n
2 . |Πn|

γ (κ+η)−α
n

i=4

i−2
j=2

 ti

ti−1

|yr |
−ηdr +

 t j

t j−1

|yr |
−ηdr


(i − j − 1)−1−α

. |Πn|
γ (κ+η)−α

n
i=2

 ti

ti−1

|yr |
−ηdr

n−1
k=1

k−1−α . |Πn|
γ (κ+η)−α

 b

a
|yr |

−ηdr.

We thus get limn→∞ I n
2 = 0, again according to the fact that γ (κ + η) − α > 0.

Finally, taking into account limn→∞ I n
1 = 0, limn→∞ I n

2 = 0 and relation (18), our claim is
now proved. �

Still having in mind a bound on the terms of Lemma 2.8, we state the following intermediate
result.

Lemma 2.10. Assume the hypotheses of Lemma 2.9 hold true and let Ψn be as in Lemma 2.8.
Then as n → ∞, Ψn converges in L1([a, b]

2, µ) to the function Ψ defined as follows

Ψu,s =

|ys |

−η
+ |yu |

−η

(s − u)γ (κ+η)1{u<s}.

Proof. The result is an immediate consequence of the fact that |y|
−η

∈ L1([a, b]), together with
the conditions α + γ − 1 > 0 and γ (κ + η) > α. �

We are now ready to give the proof of Theorem 2.6.



3052 J.A. León et al. / Stochastic Processes and their Applications 127 (2017) 3042–3067

Proof of Theorem 2.6. Let α be such that 1 − γ < α < γ (κ + η). Owing to (12) we can write b

a


zn

s − σ(ys)


dxs

 =

 b

a


Dα

a+


σ(y) − zn

s D1−α
b−

xb−
s ds

 . ∥x∥γ


Ln

1 + Ln
2


,

where

Ln
1 =

 b

a

σ(ys) − zn
s


(s − a)α

(b − s)α+γ−1ds

and

Ln
2 =

 b

a

 s

a

σ(ys) − zn
s −


σ(yu) − zn

u


(s − u)α+1 du

 (b − s)α+γ−1ds.

Moreover, notice that invoking Lemma 2.7 we can deduce that Ln
1 . Nκ,σ ∥y∥

κ
γ |Πn|

κγ . There-
fore Ln

1 goes to zero as n → ∞. Thus, in order to finish the proof we only need to see that Ln
2

converges to zero as n → ∞.
In order to study the limit of Ln

2 , first notice that thanks to Lemma 2.7 we can writeσ(ys) − zn
s −


σ(yu) − zn

u

 ≤
σ(ys) − zn

s

+ σ(yu) − zn
u

 . Nκ,σ ∥y∥
κ
γ |Πn|

κγ , (19)

which implies that the integrand in Ln
2 converges to zero as n tends to infinity, for each u and

s such that a ≤ u < s ≤ b. On the other hand, we can also bound the rectangular increment
σ(ys) − zn

s − (σ (zu) − zn
u) as followsσ(ys) − zn

s −

σ(yu) − zn

u

 ≤ |σ(ys) − σ(yu)| +
zn

s − zn
u

 . (20)

Lemma 2.3 plus the fact that y ∈ Cγ
η imply that

|σ(ys) − σ(yu)| .

|ys |

−η
+ |yu |

−η

|ys − yu |

κ+η .

|ys |

−η
+ |yu |

−η

(s − u)(κ+η)γ .

Since (κ + η)γ > α, we get that the term |σ(ys) − σ(yu)| is integrable in [a, b]
2 with respect to

the measure µ(du, ds) = (s−u)−α−1(b−s)α+γ−11{u<s}duds introduced in Eq. (17). Moreover,
the term

zn
s − zn

u

 is bounded, up to a constant, by Φn
u,s + Ψn

u,s (see Lemma 2.8). Applying the
dominated convergence theorem as stated in [13, Theorem 11.4.18], together with Lemmas 2.9
and 2.10, we deduce that Ln

2 tends to 0 as n tends to infinity, which finishes the proof. �

3. One-dimensional differential equations

The purpose of this section is to obtain existence results for the system (1) in dimension 1,
that is for the following equation:

yt =

 t

0
σ(ys)dxs, t ≥ 0. (21)

Here, recall that we assume x ∈ Cγ ([0, T ]; R), with γ ∈ (1/2, 1). We now give a general
condition on the coefficient σ in (21), which will prevail for the remainder of this section.

Hypothesis 3.1. We suppose that σ : R → R+ satisfies Hypothesis 2.1, and moreover

(i) σ is a continuous function such that σ(ξ) > 0 for ξ ≠ 0.
(ii) 1/σ is integrable on compact neighborhoods of zero.
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Remark 3.2. Notice that a basic example of a function σ satisfying Hypothesis 3.1 is any power
coefficient of the form σ(ξ) = C |ξ |

κ , where κ < 1 is such that γ < 1
1+κ

. Another example is
given by σ(ξ) = |ξ |

κ
+ sin(|ξ |

κ).

With Hypothesis 3.1 in mind, we shall solve Eq. (21) thanks to an approximation procedure.
We first state the following lemma, whose elementary proof is left to the reader.

Lemma 3.3. Let σ be a function satisfying Hypothesis 3.1 and n ∈ N. We consider the sequence
{ξ̃n, n ≥ 1}, where ξ̃1 ∈ [0, 1] is the first time such that σ(ξ̃1) = max0≤ξ≤1 σ(ξ) and ξ̃n+1 is the
first time such that σ(ξ̃n+1) = max

0≤ξ≤
ξ̃n
2

σ(ξ). Let us also define the following function on R:

σn(ξ) =


σ(ξ), |ξ | > ξ̃n,

σ (ξ̃n), |ξ | ≤ ξ̃n .

Then σn satisfies (8), with Nκ,σn ≤ Nκ,σ , where Nκ,σ is given in (9).

We shall construct a solution to Eq. (21) by means of a Lamperti type transformation for σ ,
which has been used, among another applications, to study the existence of a unique solution for
ordinary differential equations (see, for instance, the proof of Theorem 5.1 in Hartman [5]). This
transform is classically defined in the following way.

Lemma 3.4. Let σ be a function fulfilling Hypothesis 3.1 and σn be defined as in Lemma 3.3.
For those two functions and ξ ∈ R, we set

φ(ξ) =

 ξ

0

ds

σ(s)
and φn(ξ) =

 ξ

0

ds

σn(s)
. (22)

Then φ and φn are both invertible and, for any ξ ∈ R, we have |φ−1(ξ)| ≤ |φ−1
n (ξ)|, where φ−1,

φ−1
n stand for the respective inverse of φ and φn .

Proof. The result is an immediate consequence of the inequalities φn ≤ φ on R+ and φ ≤ φn on
R−, which follow from our definition (22). �

The next result states the uniform (in n) Lipschitz regularity of φ−1
n .

Lemma 3.5. Let M > 0. Then, there is a constant cM > 0 such that

|φ−1
n (ξ1) − φ−1

n (ξ2)| ≤ cM |ξ1 − ξ2|,

for all ξ1 and ξ2 such that |ξ1|, |ξ2| ≤ M and for all n ∈ N.

Proof. Suppose |ξ | ≤ M . By (22) and Lemma 3.4, we getdφ−1
n (ξ)

dξ

 =

σn(φ−1
n (ξ))

 ≤ Nκ,σ

φ−1
n (ξ)

 ≤ Nκ,σ

φ−1
n (M)

 .
In addition, observe that limn→∞ φ−1

n (M) = φ−1(M), which means in particular that the se-
quence {φ−1

n (M), n ≥ 1} is bounded. Thus a direct application of the mean value theorem
finishes the proof. �

We now proceed to the approximation of Eq. (21).
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Proposition 3.6. Suppose that γ ∈ (1/2, 1), x ∈ Cγ ([0, T ]) and x0 = 0. Also suppose
that Hypothesis 3.1 holds. Let n ∈ N and yn

t = φ−1
n (xt ). Then yn solves the following equation

yn
t =

 t

0
σn(yn

s ) dxs, for all t ≥ 0,

where the integral with respect to x is understood in Young’s sense.

Proof. We first observe that the function φ−1
n is locally Lipschitz due to Lemma 3.5. The

function σn is also locally Lipschitz according to Lemma 2.3. Therefore, σn(φ−1
n (xs)) is locally

γ -Hölder continuous. Thus, invoking the usual change of variable in Young’s integral (see e.g.
[16, Theorem 4.3.1]) and recalling that γ > 1/2, we obtain

yn
t =

 t

0
σn(φ−1

n (xs))dxs =

 t

0
σn(yn

s )dxs, t ≥ 0,

and the proof is complete. �

We now turn to the main result of this section which states the convergence of yn to a solution
to Eq. (21). We recall that γ > 1/2 again.

Theorem 3.7. Assume that σ satisfies Hypothesis 3.1. Consider η such that 1−γ (1+κ)
γ

< η <

1 − κ . Let φ be the function given by (22), and suppose that x ∈ Cγ ([0, T ]) is such that
|φ−1(x)|−η

∈ L1([0, T ]) and x0 = 0. Then the function y = φ−1(x) is a solution of the equation

yt =

 t

0
σ(ys)dxs, t ≥ 0,

where the integral
 t

0 σ(ys)dxs is understood as in Proposition 2.4.

Remark 3.8. Note that y is a non-trivial solution (i.e., it is not identically zero) and that z ≡ 0
is also a solution of Eq. (21). So, in general, this equation may have several solutions.

Proof of Theorem 3.7. Let yn be as in Proposition 3.6. For each ξ ∈ R we have φ−1
n (ξ) →

φ−1(ξ) as n tends to infinity. Hence, yn converges point-wise to y as n tends to infinity.
Therefore, thanks to Proposition 3.6, we are reduced to show that for all t ≥ 0

I (t) := lim
n→∞

 t

0


σn(yn

s ) − σ(ys)


dxs = 0.

Otherwise stated, according to Proposition 2.4, we have to check that, for t ≥ 0,

lim
n→∞

 t

0


Dα

0+


σ(y) − σn(yn)


s D1−α

t− x t−
s ds = 0, (23)

where α is such that 1 − γ < α < γ (κ + η). In order to prove relation (23), we first invoke
definition (6) and relation (12). For s ∈ [0, T ], this givesDα

0+


σ(y) − σn(yn)


s D1−α

t− x t−
s

 . ∥x∥γ


I1,n(s) +

 s

0
I2,n(s, r)dr


, (24)

where

I1,n(s) =

σ(φ−1(xs)) − σn(φ−1
n (xs))


sα
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and

I2,n(s, r) =

σ(φ−1(xs)) − σn(φ−1
n (xs)) −


σ(φ−1(xr )) − σn(φ−1

n (xr ))


(s − r)1+α
.

Going back to our aim (23), we are reduced to prove that

lim
n→∞

 t

0
I1,n(s) ds = 0, and lim

n→∞

 t

0

 s

0
I2,n(s, r) drds = 0. (25)

Moreover, thanks to the very definition of σn , we have that for all 0 ≤ r < s ≤ t , I1,n(s) → 0
and I2,n(s, r) → 0, as n → ∞. Our claim (25) is thus ensured if we can bound I1,n(s) and
I2,n(s, r) properly.

Let us start with a bound on the term I1,n(s). As in the proof of Lemma 3.5 we can show that
I1,n(s) is bounded by a constant times s−α for all n ∈ N. This is enough to apply the dominated
convergence theorem.

In order to bound the term I2,n , we apply Lemmas 2.3, 3.4 and 3.5, and the fact that σn satisfies
(8) with Nκ,σn ≤ Nκ,σ (see Lemma 3.3) to establish

I2,n(s, r) ≤ (s − r)−α−1

|σ(φ−1(xs)) − σ(φ−1(xr ))| + |σn(φ−1

n (xs)) − σn(φ−1
n (xr ))|


. (s − r)γ (κ+η)−α−1


|φ−1(xs)|

−η

+ |φ−1(xr )|
−η

+ |φ−1
n (xs)|

−η
+ |φ−1

n (xr )|
−η


≤ (s − r)γ (κ+η)−α−1

|φ−1(xs)|

−η
+ |φ−1(xr )|

−η


.

We can thus conclude by the dominated convergence theorem, thanks to the fact that γ (κ + η) −

α > 0. We get the second claim in (25), which completes the proof of our theorem. �

Remark 3.9. A small variant of our calculations also allows to construct a solution to the initial
value problem

yt = a +

 t

0
σ(ys)dxs, t ≥ 0, (26)

for a general a ∈ R. Indeed, along the same lines as for Theorem 3.7, one can prove that
yt = φ−1(xt + φ(a)) is a solution of (26) if |φ−1(xt + φ(a))|−η

∈ L1([0, T ]).

4. Multidimensional differential equations

We now turn to the multidimensional setting of Eq. (1). As mentioned in the introduction,
our considerations will rely on regularity gain estimates for the solution when it approaches 0,
similarly to [10,11]. Before we deal with these regularity estimates, we will first introduce some
new notation.

4.1. Setting

In the remainder of the article, we assume that x ∈ Cγ ([0, T ]; Rd) and that each component
σ j , j = 1, . . . , d in the coefficients of Eq. (1), satisfies Hypothesis 2.1. As in the previous
section, we need an additional hypothesis that says that σ j behaves as a power function.
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Hypothesis 4.1. We suppose that for each j = 1, . . . , d, σ j
: Rm

→ Rm satisfies Hypothesis 2.1
(with the same κ as in the previous sections), and moreover:

(i) For any ξ ∈ Rm we have |σ j (ξ)| & |ξ |
κ .

(ii) σ j is differentiable with ∇σ j locally Hölder continuous of order larger than 1
γ

− 1 in the set
{|ξ | ≠ 0}.

Fix a ∈ Rm , a ≠ 0, and we consider equation

yt = a +

d
j=1

 t

0
σ j (yu) dx j

u , t ∈ [0, T ]. (27)

Using an approximation of σ j similar to Lemma 3.3 and applying known results on existence
and uniqueness of solutions to equations driven by Hölder continuous functions (see e.g. [4]), it
is easy to show the following result.

Proposition 4.2. Suppose that Hypothesis 4.1(ii) holds, and let T be a given strictly positive
time horizon. Then, there exist a continuous function y defined on [0, T ] and an instant τ ≤ T ,
such that one of the following two possibilities holds:

(A) τ = T , y is nonzero on [0, T ], y ∈ Cγ ([0, T ]; Rm) and y solves Eq. (27) on [0, T ], where
the integrals


σ j (yu) dx j

u are understood in the usual Young sense.
(B) We have τ < T . Then for any t < τ , the path y sits in Cγ ([0, t]; Rm) and y solves Eq. (27)

on [0, t]. Furthermore, ys ≠ 0 on [0, τ ), limt→τ yt = 0 and yt = 0 on the interval [τ, T ].

Notice that our option (A) above leads to classical solutions of Eq. (27). In the rest of this
section, we will assume (B), that is the function y given by Proposition 4.2 vanishes in the
interval [τ, T ]. We remark that the integral in case (B) is not the one defined in Proposition 2.4,
which requires suitable integrability conditions on σ j . Our aim is thus to prove the following
two facts:

• The path y is globally γ -Hölder continuous on [0, T ].
• The integrals


σ j (yu) dx j

u can be understood as limits of Riemann sums, and y solves
Eq. (27) on [0, T ].

Observe that in order to achieve this aim, we will need some additional hypotheses on x . We
shall also assume γ + κ > 1, which is a natural condition in our context (as explained in the
introduction).

Remark 4.3. As mentioned in the introduction, we implement here the regularity gain strategy
inspired by the Brownian SPDE case (cf [10,11]). An outline of this strategy is the following:

(i) Our basic regularity gain result is Proposition 4.8. It states that if a solution y satisfies
|yu | ≤ 2−k for u lying in an interval I , then we also have |yt − ys | of order 2−κk

|t − s|γ for
s, t ∈ I .

(ii) Proposition 4.8 enables to get a lower bound on the amount of time that y spends in intervals
of the form [a2−k, b2−k

]. We can get a matching upper bound by adding a roughness
assumption on x . This roughness assumption amounts to assert that the main contributions
in the increments of a solution y are always of the form yt − ys ≈ σ(ys)[xt − xs]. Our
considerations in this direction are summarized in Section 4.3.
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Fig. 1. An example of path with stopping times.

(iii) With the sharp bound of step (ii) in hand, a careful analysis of the increments of y enables to
obtain the desired global bound in γ -Hölder spaces. This is the contents of Proposition 4.13.

Remark 4.4. As the reader might see in the sequel, the amount of efforts devoted to prove that y
is globally γ -Hölder continuous is arguably very large. However, the stability of Cγ by the map
x → y is of fundamental importance in the analysis of differential systems like (27). In addition,
we believe that some of the techniques developed here might also be useful to analyze rough
PDEs with power type coefficients.

Now we split the interval [0, τ ) as follows. We first define aq = 2−q and we introduce a
decomposition of the space R+, which is the state space for |y|, into the following sets:

I−1 = [1, ∞) , and Iq = [aq+1, aq), q ≥ 0.

We also need to define the intervals:

J−1 = [3/4, ∞) , and Jq =


aq+2 + aq+1

2
,

aq+1 + aq

2


=:

âq+1, âq


, q ≥ 0.

Notice that âq =
3

2q+2 . We now construct a partition of [0, τ ) as follows. Assume that |a| ∈ Iq0 ,
and set λ0 = 0 and

τ0 = inf

t ≥ 0 : |yt | ∉ Iq0


.

In this case yτ0 ∈ Jq̂0 with q̂0 ∈ {q0, q0 − 1}. We then set:

λ1 = inf

t ≥ τ0 : |yt | ∉ Jq̂0


.

In this way we recursively construct a sequence of stopping times λ0 < τ0 < · · · < λk < τk
such that

|yt | ∈


b1

2qk
,

b2

2qk


, for t ∈ [λk, τk] ∪ [τk, λk+1], (28)

where b1 =
3
8 , b2 =

3
4 and qk+1 = qk + ℓ, with ℓ ∈ {−1, 0, 1}, assuming that qk ≥ 1. Notice

that if qk = 0 or qk = 1, then the upper bound b2 may be infinity. This construction is depicted
in Fig. 1.

Finally, let us justify a simplification in notations which will prevail until the end of this
Section.
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Remark 4.5. Notice that, owing to our Hypothesis 2.1, our problem relies heavily on radial
variables in Rm . Therefore, in order to alleviate vectorial notations, we will carry out the
computations below for m = d = 1. This allows us in particular to drop the exponents j in
our formulae. The reader will easily generalize our considerations to higher dimensions.

4.2. Regularity estimates

Let us start with a decomposition lemma for the solution to the regularized Eq. (27). We recall
a convention which will prevail until the end of the paper: for a function f defined on [0, T ], we
set δ fst = ft − fs .

Lemma 4.6. Let 0 ≤ s < t < τ . For l ≥ 0 we consider the dyadic partition Π l
st of [s, t] defined

by t l
i = s + 2−l i(t − s) for l ≥ 0 and i = 0, . . . , 2l . Then one can write:

δyst = σ(ys) δxst +

∞
l=1

K l
st, (29)

where

K l
st =

2l
−1

i=0

[δσ (y)]t l+1
2i t l+1

2i+1
δxt l+1

2i+1t l+1
2i+2

.

Proof. Since s, t ∈ [0, τ ), the integral
 t

s σ(yu) dxu is a usual Young integral, which is thus limit
of Riemann sums along dyadic partitions. Let us write J l

st for those Riemann sums, and notice
that

J l
st =

2l
−1

i=0

σ

yt l

i


δxt l

i t l
i+1

(30)

=

2l
−1

i=0

σ

yt l+1

2i

 
δxt l+1

2i t l+1
2i+1

+ δxt l+1
2i+1t l+1

2i+2


. (31)

Then, we know from usual Young integration that J l
st converges, as l → ∞, to

 t
s σ(yu) dxu .

Therefore, we can write t

s
σ(yu) dxu = σ(ys) δxst +

∞
l=0


J l+1

st − J l
st


.

Resorting to expression (30) for J l+1
st and to expression (31) for J l

st above, some elementary
algebraic manipulations reveal that J l+1

st − J l
st = K l

st, which ends the proof. �

Let us state an additional (harmless) hypothesis on our noise x , which will be crucial in order
to get sharp regularity estimates.

Hypothesis 4.7. There exists ε1 > 0 such that for γ1 = γ + ε1, we have ∥x∥γ1 < ∞ and
γ1 + γ κ < 1.

We are now ready to give the basis of the strategy alluded to above, based on a regularity gain
when y is close to 0.
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Proposition 4.8. Assume σ satisfies Hypothesis 4.1 and x is such that Hypothesis 4.7 is fulfilled.
Then the following bounds hold true:

(i) There exist constants c0,x and c1,x such that for s, t ∈ [λk, λk+1) satisfying

|t − s| ≤ c0,x 2−αqk , with α :=
1 − κ

γ
, (32)

we have the following bound:

|δyst| ≤ c1,x 2−qkκ |t − s|γ . (33)

(ii) With Hypothesis 4.7 in mind, we get a refined decomposition for δyst. Namely, if s, t are two
instants in [λk, λk+1) such that (32) holds true, we have the following relation for δyst:

δyst = σ(ys) δxst + rst, with |rst| ≤ c2,x 2−κε1 qk |t − s|γ , (34)

where we have set κε1 = κ + ε1α.

Proof. For k ≥ 1 and ν > 0 we set

∥y∥γ,k,ν = sup


|δyuv|

|v − u|γ
: u, v ∈ [λk, λk+1), |v − u| ≤

c0

2ν


,

where the constants c0 and ν will be tuned on later.
Step 1: Proof of (33). Pick s, t ∈ [λk, λk+1) such that |s − t | ≤ c02−ν . Recall that we consider
the dyadic partitions of [s, t], with t l

i = s + 2−l i(t − s) for l ≥ 1 and i = 0, . . . , 2l . Start
from decomposition (29). Then, since both |ys | and |yt | lie into [b12−qk , b22−qk ] and σ verifies
Hypothesis 2.1, we obviously have

|σ(ys) δxst| ≤ c1∥x∥γ |t − s|γ 2−qkκ , (35)

where c1 = Nκ,σ bκ
2 .

In the remainder of this proof, we denote t l+1
2i , t l+1

2i+1 by t2i , t2i+1, respectively, to simplify
the notation. We now bound the quantity [δσ (y)]t2i t2i+1δxt2i+1t2i+2 popping up in (29). Thanks to
Lemma 2.3, for any η ≤ 1 − κ we have[δσ (y)]t2i t2i+1

 ≤ Nκ,σ


|yt2i |

−η
+ |yt2i+1 |

−η
 δyt2i t2i+1

κ+η
.

Thus, since yt2i , yt2i+1 ∈ [b12−qk , b22−qk ] we get

[δσ (y)]t2i t2i+1

 δxt2i+1t2i+2

 ≤ Nκ,σ 2b−η

1 ∥x∥γ ∥y∥
κ+η
γ,k,ν 2qkη

 t − s

2l

(1+κ+η)γ

. (36)

We choose η above such that γ (1 + κ + η) = 2γ . It is readily checked that such a η verifies

η = 1 − κ.

Furthermore, with this value of η in hand, relation (36) becomes

[δσ (y)]t2i t2i+1

 δxt2i+1t2i+2

 ≤ Nκ,σ 2bκ−1
1 ∥x∥γ ∥y∥γ,k,ν 2qk (1−κ)

 t − s

2l

2γ

. (37)

Plugging this inequality into the terms K l
st of (29) we end up with

∞
l=1

|K l
st| ≤ c3,x∥y∥γ,k,ν 2qk (1−κ)

|t − s|2γ , (38)
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where we have set c3,x =
Nκ,σ 2bκ−1

1
22γ −1

∥x∥γ . Reporting (35) and (38) into (29), this yields

|δyst| ≤ c1∥x∥γ |t − s|γ 2−qkκ + A2
st, with A2

st = c3,x∥y∥γ,k,ν 2qk (1−κ)
|t − s|2γ . (39)

We should now bound the term A2
st as a γ -Hölder increment. Indeed, recalling that we assume

|t − s| ≤ c02−ν , we get

A2
st ≤ c3,x cγ

0 2qk (1−κ)−νγ
∥y∥γ,k,ν |t − s|γ . (40)

We now choose c0 and ν so that c3,x cγ

0 2qk (1−κ)−νγ
≤

1
2 . It is readily checked that this is achieved

for c0 small enough and ν = αqk := γ −1(1 − κ)qk given by (32). With those values of c0 and ν

in hand, relation (39) becomes

∥y∥γ,k,ν ≤ c1∥x∥γ 2−qkκ +
1
2
∥y∥γ,k,ν,

from which (33) is easily deduced, with c1,x = 2c1∥x∥γ .

Step 2: Proof of (34). Go back to relation (37) and invoke Hypothesis 4.7 in order to get[δσ (y)]t2i t2i+1

 δxt2i+1t2i+2

 ≤ Nκ,σ 2bκ−1
1 ∥x∥γ1∥y∥γ,k,ν 2qk (1−κ)

 t − s

2l

2γ+ε1

.

Moreover, according to (29), the term rst in (34) is given by


∞

l=1 K l
st. Proceeding as for relations

(38) and (39), we obtain that

|rst| ≤

∞
l=1

K l
st

 ≤ A2
st = c̃3,x∥y∥γ,k,ν 2qk (1−κ)

|t − s|2γ+ε1 , (41)

where c̃3,x =
Nκ,σ 2bκ−1

1
22γ+ε1−1

∥x∥γ1 .
We now plug the a priori bound (33) on ∥y∥γ,k,ν we have just obtained, and read the regularity

of A2 in γ -Hölder norm. Similarly to (40), we can recast (41) as:

A2
st ≤ c̃3,x cγ+ε1

0 2qk (1−κ)−ν(γ+ε1) c1,x 2−qkκ |t − s|γ .

Let us recall that ν = αqk . Therefore we obtain:

A2
st ≤ c̃3,x cγ+ε1

0 c1,x 2−qk (κ+αε1)γ |t − s|γ .

Taking into account the fact that κε1 = κ + αε1, this finishes the proof of (34). �

In the sequel we shall need some regularity estimates for y on time scales slightly larger than
2−αqk with α = γ −1(1 − κ). This is the contents of the following property.

Corollary 4.9. Under the same hypotheses as in Proposition 4.8, consider ε2 > 0 such that

ε2 < min


γ −1(1 − κ), κ(1 − γ )−1,
κ + γ −1(1 − κ)ε1

1 + ε1


.

Then there exists a constant c4,x = 21−γ c0,x such that for s, t ∈ [λk, λk+1) satisfying
|t − s| ≤ c4,x 2−(α−ε2)qk with α = γ −1(1 − κ) we have

|δyst| ≤ c5,x 2−qkκ
−
ε2 |t − s|γ , with κ−

ε2
= κ − (1 − γ )ε2. (42)
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Moreover, under the same conditions on s, t , decomposition (34) still holds true, with

|rst| ≤ c6,x 2−qkκε1,ε2 |t − s|γ , where κε1,ε2 = κ + αε1 − ε2 − ε1ε2. (43)

Proof. We take up the notation introduced for the proof of Proposition 4.8, and we split again
our computations in 2 steps.
Step 1: Proof of (42). Start from inequality (33), which is valid for |t − s| ≤ c0,x 2−αqk . Now let
m ∈ N and consider s, t ∈ [λk, λk+1) such that c0,x (m − 1)2−αqk < |t − s| ≤ c0,x m2−αqk . We
partition the interval [s, t] by setting t j = s + c0,x j2−αqk for j = 0, . . . , m −1 and tm = t . Then
we simply write

|δyst| ≤

m−1
j=0

|δyt j t j+1 | ≤ c1,x 2−qkκ
m−1
j=0


t j+1 − t j

γ
≤ c1,x 2−qkκm1−γ

|t − s|γ ,

where the last inequality stems from the fact that t j+1 − t j ≤ (t − s)/m. Now the upper bound
(42) is easily deduced by applying the above inequality to m = [2ε2qk ] + 1.
Step 2: Proof of (43). Once (42) is proven, we go again through the estimation of K l

st. Replacing

∥y∥γ,k,ν by c5,x 2−qkκ
−
ε2 in (41), we end up with

|rst| ≤ c6,x 2−qkκ
−
ε2 2qk (1−κ)2−qk (α−ε2)(γ+ε1)|t − s|γ = c6,x 2−qkκε1,ε2 |t − s|γ ,

which is our claim (43). �

4.3. Estimates for stopping times

Thanks to the regularity estimates of the previous section, we get a bound on the difference
λk+1 − λk which roughly states that a solution to Eq. (27), cannot go too sharply to 0.

Proposition 4.10. The sequence of stopping times {λk, k ≥ 1} defined by (28) satisfies

λk+1 − λk ≥ c7,x 2−αqk , (44)

where α = (1 − κ)/γ .

Proof. We shall prove that τk − λk satisfies a lower bound of the form

τk − λk ≥ c7,x 2−αqk . (45)

Along the same lines we can prove a similar bound for λk+1 − τk , and this will prove our claim
(44).

Inequality (45) is obtained in the following way. We observe that in order to get out of the
interval [λk, τk), an increment of size 2−(qk+1) must occur. Indeed, at λk the solution is at the
middle point of Iqk and the length of this interval is of order 2−qk . However, relation (33) asserts
that if |δyst| ≥ 2−(qk+1) and |t − s| ≤ c0,x 2−αqk , then we must have

c1,x
|t − s|γ

2κqk
≥

1

2qk+1 , (46)

which implies

|t − s| ≥

2c1,x

− 1
γ 2−

(1−κ)qk
γ =


2c1,x

− 1
γ 2−αqk .

This finishes our proof. �
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In order to sharpen Proposition 4.10, we introduce a roughness hypothesis on x , borrowed
from [1]. As we shall see, this assumption is satisfied when x is a fractional Brownian motion.

Hypothesis 4.11. We assume that for ε̂ arbitrarily small there exists a constant c > 0 such that
for every s in [0, T ], every ϵ in (0, T/2], and every u in Rd with |u| = 1, there exists t in [0, T ]
such that ϵ/2 < |t − s| < ϵ and

|⟨u, δxst⟩| > c ϵγ+ε̂.

The largest such constant c is called the modulus of (γ +ε̂)-Hölder roughness of x , and is denoted
by Lγ,ε̂ (x).

Under this hypothesis, we are also able to upper bound the difference λk+1 − λk in a useful
way. To this aim, recall that option (B) in Proposition 4.2 is assumed below. It yields the relation
limk→∞ qk = ∞. Also remember that {λk, k ≥ 1} is given in (28), and that α = (1 − κ)/γ .

Proposition 4.12. For all ε2 <
αε1

1+γ+ε1
∧

κ
1−γ

and qk large enough, the sequence of stopping
times {λk, k ≥ 1} satisfies

λk+1 − λk ≤ cx,ε22−qk (α−ε2). (47)

Furthermore, inequality (42) can be extended as follows: there exists a constant cx such that for
s, t ∈ [λk, λk+1) we have

|δyst| ≤ cx 2−κ−
ε2

qk
|t − s|γ . (48)

Proof. If (47) does not hold, this implies that there exists ε2 <
αε1

1+γ+ε1
∧

κ
1−γ

satisfying the
condition of Corollary 4.9 so that for any constant C the inequality

λk+1 − λk ≥ C2−qk (α−ε2) (49)

holds for infinitely many values of k. This implies that

λk+1 − λk ≥ C 2−qk (1−κ)/(γ+ε̂), (50)

if we choose ε̂ small enough so that (1−κ)/(γ + ε̂) ≥ α−ε2. We wish to exhibit a contradiction,
namely that one can find s, t ∈ [λk, λk+1] such that |δyst| > |Jqk |, where |Jqk | denotes the size
of Jqk .

In order to lower bound |δyst|, let us first invoke Hypothesis 4.11. Since our computations are
performed in the one-dimensional case for notational sake, we can in fact recast Hypothesis 4.11
as follows. Choose

ε :=
c1 2−

qk (1−κ)

γ+ε̂
Lγ,ε̂(x)

 1
γ+ε̂

≤ C 2−
qk (1−κ)

γ+ε̂ ,

which can be achieved by taking the constant C large enough, for a given constant c1. Then there
exist s, t ∈ [λk, λk+1] satisfying

ε

2
≤ |t − s| ≤ ε, and |δxst| ≥ cγ+ε̂

1 2−qk (1−κ). (51)



J.A. León et al. / Stochastic Processes and their Applications 127 (2017) 3042–3067 3063

Notice that c1 can be made arbitrarily large, by playing with k and ε̂. In addition, we can use the
fact that |σ(ys)| ≥ c2−qkκ whenever s ∈ [λk, λk+1]. Indeed, this follows from Hypothesis 4.1
and the fact that ys ≥ b12−qk ≥ 2−qk−2. This entails, for s, t as in (51)

|σ(ys)δxst| ≥ ccγ+ε̂

1 2−qk .

If (49) holds true, we can now choose c1 so that ccγ+ε̂

1 ≥ 6. This yields

|σ(ys)δxst| ≥ 6 · 2−qk = 2|Jqk |.

In particular the size of this increment is larger than twice the size of Jqk .
We now assume again that we have chosen ε̂ small enough so that (1 − κ)/(γ + ε̂) ≥ α − ε2.

Then the upper bound on |t −s| in (51) also implies |t −s| ≤ c8,x 2−qk (α−ε2). For the two instants
s, t exhibited in relation (51), we resort to decomposition (29) together with the bound (43). This
yields

|δyst| & A1
st − A2

st, with A1
st = 6 · 2−qk , A2

st ≤ c6,x 2−qkκε1,ε2 |t − s|γ ≤ c9,x 2−qkµε2 ,

where we recall that κε1,ε2 = κ + αε1 − ε2 − ε1ε2 and where we obtain

µε2 = κε1,ε2 + (α − ε2)γ = 1 + αε1 − (1 + γ + ε1)ε2.

Our aim is now to prove that A2
st can be made negligible with respect to 2−qk when qk is large

enough. This is achieved whenever µε2 > 1, and this condition can be met by picking ε1 large
enough and ε2 small enough. Summarizing our considerations, we have thus shown that A1

st is
larger than twice |Jqk | = 3 · 2−qk and that A2

st is negligible with respect to A1
st as qk gets large.

This proves our claim (47). �

4.4. Hölder continuity

We shall use the following notation, valid for λ ∈ (0, 1), a time horizon t ∈ [0, T ] and a
function from [0, t] to Rm :

∥ f ∥λ,t := sup
0≤s<u≤t

|δ fst|

|u − s|λ
, where δ fst = ft − fs . (52)

Then, we have the following result, which is our first main objective in this section.

Proposition 4.13. Suppose that σ satisfies Hypothesis 4.1 and that our noise x satisfies Hy-
potheses 4.7 and 4.11. We also assume that γ + κ > 1. Then, the function y given in Proposi-
tion 4.2 belongs to Cγ ([0, T ]; Rm).

Proof. Remember that we are assuming that y satisfies condition (B) in Proposition 4.2. Consider
first s = λk and t = λl with k < l. We start by decomposing the increments |δyst| as follows

|δyst| ≤

l−1
j=k

δyλ j λ j+1

 .
Then owing to Proposition 4.12 we have λk+1 − λk ≤ cx,ε22−qk (α−ε2) for k large enough. We
can thus apply Corollary 4.9, which yields

|δyst| ≤

l−1
j=k

δyλ j λ j+1

 ≤ c5,x

l−1
j=k

2−q j κ
−
ε2 |λ j+1 − λ j |

γ . (53)
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Furthermore, inequality (44) entails:

2−
q j (1−κ)

γ . c−1
7,x


λ j+1 − λ j


H⇒ 2−q j κ

−
ε2 ≤ (c7,x )

−
γ κ

−
ε2

1−κ

λ j+1 − λ j

 γ κ
−
ε2

1−κ .

Plugging this information into (53) and setting c10,x = c5,x (c7,x )
−

γ κ
−
ε2

1−κ , we end up with:

|δyst| ≤ c10,x

l−1
j=k

|λ j+1 − λ j |
µε2 , with µε2 = γ


1 +

κ−
ε2

1 − κ


.

We now wish the exponent µε2 to be of the form µε2 = 1+ε3 with ε3 > 0. Since κ−
ε2

is arbitrarily
close to κ , it is readily checked that this can be achieved as long as γ + κ > 1. Recalling that
s = λk and t = λl , one can thus recast the previous inequality as

|δyst| ≤ c10,x

l−1
j=k

|λ j+1 − λ j |
1+ε3 ≤ c10,x |λl − λk |

1+ε3 ≤ c10,x τ 1+ε3−γ
|t − s|γ ,

which is consistent with our claim.
The general case s < λk ≤ λl < t is treated by decomposing δyst as

δyst = δysλk + δyλkλl + δyλl t .

Then resort to (48) in order to bound δysλk and δyλl t . �

The next proposition says that if (B) holds, the function y can be obtained as the limit of a
suitable sequence of Riemann sums.

Proposition 4.14. Let y be the function given in Proposition 4.2. For all 0 ≤ s < t ≤ T , let Πst
be the set of partitions of [s, t], denoted generically by π = {s = t0 < · · · < tm = t}. For ε > 0
arbitrarily small, define

Π ε
st =


π ∈ Πst; there exists j∗ such that t j∗ < τ ≤ t j∗+1 and η ≤ |τ − t j∗ | ≤ 2η


,

where η = cxε
1/γ for a strictly positive constant cx and τ is introduced in Proposition 4.2. Then

under the conditions of Proposition 4.13, one can find π ∈ Π ε
st such that:

 t

s
σ(yu) dxu −


t j ∈π

σ(yt j ) δxt j t j+1

 ≤ ε. (54)

Proof. Consider a partition π lying in Π ε
st, and set Sπ =


ti ∈π σ(yti ) δxti ti+1 . Since yu = 0 for

u ≥ τ , it is worth noting that we also have

Sπ = Sπ∗ + σ(yt j∗ ) δxt j∗ t j∗+1 , where Sπ∗ ≡


j< j∗

σ(yt j ) δxt j t j+1 .

Then we can write

|δyst − Sπ | ≤

δyst j∗ − Sπ∗

+ δyt j∗ τ

+ σ(yt j∗ ) δxt j∗ t j∗+1

 := I1 + I2 + I3.

We now bound separately the 3 terms on the right hand side above. For the term I2 we have

I2 ≤ ∥y∥γ |τ − t j∗ |
γ

≤ cx (2η)γ .
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We can obviously choose a constant cx such that if η = cxε
1/γ , then I2 ≤

ε
3 . Thanks to the

same kind of elementary considerations, we can also make the term I3 smaller than ε
3 . In order

to bound I1, we invoke the fact that |τ − t j∗ | ≥ η and we set

Qη = inf {|ys | : s < τ − η} .

Observe that Qη > 0. In addition, by Hypothesis 4.1(ii), σ is differentiable and locally Hölder
continuous of order 1

γ
− 1 on [Qη, ∞). By usual convergence of Riemann sums for Young

integrals, we thus have

lim
π∈Πst j∗

,|π |→0
I1 = lim

π∈Πst j∗
,|π |→0

|δyst − Sπ | = 0.

Therefore we can choose |π | so that I1 ≤
ε
3 . Putting together our upper bounds on I1, I2 and I3,

the proof of (54) is now finished. �

Finally we can summarize the considerations of this section into the following theorem.

Theorem 4.15. Consider Eq. (27), and let T be a given strictly positive time horizon. We suppose
that Hypothesis 4.1 holds for the coefficient σ , and that Hypotheses 4.7 and 4.11 are satisfied for
our noise x. Then, there exist a continuous function y defined on [0, T ] and an instant τ ≤ T ,
such that one of the following two possibilities holds:

(A) τ = T , y is nonzero on [0, T ], y ∈ Cγ ([0, T ]; Rm) and y solves Eq. (27) on [0, T ], where
the integrals


σ j (yu) dx j

u are understood in the usual Young sense.
(B) We have τ < T . Then for any t < τ , the path y sits in Cγ ([0, T ]; Rm) and y solves Eq. (27)

on [0, T ], where the integrals


σ j (yu) dx j
u are understood as in Proposition 4.14.

Furthermore, ys ≠ 0 on [0, τ ), limt→τ yt = 0 and yt = 0 on the interval [τ, T ].

5. Application to fractional Brownian motion

Let B H
= {B H

t , t ∈ [0, T ]} be a standard d-dimensional fractional Brownian motion with
the Hurst parameter H ∈ ( 1

2 , 1) defined on a complete probability space (Ω , F , P), that is, the
components of B H are independent centered Gaussian processes with covariance

E(B H,i
t B H,i

s ) =
1
2


|t |2H

+ |s|2H
− |t − s|2H


,

for any s, t ∈ [0, T ]. It is clear that E|B H
t − B H

s |
2

= d|t − s|2H , and, as a consequence,
the trajectories of B H are γ -Hölder continuous for any γ < H . Consider the m-dimensional
stochastic differential equation

X t = x0 +

d
j=1

 t

0
σ j (Xs)d B H, j

s , 0 ≤ t ≤ T, (55)

where x0 ∈ Rm . If σ is Hölder continuous of order κ > 1
H − 1, then, there exists a solution X

which has Hölder continuous trajectories of order γ , for any γ < H . This was proved by Lyons
in [8] using the Young’s integral and p-variation estimates. An extension of this result where
there is a measurable drift with linear growth was given by Duncan and Nualart in [2]. Under
this weak assumption of σ we cannot expect the uniqueness of a solution, which requires σ to be
differentiable with partial derivatives Hölder continuous of order larger than 1

H − 1 (see [8,12]).
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The results proved in the previous sections allow us to construct examples of existence of
solutions for Eq. (55), when σ is Hölder continuous of order κ and κ ≤

1
H − 1.

Example 5.1. Suppose that m = d = 1, x0 = 0 and σ(ξ) = C |ξ |
κ , with κ ≤

1
H − 1. Then, the

process

X t = φ−1(B H
t ),

where φ(ξ) =
 ξ

0
dx

σ(x)
satisfies Eq. (55), where the integral is a path-wise integral defined in

Proposition 2.4. Indeed, it suffices to show that the assumptions of Theorem 3.7 hold. Taking
into account that φ−1 satisfies

sgn(φ−1(ξ))|(φ−1(ξ))|1−κ
= C(1 − κ)ξ,

for any ξ ∈ R, we get |(φ−1(ξ))| = [C(1 − κ)]
1

1−κ |ξ |
1

1−κ . Therefore, for any η < 1 − κ ,

E
 T

0
|φ−1(B H

s )|−ηds = [C(1 − κ)]−
η

1−κ E
 T

0
|B H

s |
−

η
1−κ ds < ∞.

This implies
 T

0 |φ−1(B H
s )|−ηds < ∞ almost surely, and we can apply Theorem 3.7.

Example 5.2. Consider Eq. (55) in the multidimensional case, with x0 ≠ 0. Suppose that
each component σ j satisfies Hypothesis 4.1 with κ ≤

1
H − 1 and observe that B H satisfies

Hypotheses 4.7 and 4.11. Then, we can apply Propositions 4.2 and 4.13, and conclude that there
exists a stochastic process X such that, if

τ = inf {t > 0 : X t = 0} ∧ T,

then,

X t =


x0 +

d
j=1

 t

0
σ j (Xs) d B H, j

s


1[0,τ )(t),

where for t < τ , the stochastic integral is understood as a path-wise Young integral. Moreover,
the process X satisfies X ∈ Cγ ([0, T ]; Rm) for any γ < H . Moreover, Proposition 4.2 implies
that X t ≡ 0, for t ≥ τ .
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in: Seminar on Probability 17, in: Lecture Notes in Math., vol. 986, Springer, 1983, pp. 15–31.
[7] J.A. León, S. Tindel, Malliavin calculus for fractional delay equations, J. Theoret. Probab. 25 (3) (2012) 854–889.
[8] T. Lyons, Differential equations driven by rough signals. I. An extension of an inequality of L. C. Young, Math.

Res. Lett. 1 (4) (1994) 451–464.
[9] T. Lyons, Differential equations driven by rough signals, Rev. Mat. Iberoam. 14 (2) (1998) 215–310.

[10] L. Mytnik, E. Perkins, Pathwise uniqueness for stochastic heat equations with Hölder continuous coefficients: the
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