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Abstract

We prove existence and uniqueness of the solution of a one-dimensional rough differential equation
driven by a step-2 rough path and reflected at zero. The whole difficulty of the problem (at least as far
as uniqueness is concerned) lies in the non-continuity of the Skorohod map with respect to the topologies
under consideration in the rough case. Our argument to overcome this obstacle is inspired by some ideas
we introduced in a previous work dealing with rough kinetic PDEs arXiv:1604.00437.
c⃝ 2018 Elsevier B.V. All rights reserved.

1. Introduction

In its original formulation [19], Lyons’ rough paths theory aimed at the study of the standard
differential model

dyt = f (yt ) dxt , y0 = a ∈ Rd , t ∈ [0, T ] , (1.1)

where f : Rd
→ L(RN

;Rd ) is a smooth enough application and x : [0, T ] → RN ,
y : [0, T ] → Rd are (typically non-differentiable) continuous paths. In order to deal with
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the lack of regularity one has to drop both the classical differential or integral formulation
of the problem and turn to a description of the motion on arbitrarily small, but finite scales.
Eq. (1.1) can be interpreted as the requirement that increments of y should behave locally as some
“germ” given by a Taylor-like polynomial approximation of the right hand side. A rough path X
constructed above the irregular signal x is the given appropriate monomials with which such a
local approximation is constructed. One of the key results of the rough paths theory is that, under
appropriate conditions, only one continuous function y can satisfy all these local constraints. In
this case we say that the path y satisfies the rough differential equations (RDEs) (1.1).

While the approach of Lyons [19–21] stresses more the control theoretic sides of the theory,
and in particular the mapping from rough paths over x to rough path over y, it has been Davie [4]
who observed the usefulness of these local expansions. Following Davie’s insight, one of the
author of the present paper [12] introduced a suitable Banach space where these local expansions
can be studied efficiently. The work of Friz and Victoir [11] showed also how to systematically
generate and analyze the local expansions for (1.1) leading to a very complete theory for RDEs.

It later turned out that these principles, or at least some adaptation of them, remain valid for
other – less standard – differential models, such as delay [22] or Volterra [6] rough equations
and homogenization of fast/slow systems [17]. The basic idea of local coherent expansions as
effective description of rough dynamical systems has been developed more recently in numerous
PDE settings (see e.g. [13–15], to mention but a few spin-offs amongst a flourishing literature)
leading to the development of the general framework of regularity structures by Hairer [16],
which allows to handle local expansions of a large class of distributions. For a recent nice
introduction to rough paths theory and some applications see [10].

This being said, in the vast majority of the situations so far covered by rough paths analysis,
and especially in all the above quoted references, the success of the method lies in an essential
way on fixed-point and contraction mapping methods to establish existence and more importantly
uniqueness of the object under consideration. Unfortunately, the existence of such a contraction
property is not known in the case of the reflected rough differential equation, which we propose
to study in this paper. To be more precise, we will focus on the one-dimensional RDE reflected at
0, which can be described as follows: given a time T > 0, a smooth function f : R → L(RN

;R)
and a p-variation N -dimensional rough path X with 2 ⩽ p < 3 (see Definition 1), find an R⩾0-
valued path y ∈ V p

1 ([0, T ]) and an R⩾0-valued increasing function (or “reflection measure”)
m ∈ V 1

1 ([0, T ]) that together satisfy

dy(t) = f (y(t))dXt + dm t , yt dm t = 0 . (1.2)

Thus, the idea morally is to exhibit a path y that somehow follows the dynamics in (1.1), but is
also forced to stay positive thanks to the intervention of some regular “local time” m at 0. Of
course, at this point, it is not exactly clear how to understand the right hand side of (1.2), and we
shall later give a more specific interpretation of the system, based on rough paths principles (see
Definition 2).

The stochastic counterpart of (1.2), where X is a standard N -dimensional Brownian motion
and the right hand side is interpreted as an Itô integral, has been receiving a lot of attention
since the 60s (see e.g. [18,23–25]), with several successive generalizations regarding the
(possibly multidimensional) containment domain of y. This Brownian reflected equation has
also been investigated more recently through the exhibition of Wong–Zakai-type approximation
algorithms [3].

When 1 ⩽ p < 2, Problem (1.2) can be naturally interpreted and analyzed by means of Young
integration techniques. This situation was first considered by Ferrante and Rovira in [9] for the



A. Deya, M. Gubinelli, M. Hofmanová et al. / Stochastic Processes and their Applications 129 (2019) 3261–3281 3263

d-dimensional positive domain Rd
≥0, with exhibition of an existence result therein. Using some

sharp p-variation estimates for the Skorohod map, Falkowski and Slominski [7,8] have recently
provided a full treatment of the Young case (at least when considering reflection on hyperplanes),
by proving both existence and uniqueness of the solution.

The more complex rough (or step-2) version of (1.2), which somehow extends the Brownian
model, has been first considered by Aida in [1], and further analyzed by the same author in [2] for
more general multidimensional domains. Nevertheless, in these two references, only existence of
a solution to (1.2) can be established and the uniqueness issue is left open. The lack of regularity
of the Skorohod map clearly appears as the main obstacle towards a uniqueness result in the
approach followed in [1,2] (see Section 3.1 for more details on the problem).

Our aim in this study is to complete the above picture in the one-dimensional situation, that
is to prove uniqueness of a solution to the problem (1.2). Actually, for the reader’s convenience,
we will also provide a detailed proof of the existence of a solution in this setting, and simplify at
the same time some of the arguments used by Aida in [1,2]. The subsequent analysis accordingly
offers a thorough – and totally self-contained – proof of well-posedness of the problem (1.2).

The strategy is inspired by the recent results on rough conservation laws [5]. Indeed, there is
an analogy between (1.2) and the kinetic formulation of conservation laws where the so-called
kinetic measure appears. As for (1.2), this measure is unknown and becomes part of the solution
which brings significant difficulties, especially in the proof of uniqueness. The latter is then
based on a tensorization-type argument, also known as doubling of variables, and subsequent
estimation of the difference of two solutions.

In the case of (1.2), we put forward a fairly simple proof of uniqueness based on a direct
estimation of a difference of two solutions. In particular, in this finite dimensional setting no
technical tensorization method is needed. The existence is then derived from a compactness
result, starting from a smooth approximation of the rough path X. In both cases, the key of
the procedure consists in deriving sharp estimates for the remainder term which measures the
difference between the (explicit) local expansion and the unknown of the problem. The strategy
thus heavily relies on the so-called sewing lemma at the core of the rough paths machinery (see
Lemma 1). The estimates on the remainder are then converted via a rough Gronwall lemma (see
Lemma 2) into estimates for the unknown (resp. for some function thereof) in order to establish
existence (resp. uniqueness).

The paper is organized along a very simple division. In Section 2, we start with a few
reminders on the rough paths setting and topologies, which allows us to give a rigorous
interpretation of the problem (1.2), as well as the statement of our well-posedness result
(Theorem 4). We also introduce the two main technical ingredients of our analysis therein,
namely the above-mentioned sewing and Gronwall lemmas, with statements borrowed from [5].
Section 3 is devoted to the uniqueness issue: we first elaborate on the difficulties raised by the
rough case (with respect to the “Young” case) and then display our solution to the problem
(Theorem 9). Section 4 closes the study with the proof of existence: we will first provide an
exhaustive treatment of the problem in the one-dimensional situation (the main topic of the
paper), and then give a few details on possible extensions of our arguments to more general
multidimensional domains (Section 4.2).

2. Setting and main result

To settle our analysis, we will need the following notations and definitions taken from rough
paths theory. First of all, let us recall the definition of the increment operator, denoted by δ. If g
is a path defined on [0, T ] and s, t ∈ [0, T ] then δgst := gt − gs , if g is a 2-index map defined
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on [0, T ]2 then δgsut := gst − gsu − gut . For g : [0, T ] → E and ϕ : E → F (with E, F two
Banach spaces), we will also use the convenient notations

[[ϕ]](g)st :=

∫ 1

0
dτ ϕ(gs + τ (δg)st ) ,

[[[[ϕ]]]](g)st :=

∫ 1

0
dτ

∫ τ

0
dσ ϕ(gs + σ (δg)st ) .

(2.1)

Observe in particular that if ϕ is a smooth enough mapping, then

δϕ(g)st = [[∇ϕ]](g)stδgst and [[ϕ]](g)st − ϕ(gs) = [[[[∇ϕ]]]](g)stδgst . (2.2)

In the sequel, given an interval I we call a control on I (and denote it by ω) any superadditive
map on SI := {(s, t) ∈ I 2

: s ⩽ t}, that is, any map ω : SI → [0, ∞[ such that,

ω(s, u) + ω(u, t) ⩽ ω(s, t), s ⩽ u ⩽ t.

We will say that a control ω is regular if lim|t−s|→0ω(s, t) = 0. Also, given a control ω on a time
interval I = [a, b], we will use the notation ω(I ) := ω(a, b).

Now, given a time interval I , a parameter p > 0, a Banach space E and a function
g : SI → E , we define the p-variation seminorm of g as

∥g∥V̄ p
2 (I ;E) := sup

(ti )∈P(I )

(∑
i

|gti ti+1 |
p

) 1
p

,

where P(I ) denotes the set of all partitions of the interval I , and we denote by V̄ p
2 (I ; E) the set

of maps g : SI → E for which this quantity is finite. In this case,

ωg(s, t) := ∥g∥
p
V̄ p

2 ([s,t];E)

defines a control on I , and we denote by V p
2 (I ; E) the set of elements g ∈ V̄ p

2 (I ; E) for which
ωg is regular on I . We then denote by V̄ p

1 (I ; E), resp. V p
1 (I ; E), the set of paths g : I → E

such that δg ∈ V̄ p
2 (I ; E), resp. δg ∈ V p

2 (I ; E). Finally, we define the space V̄ p
2,loc(I ; E) of maps

g : SI → E such that there exists a countable covering {Ik}k of I satisfying g ∈ V̄ p
2 (Ik; E) for

every k. We write g ∈ V p
2,loc(I ; E) if the related controls can be chosen regular.

Definition 1. Fix a time T > 0 and let N ⩾ 1, 2 ⩽ p < 3. Then we call a continuous
N -dimensional p-variation rough path on [0, T ] any pair

X = (X1,X2) ∈ V p
2 ([0, T ];RN ) × V p/2

2 ([0, T ];RN ,N ) (2.3)

that satisfies the relation

δX
2;i j
sut = X1,i

su X
1, j
ut , s < u < t ∈ [0, T ] , i, j ∈ {1, . . . , N } . (2.4)

Such a rough path X is said to be geometric if it can be obtained as the limit, for the p-
variation topology involved in (2.3), of a sequence of smooth rough paths (Xε)ε>0, that is with
Xε

= (Xε,1,Xε,2) explicitly defined as

Xε,1,i
st := δxε,i

st , X
ε,2,i j
st :=

∫ t

s
δxε,i

su dxε, j
u ,

for some smooth path xε
: [0, T ] → RN .
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We are now in a position to provide a clear interpretation of the problem (1.2).

Definition 2. Given a time T > 0, a real a ≥ 0, a differentiable function f : R →

L(RN
;R) and a p-variation N -dimensional rough path X with 2 ⩽ p < 3, a pair (y, m) ∈

V p
1 ([0, T ];R⩾0) × V 1

1 ([0, T ];R⩾0) is said to solve the problem (1.2) on [0, T ] with initial
condition a if there exists a 2-index map y♮

∈ V p/3
2,loc([0, T ];R) such that for all s < t ∈ [0, T ],

we have⎧⎨⎩δyst = fi (ys)X1,i
st + f2,i j (ys)X2,i j

st + δmst + y♮
st

y0 = a and m t =

∫ t

0
1{yu=0}dmu

, (2.5)

where we have set f2,i j (ξ ) := f ′

i (ξ ) f j (ξ ) and m([0, t]) := m t .

Remark 3. Eq. (2.5) should be read as the given local expansion of the function y: it says that
around each time point s the function can be approximated by the germ

t ↦→ ys + f (ys)X1
st + f2(ys)X2

st + δmst

up to terms of order ω(s, t)p/3 where ω is a control. The term δmst is characteristic for this
reflected problem: the measure m increases only at times u where yu = 0 effectively “kicking”
the path y away from the negative axis. In some sense it can be considered as a Lagrange
multiplier enforcing the constraint yu ≥ 0 for all u ∈ [0, T ].

With this interpretation in hand, our well-posedness result reads as follows:

Theorem 4. Let T > 0 and a > 0. If f ∈ C3
b (R;L(RN

;R)), that is if f is 3-time differentiable,
bounded with bounded derivatives, and if X is a continuous geometric N-dimensional p-
variation rough path, then Problem (1.2) admits a unique solution (y, m) on [0, T ] with initial
condition a.

Let us conclude this preliminary section with a presentation of the two main technical results
that will be used in our analysis, and the proofs of which are elementary and can be found
e.g. in [5] (Lemma 2.1 and Lemma 2.7, respectively).

Lemma 1 (Sewing Lemma). Fix an interval I , a Banach space E and a parameter ζ > 1.
Consider a map G : I 3

→ E such that G ∈ {δH ; H : I 2
→ E} and for every s < u < t ∈ I ,

|Gsut | ⩽ ω(s, t)ζ ,

for some regular control ω on I . Then there exists a unique element ΛG ∈ V 1/ζ

2 (I ; E) such that
δ(ΛG) = G and for every s < t ∈ I ,

|(ΛG)st | ⩽ Cζω(s, t)ζ , (2.6)

for some universal constant Cζ .

Lemma 2 (Rough Gronwall Lemma). Fix a time horizon T > 0 and let g : [0, T ] → [0, ∞) be
a path such that for some constants C, L > 0, κ ⩾ 1 and some controls ω1, ω2 on [0, T ] with ω1
being regular, one has

δgst ⩽ C( sup
0⩽r⩽t

gr ) ω1(s, t)
1
κ + ω2(s, t), (2.7)
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for every s < t ∈ [0, T ] satisfying ω1(s, t) ⩽ L. Then it holds

sup
0⩽t⩽T

gt ⩽ 2ecL ,κ ω1(0,T )
{

g0 + sup
0⩽t⩽T

(ω2(0, t)e−cL ,κ ω1(0,t))
}

,

where cL ,κ is defined as

cL ,κ = sup
(

1
L

, (2Ce2)κ
)

. (2.8)

3. Uniqueness

In this section we shall first briefly review (essentially following [7]) the contraction method
which allows to get uniqueness for reflected equations when Eq. (1.2) can be interpreted in the
Young sense. Then we will show why one cannot expect to extend directly this simple contraction
principle to the rough case. Eventually our main result is shown in Section 3.2, thanks to the new
ingredients alluded to in the introduction.

3.1. Illustration of the difficulty

As we already pointed it out in the introduction, proving uniqueness of a solution to the rough
reflected Eq. (2.5) is the most intricate part of the study. In order to illustrate this difficulty, let
us briefly go back here to the strategy in the so-called Young situation, i.e. we assume for the
moment that the driving path x is of finite p-variation for 1 ≤ p < 2 (we set X1,i

st := δx i
st

in the sequel). In this case, the corresponding notion of a solution to (1.2) consists of a pair
(y, m) ∈ V p

1 ([0, T ];R⩾0) × V 1
1 ([0, T ];R⩾0) such that y0 = a and for all s < t ,

δyst = fi (ys)X1,i
st + δmst + y♮

st (3.1)

for some path y♮
∈ V p/2

2,loc([0, T ];R) and with m satisfying the additional constraint

m t =

∫ t

0
1{yu=0}dmu . (3.2)

Let us also recall the general definition of the Skorohod map.

Definition 5. Let g be a continuous R-valued path defined on some interval I = [ℓ1, ℓ2]. The
Skorohod problem in the domain R⩾0 associated with g consists in finding a pair (y, m) ∈

C(I ;R⩾0) × V 1
1 (I ;R⩾0) such that for all s < t with s, t ∈ I we have:⎧⎨⎩ δyst = δgst + δmst ,

yℓ1 = gℓ1 , m t =

∫ t

0
1{yu=0}dmu

.

The application g ↦→ (y, m) is called Skorohod map.

It turns out that the uniqueness issue associated with (3.1) can be readily handled by using
the regularity property of the (one-dimensional) Skorohod map, as developed in [7]. Namely,
it is well known that for every g ∈ V̄ p

1 (I ), there exists a unique pair (y, m) ∈ V̄ p
1 (I ) × V̄ 1

1 (I )
satisfying Definition 5.

Now the key point towards uniqueness for (3.1) lies in the fact that for 1 ⩽ p < 2, according
to [7, Theorem 2.2],

the map Φ : V̄ p
1 (I ) → V̄ p

1 (I ) , g ↦→ m is Lipschitz-continuous (3.3)
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for any finite interval I . Based on this property, we can easily prove the following uniqueness
result:

Proposition 6. Consider a finite horizon T > 0 and an initial condition a ≥ 0. We consider a
function f ∈ C3

b (R;L(RN
;R)) and a N-dimensional p-variation path x with 1 ≤ p < 2. Then

uniqueness holds for Eq. (3.1) on [0, T ].

Proof. We shall implement the usual contraction argument for differential equations to our
system (3.1). In order to ease notations throughout this proof, we use the convention a ≲ b if
there exists a constant c such that a ⩽ c b.

Step 1: Bounding the remainders. Let (y, µ) and (z, ν) be two solutions of problem (3.1). We
set ∆ := y − z, ∆♮

:= y♮
− z♮ and

ωy(s, t) := ∥y∥
p
V̄ p

1 ([s,t])
, ω∆(s, t) := ∥y − z∥p

V̄ p
1 ([s,t])

, ωX(s, t) := ∥x∥
p
V̄ p

1 ([s,t])
.

Then writing decomposition (3.1) for y and z and invoking elementary inequalities for the
rectangular increment δ( fi (y) − fi (z))su , it holds that

|δ∆
♮
sut | = |δ( fi (y) − fi (z))suX

1,i
ut |

≲
[
∥y − z∥∞;[s,u]ωy(s, u)1/p

+ ω∆(s, u)1/p]ωX(u, t)1/p ,

which, by Lemma 1 and since 1 ≤ p < 2, yields that

|∆
♮
st | ≲

[
∥y − z∥∞;[s,t]ωy(s, t)1/p

+ ω∆(s, t)1/p]ωX(s, t)1/p . (3.4)

Step 2: Bounding the measures. Since y (resp. z) can be seen as the solution of a Skorohod
problem, let us call g (resp. h) the corresponding non reflected path. Then according to (3.1), the
respective decompositions of the increments of g and h can be written for 0 ≤ s < t ≤ T as:

δgst = fi (ys)X1,i
st + y♮

st , and δhst = fi (zs)X1,i
st + z♮

st .

In particular, if the initial condition for both y and z is a ⩾ 0, we get:

gr = fi (a)Xi
0r + y♮

0r , and hr = fi (a)Xi
0r + z♮

0r , (3.5)

for all r ⩽ T . Besides, due to (3.3), we can assert that for all 0 ≤ s < t ≤ T :

∥µ − ν∥V̄ p
1 ([s,t]) ≲ ∥g − h∥V̄ p

1 ([s,t]) . (3.6)

Step 3: Conclusion. Observe that owing to (3.5) we have:

δ(g − h)ru = ∆
♮

0u − ∆
♮

0r = δ∆
♮

0ru + ∆♮
ru = δ( fi (y) − fi (z))0rX

i
ru + ∆♮

ru ,

so, by (3.4) and (3.6), for all 0 < T0 ≤ T and 0 ≤ s < t ≤ T0,

∥µ − ν∥V̄ p
1 ([s,t]) ≲

[
∥y − z∥∞;[0,T0] + ∥y − z∥∞;[0,T0]ωy(s, t)1/p

+ ω∆(s, t)1/p]
× ωX(s, t)1/p . (3.7)

Going back to expansion (3.1) (for both y and z), we know that

|δ(y − z)st | ≤ | fi (ys) − fi (zs)||Xi
st | + |δ(µ − ν)st | + |∆

♮
st |

and thus, using (3.4)–(3.7), we get, for any 0 < T0 < T ,

ω∆(0, T0) ≲
[
∥∆∥

p
∞;[0,T0] + ω∆(0, T0)

]
ωX(0, T0) ,
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which easily leads us to the expected uniqueness result by a standard contraction and patching
argument. □

Remark 7. Note that the arguments in the proof of Proposition 6 could also provide us with a
regularity property for the corresponding “Ito” map X ↦→ y.

Let us now turn to the rough situation 2 ≤ p < 3, with associated reflected problem (2.5).
We use the same notations (y, µ), (z, ν) and ∆♮ as in the proof of Proposition 6. Then thanks to
(2.2) and (2.4) it can be shown (see (3.11) for similar computations) that

δ∆
♮
sut = Ai

suX
1,i
ut + δ( f2,i j (y) − f2,i j (z))suX

2,i j
ut , (3.8)

where we recall that f2,i j = f ′

i f j and where we have set

Ai
su := ( f ′

i (ys) f2, jk(ys) − f ′

i (zs) f2, jk(zs))X2, jk
su + ( f ′

i (ys) − f ′

i (zs))(δµsu + y♮
su)

+ f ′

i (zs)[δ(µ − ν)su + ∆♮
su]

+
(
[[[[ f ′′

i ]]]](y)su(δysu)2
− [[[[ f ′′

i ]]]](z)su(δzsu)2) .

With the conditions of Lemma 1 in mind, the latter expression clearly emphasizes the need for a
control of ∥µ−ν∥V̄ q ([0,T ]), with q such that 1

p +
1
q > 1, in terms of ∥y − z∥V̄ p([0,T ]). In light of the

above strategy for the Young situation, we would expect this control to be (again) a consequence
of some Lipschitz-continuity property for the Skorohod map.

This is where the whole difficulty of the rough case arises: when p ≥ 2, the following result
indeed annihilates any hope for such a regularity statement.

Proposition 8. For all p > q ≥ 1, the Skorohod map Φ : g ↦→ m defined by (3.3) is not
Hölder-continuous when considered as an application from V̄ p

1 ([0, 1];R) to V̄ q
1 ([0, 1];R).

Proof. Assume that there exist constants λ ∈ (0, 1] and C p,q,λ > 0 such that for all
f, g ∈ V̄ p

1 ([0, 1];R),

∥Φ( f ) − Φ(g)∥V̄ q
1 ([0,1];R) ≤ C p,q,λ∥ f − g∥

λ

V̄ p
1 ([0,1];R)

. (3.9)

In particular, we would have, for all increasing functions f, g : [0, 1] → R,

∥ f − g∥V̄ q
1 ([0,1];R) = ∥( f − f (0)) − (g − g(0))∥V̄ q

1 ([0,1];R)

= ∥Φ(− f + f (0)) − Φ(−g + g(0))∥V̄ q
1 ([0,1];R)

≤ C p,q,λ∥ f − g∥
λ

V̄ p
1 ([0,1];R)

,

and so, for every function F : [0, 1] → R with bounded variation,

∥F∥V̄ q
1 ([0,1];R) ≤ C p,q,λ∥F∥

λ

V̄ p
1 ([0,1];R)

. (3.10)

We now show that relation (3.10) is impossible, by exhibiting a simple counter example. Indeed,
consider the sequence (Fn) of step-functions given by the formula: for every t ∈ [0, 1],

Fn(t) =

∑
i≥0

{
1

2n
1
p

1
{t2n

2i ≤t<t2n
2i+1}

−
1

2n
1
p

1
{t2n

2i+1≤t<t2n
2i+2}

}
,
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where we have set tn
i =

i
n . It is readily checked that

∥Fn∥V̄ p
1 ([0,1];R) =

( 2n∑
i=1

(
1

n
1
p

)p) 1
p

= 2
1
p

and in the same way we get the following relation for q < p:

∥Fn∥V̄ q
1 ([0,1];R) =

( 2n∑
i=1

(
1

n
1
p

)q) 1
q

= 2
1
q n

1
q −

1
p

n→∞
−→ ∞ ,

which of course contradicts (3.10). □

3.2. Main result

Proposition 8 shows that one cannot use Hölder continuity properties of the Skorohod map
in order to get uniqueness for Eq. (1.2) in the rough case. The current section shows how to
circumvent this problem thanks to the full implementation of rough paths methods and our rough
Gronwall Lemma 2.

Theorem 9. Let T > 0 and a > 0. If f ∈ C3
b (R;L(RN

;R)) and X is an N-dimensional
p-variation rough path, then Problem (1.2) admits at most one solution (y, m) on [0, T ] with
initial condition a.

Proof. Let (y, µ) and (z, ν) be two solutions for (2.5). Set Y := (y, z) ∈ V p
1 ([0, T ];R2) and

with decomposition (2.5) in mind, write

δYst = Fi (Ys)X1,i
st + F2,i j (Ys)X2,i j

st + δMst + Y ♮
st , 0 ⩽ s ⩽ t ⩽ T . (3.11)

where we use the shorthands Fi (Y ) := ( fi (y), fi (z)), F2,i j (Y ) := ( f2,i j (y), f2,i j (z)), M :=

(µ, ν) ∈ V 1
1 ([0, T ];R2) and Y ♮

:= (y♮, z♮) ∈ V p/3
2,loc([0, T ];R2). From now on and until the

end of the proof, we fix an interval I ⊂ [0, T ] such that Y ♮
∈ V p/3

2 (I ;R2) and consider the
following controls on I :

ωY (s, t) := ∥Y∥
p
V̄ p

1 ([s,t])
, ωY,♮(s, t) := ∥Y ♮

∥
p/3

V̄ p/3
2 ([s,t])

,

ω∆(s, t) := ∥y − z∥p
V̄ p

1 ([s,t])
, ω∆,♮(s, t) := ∥y♮

− z♮
∥

p/3

V̄ p/3
2 ([s,t])

,

ωM (s, t) := ∥M∥V̄ 1
1 ([s,t]) = ∥µ∥V̄ 1

1 ([s,t]) + ∥ν∥V̄ 1
1 ([s,t]) .

Without loss of generality, we will assume that ωX(I ) ⩽ 1, where ωX is a fixed control such that

|X1
s,t | + |X2

s,t |
1/2

⩽ ωX(s, t)1/p, 0 ⩽ s ⩽ t ⩽ T .

Now, consider a smooth function ϕ : R → R⩾0 and set h(x1, x2) := ϕ(x1−x2) for all x1, x2 ∈ R.
A direct computation via Taylor expansion, combined with (3.11), shows that

δh(Y )st = [[∇h]](Y )st δYst = Hi (Ys)X1,i
st + H2,i j (Ys)X2,i j

st

+

∫ t

s
ϕ′(yu − zu)(dµu − dνu) + h♮

st (3.12)
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where h♮ is a map in V p/3
2 (I ;R), and where we have set, for all Y = (y, z) ∈ R2,

Hi (Y ) := ∇h(Y )Fi (Y ) = ϕ′(y − z)( fi (y) − fi (z)) (3.13)

H2,i j (Y ) := ∇ Hi (Y )F j (Y )

= ϕ′(y − z)( f2,i j (y) − f2,i j (z))

+ ϕ′′(y − z)( fi (y) − fi (z))( f j (y) − f j (z)) . (3.14)

Step 1: A general estimate on h♮. Given that h♮ is a remainder term, we wish to use the sewing
map to estimate it. Applying δ to Eq. (3.12) and using (2.4), we get, for 0 ⩽ s ⩽ u ⩽ t ⩽ T :

δh♮
sut = δHi (Y )suX

1,i
ut − H2,i j (Ys)X1, j

su X1,i
ut + δH2,i j (Y )suX

2,i j
ut

=
(
δHi (Y )su − H2,i j (Ys)X1, j

su

)
X1,i

ut + δH2,i j (Y )suX
2,i j
ut . (3.15)

We need to expand the quantity δHi (Y )su − H2,i j (Ys)X1, j
su in (3.15), in order to show that h♮ is

suitably small and depends in a very precise way on ϕ and on the difference ∆ := y − z. In fact,
by Taylor expansion and using (3.11) we get

δHi (Y )su − H2,i j (Ys)X1, j
su = [[∇ Hi ]](Y )suδYsu − H2,i j (Ys)X1, j

su

= [[∇ Hi ]](Y )su F j (Ys)X1, j
su + [[∇ Hi ]](Y )su F2, jk(Ys)X2, jk

su + [[∇ Hi ]](Y )suY ♮
su

+ [[∇ Hi ]](Y )suδMsu − H2,i j (Ys)X1, j
su

= ([[∇ Hi ]](Y )su − ∇ Hi (Ys))F j (Ys)X1, j
su + [[∇ Hi ]](Y )su F2, jk(Ys)X2, jk

su

+ [[∇ Hi ]](Y )suY ♮
su + [[∇ Hi ]](Y )suδMsu ,

since H2,i j (Y ) = ∇ Hi (Y )F j (Y ). Plugging this identity back into Eq. (3.15) and neglecting to
write down explicitly the time indexes, we end up with:

δh♮
= ([[∇ Hi ]](Y ) − ∇ Hi (Y ))F j (Y )X1, jX1,i

+ [[∇ Hi ]](Y )F2, jk(Y )X2, jkX1,i

+[[∇ Hi ]](Y )Y ♮X1,i
+ [[∇ Hi ]](Y ) δM X1,i

+ δH2,i j (Y )X2,i j . (3.16)

Using elementary algebraic manipulations, as well as the relation H2,i j (Y ) = ∇ Hi (Y )F j (Y ), we
obtain:

([[∇ Hi ]](Y )su − ∇ Hi (Ys))F j (Ys)

= ([[H2,i j ]](Y )su − H2,i j (Ys)) + ([[∇ Hi ]](Y )su F j (Ys) − [[H2,i j ]](Y )su)

= [[[[∇ H2,i j ]]]](Y )suδYsu − [[∇ Hi (·)[[∇F j (·)]]]](Y )suδYsu ,

where the identity [[H2,i j ]](Y )su − H2,i j (Ys) = [[[[∇ H2,i j ]]]](Y )suδYsu directly stems from (2.2),
and where we define:

[[∇ Hi (·)[[∇F j (·)]]]](Y )su :=

∫ 1

0
∇ Hi (Ys + τδYsu)

∫ τ

0
∇F j (Ys + σδYsu) dσdτ .

Therefore, we can rewrite Eq. (3.16) as

δh♮
= [[[[∇ H2,i j ]]]](Y )δY X1, jX1,i

− [[∇ Hi (·)[[∇F j (·)]]]](Y )δY X1, jX1,i

+[[∇ Hi ]](Y )F2, jk(Y )X2, jkX1,i
+ [[∇ Hi ]](Y )Y ♮X1,i

+[[∇ Hi ]](Y )δM X1,i
+ [[∇ H2,i j ]](Y )δY X2,i j . (3.17)



A. Deya, M. Gubinelli, M. Hofmanová et al. / Stochastic Processes and their Applications 129 (2019) 3261–3281 3271

In order to further evaluate the rhs of this relation in terms of the test function ϕ, let us write
explicit expressions for the gradients ∇ Hi (Y ) and ∇ H2,i j (Y ) computed at (a, b) ∈ R2:

∇ Hi (Y )(a, b) = ϕ′′(y − z)( fi (y) − fi (z))(a − b) + ϕ′(y − z)( f ′

i (y) − f ′

i (z))a
+ ϕ′(y − z) f ′

i (z)(a − b)

and

∇ H2,i j (Y )(a, b) = ϕ′′(y − z)( f2,i j (y) − f2,i j (z))(a − b) + ϕ′(y − z)
× ( f ′

2,i j (y)a − f ′

2,i j (z)b)

+ ϕ′′′(y − z)( fi (y) − fi (z))( f j (y) − f j (z))(a − b)
+ 2ϕ′′(y − z)( fi (y) − fi (z))( f ′

j (y)a − f ′

j (z)b) .

At this point, consider the quantity

|||ϕ||| := sup
y,z∈R

(|ϕ′(y − z)| + |y − z||ϕ′′(y − z)| + |y − z|2|ϕ′′′(y − z)|) . (3.18)

Then, denoting by C f any quantity that only depends on f , we have for all 1 ≤ i, j, k ≤ N and
s < t ∈ I ,

|[[∇ Hi ]](Y )st | + |[[∇ H2,i j ]](Y )st | ⩽ C f |||ϕ|||

|[[∇ Hi ]](Y )st F2, jk(Ys)| ⩽ C f |||ϕ||| ∥y − z∥∞;[s,t]

|[[∇ Hi (·)[[∇F j (·)]]]](Y )stδYst | ⩽ C f |||ϕ||| (ω∆(s, t)1/p
+ ∥y − z∥∞;[s,t]ωY (s, t)1/p)

|[[[[∇ H2,i j ]]]](Y )stδYst | ⩽ C f |||ϕ||| (ω∆(s, t)1/p
+ ∥y − z∥∞;[s,t]ωY (s, t)1/p)

|[[∇ Hi ]](Y )st Y
♮
st | ⩽ C f |||ϕ||| (ω∆,♮(s, t)3/p

+ ∥y − z∥∞;[s,t]ωY,♮(s, t)3/p) .

Going back to (3.17), we get that for all s < u < t ∈ I ,

|δh♮
sut | ⩽ C f |||ϕ|||

[
ω⋆(s, t) + ωX(s, t)2/3ω∆(s, t)1/3

+ ωX(s, t)1/3ω∆,♮(s, t)
]3/p

where ω⋆ is the control on I given for every s < t ∈ I by

ω⋆(s, t) := ωM (s, t)p/3ωX(s, t)1/3
+ ∥y − z∥p/3

∞;[s,t]ωX,Y (s, t) ,

with

ωX,Y (s, t) := ωX(s, t) + ωY (s, t)1/3ωX(s, t)2/3
+ ωY,♮(s, t) .

We are therefore in a position to apply the sewing lemma and conclude that for all s < t ∈ I ,

|h♮
st | ⩽ C f,p |||ϕ|||

[
ω⋆(s, t) + ωX(s, t)2/3ω∆(s, t)1/3

+ ωX(s, t)1/3ω∆,♮(s, t)
]3/p (3.19)

for some quantity C f,p that only depends on f and p.

Step 2: A first application. Our aim now is to apply the previous bound to the non-smooth
function ϕ(ξ ) = ϕ0(ξ ) := |ξ |. To this end, we will rely on the smooth approximation ϕε defined
for ε > 0 as ϕε(ξ ) =

√
ε2 + |ξ |

2 for all ξ ∈ R. Let us denote the associated objects with
hε, h♮

ε, Hε,i , Hε,2,i j , . . . . In this case

|ϕ′

ε(ξ )| ⩽ 1 , |ϕ′′

ε (ξ )| ⩽ 1/

√
ε2 + |ξ |

2 , |ϕ′′′

ε (ξ )| ⩽ 3/(ε2
+ |ξ |

2)

and so, with the notation (3.18), we have the uniform estimate |||ϕε||| ⩽ 3. Plugging this estimate
into (3.19), we get:

|h♮
ε,st | ⩽ C f,p

[
ω⋆(s, t) + ωX(s, t)2/3ω∆(s, t)1/3

+ ωX(s, t)1/3ω∆,♮(s, t)
]3/p

. (3.20)
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Furthermore, explicit elementary computations show that

lim
ε→0

ϕε = |·|, lim
ε→0

ϕ′

ε = sign, and lim
ε→0

ϕ′′

ε = δ0, (3.21)

where the first two limits are simple limits of functions, and the last one is understood in the
weak sense. Notice that we also use the convention sign(0) = 0 above.

With those preliminaries in mind, let us take limits in (3.12). To begin with, as ε → 0, a
standard dominated convergence argument and relation (3.21) yield:∫ t

s
ϕ′

ε(yu − zu)d(µu − νu) →

∫ t

s
sign(yu − zu)d(µu − νu). (3.22)

In addition, owing to the fact that yt ⩾ 0, zt ⩾ 0, we have∫ t

s
sign(yu − zu)d(µu − νu)

=

∫ t

s
1{yu>zu⩾0}dµu −

∫ t

s
1{zu>yu⩾0}dµu −

∫ t

s
1{yu>zu⩾0}dνu +

∫ t

s
1{zu>yu⩾0}dνu .

Hence, using the conditions µt =
∫ t

0 1{yu=0}dµu , νt =
∫ t

0 1{zu=0}dνu , we end up with:∫ t

s
sign(yu − zu)d(µu − νu) = −

[∫ t

s
1{zu>yu⩾0}dµu +

∫ t

s
1{yu>zu⩾0}dνu

]
= −

[∫ t

s
1{zu>yu⩾0}d(µu + νu) +

∫ t

s
1{yu>zu⩾0}d(µu + νu)

]
= −

∫ t

s
1{yu ̸=zu }d(µu + νu) = − ωM (s, t) +

∫ t

s
1{yu=zu }d(µu + νu) . (3.23)

Recall that Hi and H2,i j are defined respectively by (3.13) and (3.14). Thanks to (3.21), it thus
clearly holds that

lim
ε→0

Hε,i (Y ) = Ψi (Y ) , and lim
ε→0

Hε,2,i j (Y ) = Ψ2,i j (Y ) , (3.24)

where the limits are simple limits of functions and where we have:

Ψi (Y ) := sign(y − z)( fi (y) − fi (z)) , Ψ2,i j (Y ) := sign(y − z)( f2,i j (y) − f2,i j (z)) .

Taking relations (3.22)–(3.24) into account, we can now take limits as ε → 0 in (3.12). This
ensures the convergence of the quantity h♮

ε,st to some limit Φ
♮
st (for all s < t ∈ I ), and

using (3.19) we get that the path Φ(Y ) := |y − z| satisfies the following equation:

δΦ(Y )st = Ψi (Ys)X1,i
st + Ψ2,i j (Ys)X2,i j

st − ωM (s, t)

+

∫ t

s
1{yu=zu }d(µu + νu) + Φ

♮
st . (3.25)

Moreover, invoking relation (3.20), we have for all s < t ∈ I :

|Φ
♮
st | ⩽ C f,p

[
ω⋆(s, t) + ωX(s, t)2/3ω∆(s, t)1/3

+ ωX(s, t)1/3ω∆,♮(s, t)
]3/p

. (3.26)

Here and in the sequel, we denote by C f,p any quantity that only depends on f and p.

Step 3: Bounds for ω∆ and ω∆,♮. Let us now estimate ω∆ and ω∆,♮ in terms of ω⋆. To this end,
we can first use the fact that the path ∆ := y − z is (obviously) given by h(Y ) with the choice
ϕ(ξ ) := ξ . In this case h♮

= y♮
− z♮, |||ϕ||| = 1, so that (3.19) becomes

|y♮
st − z♮

st | ⩽ C f,p
[
ω⋆(s, t) + ωX(s, t)2/3ω∆(s, t)1/3

+ ωX(s, t)1/3ω∆,♮(s, t)
]3/p
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for all s < t ∈ I , and accordingly we have

ω∆,♮(s, t) ⩽ C (1)
f,p

[
ω⋆(s, t) + ωX(s, t)2/3ω∆(s, t)1/3

+ ωX(s, t)1/3ω∆,♮(s, t)
]

for some fixed constant C (1)
f,p. As a result, for any interval I0 ⊂ I satisfying

C (1)
f,pωX(I0)1/3 ⩽ 1/2 , (3.27)

and for all s < t ∈ I0, we have

ω∆,♮(s, t) ⩽ 2C (1)
f,p

[
ω⋆(s, t) + ωX(s, t)2/3ω∆(s, t)1/3] . (3.28)

Besides, going back to the equation satisfied by ∆ (again, take ϕ(ξ ) = ξ in (3.12)), we easily
obtain that for all s < t ∈ I ,

|δ∆st | ⩽ C f,p
[
∥y − z∥p

∞;[s,t]ωX(s, t) + ωM (s, t)p
+ ω∆,♮(s, t)3]1/p

,

so that the following inequality holds true:

ω∆(s, t) ⩽ C f,p
[
∥y − z∥p

∞;[s,t]ωX(s, t) + ωM (s, t)p
+ ω∆,♮(s, t)3].

Therefore for any interval I0 ⊂ I satisfying (3.27), we get by (3.28)

ω∆(s, t) ⩽ C (2)
f,p

[
∥y − z∥p

∞;[s,t]ωX(s, t) + ωM (s, t)p
+ ω⋆(s, t)3

+ ωX(s, t)2ω∆(s, t)
]
,

for some constant C (2)
f,p. Finally, for any interval I0 ⊂ I satisfying both (3.27) and

C (2)
f,pωX(I0)2 ⩽ 1/2 , (3.29)

and for all s < t ∈ I0, we have

ω∆(s, t) ⩽ 2C (2)
f,p

[
∥y − z∥p

∞;[s,t]ωX(s, t) + ωM (s, t)p
+ ω⋆(s, t)3] . (3.30)

Step 4: Conclusion. By injecting (3.28) and (3.30) into (3.26), we can derive the following
assertion: for any interval I0 ⊂ I satisfying (3.27) and (3.29), and all s < t ∈ I0, it holds that

|Φ
♮
st | ⩽ C f,p

[
ω⋆(s, t)3/p

+ ∥y − z∥∞;[s,t]ωX(s, t)3/p
+ ωM (s, t)ωX(s, t)2/p] ,

which, by the definition of ω⋆, gives

|Φ
♮
st | ⩽ C f,p

[
∥y − z∥∞;[s,t]ωX,Y (s, t)3/p

+ ωM (s, t)ωX(s, t)1/p] .

Going back to Eq. (3.25) and observing that ∥y − z∥∞;[s,t] = sup[s,t]Φ(Y ), we obtain that for any
such interval I0 and for all s < t ∈ I0,

δΦ(Y )st + ωM (s, t) ⩽ C f,p
(
sup
[s,t]

Φ(Y ) + ωM (s, t)
)[

ωX(s, t) + ωX,Y (s, t)3]1/p

+

∫ t

s
1{yu=zu }(dµu + dνu).

We are finally in a position to apply the Rough Gronwall Lemma 2 with ω1 := ωX + ω3
X,Y and

ω2(s, t) :=
∫ t

s 1{yu=zu }(dµu + dνu), and assert that for every s < t ∈ I0,

sup
[s,t]

Φ(Y ) + ωM (s, t) ⩽ C f,p,X,Y

[
Φ(Ys) +

∫ t

s
1{yu=zu }(dµu + dνu)

]
,
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that is

sup
r∈[s,t]

|yr − zr | + ωM (s, t) ⩽ C f,p,X,Y

[
|ys − zs | +

∫ t

s
1{yu=zu }(dµu + dνu)

]
, (3.31)

for some constant C f,p,X,Y .
Assume now that [s, t] is an interval where y ̸= z in (s, t) but y(s) = z(s). Then relation

(3.31) yields

sup
r∈[s,t]

|yr − zr | + ωM (s, t) ⩽ 0,

which implies that supr∈[s,t]|yr − zr | = 0 everywhere so we find a contradiction and such interval
cannot exist. This concludes the proof of uniqueness. □

Remark 10. The key point of the above proof thus consists in the close follow-up of the
“measure” control ωM throughout the reasoning. The argument thus differs from the contraction
strategy that usually prevails in rough analysis, and in particular regularity properties of the
solution with respect to the driving rough path X can no longer be obtained as an almost-
straightforward consequence of the procedure. Studying this regularity issue would actually
mean facing the same non-continuity problems as those raised in Section 3.1 (recall the
involvement of the difference µ−ν in decomposition (3.8)), and accordingly this question seems
to be out of reach for the moment.

Remark 11. As the reader can see, one of the cornerstones of our computations lies in
the possibility to expand the integral

∫ t
s sign(yu − zu)d(µu − νu) as in (3.23), that is as the

sum of −ωM (s, t) and an integral from s to t that vanishes as soon as yr ̸= zr for every
r ∈ [s, t]. Unfortunately, when turning to more general multidimensional reflection domain
(see the forthcoming Definition 13 for a description of the rough equation in this context), a
similar decomposition is certainly much more difficult to exhibit (if this exists), and therefore we
currently fail to extend our arguments to multidimensional domains. To be more specific, using
the notations of Definition 13, it is not hard to see that the d-dimensional analog of the above
integral

∫ t
s sign(yu − zu)d(µu − νu) is given by∫ t

s

1
|yu − zu |

⟨yu − zu, ny(u)d|µ|u − nz(u)d|ν|u⟩ ,

and this expression happens to be much less flexible as soon as d ≥ 2.

4. Existence

Although the existence issue for Eq. (1.2) in very general domains has been considered
in [1,2], we wish to present here a self-contained and hopefully simpler treatment in our 1-
dimensional setting. We then briefly sketch what is needed in order to extend our considerations
to higher dimensional situations.

4.1. The one-dimensional case

Our existence result in the domain R⩾0 can be read as follows.
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Theorem 12. Let T > 0, 2 ⩾ p < 3 and a > 0. If f ∈ C2
b (R;L(RN ,R)) and X is a geometric

N-dimensional p-variation rough path in the sense of Definition 1, then Problem (1.2) admits at
least one solution (y, m) on [0, T ] with initial condition a.

Just as in [1,2], our strategy towards existence will appeal to some a priori bound on the
measure term of the (approximated) equation. The result more generally applies to the so-called
Skorohod problem and it can be read as follows in the one-dimensional case.

Lemma 3. Let g be a continuous R-valued path defined on some interval I = [ℓ1, ℓ2]. Consider
a solution (y, m) ∈ C(I ;R⩾0) × V 1

1 (I ;R⩾0) of the Skorohod problem associated with g in the
domain R⩾0, as given in Definition 5. Then for all s < t ∈ I it holds that

δmst ⩽ 8 ∥g∥0,[s,t] , (4.1)

where ∥g∥0,[s,t] := sups⩽u<v⩽t |δguv|.

The proof of (4.1) can be easily derived from the arguments of the proof of [3, Lemma 2.3]
(namely, the same arguments as those leading to the forthcoming general Lemma 4). Let us
provide some details though, not least to give the non-initiated reader an insight on how the
specific constraints of the reflecting problem can be exploited.

Proof of Lemma 3. For all s < t ∈ I , one has

|δyst |
2

= |δgst |
2
+ |δmst |

2
+ 2δgstδmst = |δgst |

2
+ 2

∫ t

s
δmsu dmu + 2

∫ t

s
δgst dmu

= |δgst |
2
+ 2

∫ t

s
δysu dmu + 2

∫ t

s
δgut dmu ,

where we have just used the fact that δmsu = δysu − δgsu for the last identity. Moreover, since∫ t
s yudmu =

∫ t
s yu1{yu=0}dmu = 0 and ys ⩾ 0, we get:

|δyst |
2 ⩽ |δgst |

2
+ 2

∫ t

s
δgut dmu .

Therefore,

|δyst |
2 ⩽ ∥g∥

2
0,[s,t] + 2 ∥g∥0,[s,t] δmst ⩽ 5 ∥g∥

2
0,[s,t] +

1
4

|δmst |
2 ,

and so ∥y∥0,[s,t] ⩽ 3 ∥g∥0,[s,t] +
1
2 δmst . Finally,

δmst ⩽ ∥y∥0,[s,t] + ∥g∥0,[s,t] ⩽ 4 ∥g∥0,[s,t] +
1
2

δmst ,

and the result follows. □

Proof of Theorem 12. We start from a sequence of smooth rough paths Xε converging to X as
ε → 0, in the space of continuous p-variation geometric rough paths. We can then find a regular
control ωX such that, for all s, t ∈ [0, T ],

|X1
st | + |X2

st |
1/2

⩽ ωX(s, t)1/p, sup
ε>0

(|Xε,1
st | + |Xε,2

st |
1/2

) ⩽ ωX(s, t)1/p .
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For every ε > 0, let X ε be the path which corresponds to Xε and consider the solution yε to
reflected ODEs starting from y0:⎧⎨⎩ dyε

t = f (yε
t ) dX ε

t + dmε
t

yε
0 = y0 and mε

t =

∫ t

0
1{yε

u=0}dmε
u

.

Recall that the existence (and uniqueness) of such a solution is a standard result, based on the
Lipschitz regularity of the Skorohod map with respect to the supremum norm. Then by Taylor
expansion it is not difficult to show that these solutions correspond to rough solutions (yε, mε) in
the sense of (2.5), namely:

δyε
st = fi (yε

s )Xε,1,i
st + f2,i j (yε

s )Xε,2,i j
st + δmε

st + yε,♮
st s, t ∈ [0, T ] (4.2)

where yε,♮
∈ V p/3

2 ([0, T ];R). Let us set from now on

ωyε (s, t) := ∥yε
∥

p
V̄ p

1 ([s,t];E)
, ωε,♮(s, t) := ∥yε,♮

∥
p/3

V̄ p/3
2 ([s,t];E)

,

ωmε (s, t) := ∥mε
∥V̄ 1

1 ([s,t];E) = δmε
st = mε([s, t]) ,

and observe that from Eq. (4.2) we have

|δyε
st | ⩽ C f (ωX(s, t)1/p

+ ωX(s, t)2/p) + ωmε (s, t) + ωε,♮(s, t)3/p . (4.3)

Here and in the sequel, we denote by C f , resp. C f,p, any quantity that only depends on f , resp.
( f, p).

Step 1: Bounds on the approximate solutions. We would like to pass to the limit in ε and
obtain solutions of the limiting problem. In order to do so we need uniform estimates for yε,♮

st .
They are obtained via an application of the sewing map.

To this end, one can proceed as in the proof of Theorem 9, Step 1. Specifically, we can just
replace Y by y, H by f and H2 by f2 in relation (3.15). We then repeat all the steps up to
relation (3.17), which yields the following relation for δyε,♮ (for more simplicity, we neglect to
write down the time indexes explicitly):

δyε,♮
= [[[[∇ f2,i j ]]]](yε)δyε Xε,1, jXε,1,i

− [[∇ fi (·)[[∇ f j (·)]]]](yε)δyε Xε,1, jXε,1,i

+[[∇ fi ]](yε) f2, jk(yε)Xε,2, jkXε,1,i
+ [[∇ fi ]](yε)yε,♮Xε,1,i

+[[∇ fi ]](yε)δmε Xε,1,i
+ [[∇ f2,i j ]](yε)δyε Xε,2,i j . (4.4)

Combining this expansion with (4.3), we get, for every interval I ⊂ [0, T ] such that ωX(I ) ⩽ 1
and all s < u < t ∈ I ,

|δyε,♮
sut | ⩽ C f

[
ωyε (s, t)1/pωX(s, t)2/p

+ (ωX(s, t)2/p
+ ωmε (s, t)

+ ωε,♮(s, t)3/p)ωX(s, t)1/p]
⩽ C f,p

[
ωX(s, t) + ωX(s, t)1/3ωmε (s, t)p/3

+ ωX(s, t)1/3ωε,♮(s, t)
]3/p

.

We are therefore in a position to apply the sewing lemma and assert that for every interval
I ⊂ [0, T ] such that ωX(I ) ⩽ 1 and all s < t ∈ I , we have

|yε,♮
st | ⩽ C f,p

[
ωX(s, t) + ωX(s, t)1/3ωmε (s, t)p/3

+ ωX(s, t)1/3ωε,♮(s, t)
]3/p

,

which immediately entails that

ωε,♮(s, t) ⩽ C (1)
f,p

[
ωX(s, t) + ωX(s, t)1/3ωmε (s, t)p/3

+ ωX(I )1/3ωε,♮(s, t)
]
,



A. Deya, M. Gubinelli, M. Hofmanová et al. / Stochastic Processes and their Applications 129 (2019) 3261–3281 3277

for some constant C (1)
f,p. As a result, for every interval I ⊂ [0, T ] such that

ωX(I ) ⩽ 1 and C (1)
f,pωX(I )1/3 ⩽ 1/2 , (4.5)

one has

ωε,♮(s, t) ⩽ 2C (1)
f,p

[
ωX(s, t) + ωX(s, t)1/3ωmε (s, t)p/3] , s < t ∈ I. (4.6)

Step 2: Control of the approximate measures. Consider the path gε
: [0, T ] → R defined as

gε
t := yε

t − mε
t , and observe that (yε, mε) is then a solution of the Skorohod problem in R⩾0

associated with gε, in the sense of Lemma 3. Therefore, by (4.1), it holds that

ωmε (s, t) ⩽ 8 ∥gε
∥0,[s,t] . (4.7)

On the other hand, from Eq. (4.2), we have

δgε
st = fi (yε

s )Xε,1,i
st + f2,i j (yε

s )Xε,2,i j
st + yε,♮

st , 0 ⩽ s ⩽ t ⩽ T ,

and so

∥gε
∥0,[s,t] ⩽ C f

[
ωX(s, t)1/p

+ ωX(s, t)2/p
+ ωε,♮(s, t)3/p] . (4.8)

Injecting successively (4.8) and (4.6) into (4.7) yields that for every interval I satisfying the
conditions in (4.5) and every s < t ∈ I ,

ωmε (s, t) ⩽ C (2)
f,p

[
ωX(s, t)1/p

+ ωX(I )1/pωmε (s, t)
]
,

for some constant C (2)
f,p, and so, if we assume in addition that

C (2)
f,pωX(I )1/p ⩽ 1/2 , (4.9)

we obtain

ωmε (s, t) ⩽ 2C (2)
f,pωX(s, t)1/p , s < t ∈ I . (4.10)

From here we can easily conclude that

ωmε ([0, T ]) ⩽ C f,p,X (4.11)

for some quantity C f,p,X independent from ε.

Step 3: Passage to the limit for the measure. With all the bounds in place we can now pass
to the limit as ε → 0 via subsequences. We start with the measure. Using (4.11) we can assert
that there exists a weakly convergent subsequence of measures (mε(k))k⩾1 on [0, T ], and we will
denote by m their limit. Then it holds that

m([0, t]) = lim
k

mε(k)([0, t]) t ∈ C (4.12)

where C ⊆ [0, T ] is the (dense) set of continuity points of the function t ↦→ m([0, t]). Now
consider any interval I satisfying both the conditions in (4.5) and in (4.9), and for s < t ∈ I ,
introduce a sequence sℓ, resp. tℓ, of points in C decreasing to s, resp. increasing to t , and such
that sk < tk . Using (4.10), we have

m(]sℓ, tℓ]) = lim
k

mε(k)(]sℓ, tℓ]) ⩽ C f,p ωX(s, t)1/p ,
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and so m([s, t]) ⩽ C f,p ωX(s, t)1/p, which proves that the function m t := m([0, t[) is continuous
and accordingly that m ∈ V 1

1 ([0, T ];R⩾0), as expected.

Step 4: Passage to the limit for the path. Consider the subsequence (yε(k), mε(k))k as defined in
the previous step. Using (4.3) we have, for all s, t ∈ [0, T ],

lim sup
k

|δyε(k)
st | ⩽ C f (ωX(s, t)1/p

+ ωX(s, t)2/p) + ωm(s, t) + lim sup
k

ωε(k),♮(s, t)3/p ,

and for every interval I satisfying both the conditions in (4.5) and in (4.9) (we denote J the
family of such intervals), we have

lim sup
k

ωε(k),♮(s, t) ⩽ C f,p
[
ωX(s, t) + ωX(s, t)1/3ωm(s, t)p/3] , s < t ∈ I .

From this bound we can choose a further subsequence, still called (yε(k), mε(k))k so that yε(k)
→ y

in C([0, T ];R⩾0). It is easy now to pass to the limit in Eq. (4.2) and conclude that there exists a
map y♮

: ∆[0,T ] → R such that

δy = fi (y)X1,i
+ f2,i j (y)X2,i j

+ δm + y♮ ,

and

|y♮
st | ⩽ C f,p

[
ωX(s, t) + ωX(s, t)1/3ωm(s, t)p/3]3/p

, s < t ∈ I ∈ J .

The fact that m t =
∫ t

0 1{yu=0} dmu (for all t) follows immediately from the relation mε
t =∫ t

0 1{yε
u=0} dmε

u , and finally the pair (y, m) does define a solution to the RRDE (2.5). □

4.2. Generalization to multidimensional domains

We conclude this study with a few details on possible extensions of the previous arguments
(towards existence) to more general multidimensional domains. Together, these results will thus
offer a simplification of some of the arguments and topologies used in [1,2].

Let us first extend Definition 2 of a reflected rough solution to more general settings, along the
classical approach of the reflected problem. Let D ⊂ Rd be a connected domain and for every
x ∈ ∂ D, denote by Nx the set of inward unit normal vectors at x , that is

Nx := ∪r>0Nx,r , Nx,r := {n ∈ Rd
: |n| = 1, B(x − rn, r ) ∩ D = ∅}

where B(z, r ) := {y ∈ Rd
: |y − z| < r}, for z ∈ Rd and r > 0.

Definition 13. Given a time T > 0, an element a ∈ D, a differentiable function f :

Rd
→ L(RN

;Rd ) and a p-variation N -dimensional rough path X with 2 ⩽ p < 3, a pair
(y, m) ∈ V p

1 ([0, T ]; D) × V 1
1 ([0, T ];Rd ) is said to solve the reflected rough equation in D

with initial condition a if there exists a 2-index map y♮
∈ V p/3

2,loc([0, T ];Rd ) such that for all
s, t ∈ [0, T ], we have⎧⎨⎩δyst = fi (ys)X1,i

st + f2,i j (ys)X2,i j
st + δmst + y♮

st

y0 = a and m t =

∫ t

0
1{yu∈∂ D}nyu d|m|u

, (4.13)

where we have set f2,i j (ξ ) := ∇ fi (ξ ) f j (ξ ), |m|t := ∥m∥V̄ 1
1 ([0,t];Rd ) and for each y ∈ ∂ D,

ny ∈ Ny .
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The existence of a solution for (4.13) can actually be derived from the same arguments
as in the one-dimensional situation. The only step of the procedure needing for a revision is
the so-called Step 2, since it involves the a priori bound (4.1) which is specific to the one-
dimensional Skorohod problem. To this end, we shall exploit the following (sophisticated)
substitute, borrowed from [1, Lemma 2.2].

Lemma 4. Let D ⊂ Rd be connected domain that satisfies the two following assumptions:
(A) There exists a constant r0 > 0 such that Nx = Nx,r0 ̸= ∅ for any x ∈ ∂ D ;
(B) There exist constants δ0 > 0 and β ⩾ 1 satisfying: for every x ∈ ∂ D, there exists a unit

vector lx such that ⟨lx , n⟩ ⩾ 1/β for every n ∈ ∪y∈B(x,δ0)∩∂ DNy .
Let g ∈ V p

1 (I ;Rd ), for some interval I = [ℓ1, ℓ2], such that gℓ1 ∈ D, and consider a solution
(y, m) ∈ C(I ; D) × V 1

1 (I ;Rd ) of the Skorohod problem associated with g in the domain D, that
is (y, m) satisfies for all s < t ∈ I⎧⎪⎨⎪⎩

δyst = δgst + δmst ,

yℓ1 = gℓ1 , m t =

∫ t

0
1{yu=0}nyu d|m|u

,

where |m|t := ∥m∥V̄ 1
1 ([0,t];Rd ) and for each y ∈ ∂ D, ny ∈ Ny . Then for all s < t ∈ I it holds that

∥m∥V 1
1 ([s,t]) ⩽ C1[epC2(1+∥g∥0,[s,t])∥g∥V̄ p

1 ([s,t]) + 1](eC2(1+∥g∥0,[s,t]) + 1)∥g∥0,[s,t] , (4.14)

where C1, C2 are constants depending only on the domain and ∥g∥0,[s,t] := sups⩽u<v⩽t |δguv|.

Theorem 14. Let D ⊂ Rd be a connected domain satisfying Conditions (A) and (B) of
Lemma 4. Then there exists at least one solution (y, m) to the reflection problem (4.13) in D.

Remark 15. Of course, Theorem 12 can retrospectively be obtained as a particular application
of Theorem 14. Nevertheless, we have found it important, for didactic reasons, to first provide a
full and self-contained treatment of the one-dimensional situation.

Proof of Theorem 14. As mentioned above, and apart from minor changes of notation due to
the vectorial character of the equation, Steps 1, 3 and 4 of the proof of Theorem 12 can be readily
transposed to this setting, and thus we only need to focus on the extension of Step 2.

In fact, with the same notations as in the one-dimensional proof and considering only those
intervals I = [s0, t0] satisfying the two conditions in (4.5), we have by (4.14), (4.8) and (4.6)
that for all s < t ∈ I ,

ωmε (s, t) ⩽ Ψ (ωgε,ε(s, t)) ⩽ Ψ (C f,p(ωX(s, t) + ωX(s, t)ωmε (s, t)p)), (4.15)

where

Ψ (λ) := C1[epC2(1+λ1/p)λ + 1](eC2(1+λ1/p)
+ 1)λ1/p

and C f,p is a fixed constant. Eq. (4.15) implies in particular that the control ωmε is regular if ωX

is regular, which is our case. Let G I be the function

G I (λ) := Ψ (C f,p(1 + ωX(I )λp)).

By choosing t0 near to s0 we can have both (4.5) and G I (3G I (0)) ⩽ 2G I (0), since ωX(I ) → 0
as t0 ↓ s0. This choice of t0 depends only on ωX and G I (0) (which is actually independent of I ).



3280 A. Deya, M. Gubinelli, M. Hofmanová et al. / Stochastic Processes and their Applications 129 (2019) 3261–3281

Now Eq. (4.15) implies also that

ωmε (s0, t) ⩽ G I (ωmε (s0, t)) , t ∈ I .

We want to establish that ωmε (I ) ⩽ 2G I (0) and to this end we can apply the method of continuity.
Let A ⊆ I be the set of t ∈ I such that the property ωmε (s0, t) ⩽ 2G I (0) is true. Note that
[s0, s0 + δ] ⊆ A for δ small enough by the continuity of the control ωmε . Moreover A is closed
in I since if (tn)n ⊆ A is a sequence converging to t∗ then, again by regularity of ωmε we have
ωmε (s0, t∗) = limnωmε (s0, tn) ⩽ 2G I (0). Finally A is also open in I since if t∗ ∈ A then for
δ small enough ωmε (s0, t) ⩽ 3G I (0) for all t ∈ (t∗ − δ, t∗ + δ) ∩ I . But then our choice of I
guarantee that

ωmε (s0, t) ⩽ G I (ωmε (s0, t)) ⩽ G I (3G I (0)) ⩽ 2G I (0) , t ∈ (t∗ − δ, t∗ + δ) ∩ I ,

from which we see that (t∗ −δ, t∗ +δ)∩ I ⊆ A and that A is open in I . We can then conclude that
A = I , namely that ωmε (I ) ⩽ 2G I (0). Now we can reason in this way for any nonempty interval
It,δ = (t − δ, t + δ) ∩ [0, T ] by choosing δ = δ(t) > 0 small enough to satisfy our conditions.
In this way we construct an open covering ∪t It,δ(t) of [0, T ] from which we can extract a finite
covering (Ik)k independent of ε and such that

ωmε (Ik) ⩽ 2G I (0)

for all Ik in the covering. This bound provides us with the expected substitute for (4.11), and we
can then follow Steps 3 and 4 of the proof of Theorem 12 to get the conclusion. □
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