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A CONSTRUCTION OF THE ROUGH PATH ABOVE FRACTIONAL
BROWNIAN MOTION USING VOLTERRA’S REPRESENTATION

BY DAVID NUALART1 AND SAMY TINDEL2

University of Kansas and Institut Élie Cartan Nancy

This note is devoted to construct a rough path above a multidimensional
fractional Brownian motion B with any Hurst parameter H ∈ (0,1), by means
of its representation as a Volterra Gaussian process. This approach yields
some algebraic and computational simplifications with respect to [Stochastic
Process. Appl. 120 (2010) 1444–1472], where the construction of a rough
path over B was first introduced.

1. Introduction. Rough paths analysis is a theory introduced by Terry Lyons
in the pioneering paper [13] which aims to solve differential equations driven by
functions with finite p-variation with p > 1, or by Hölder continuous functions
of order γ ∈ (0,1). One possible shortcut to the rough path theory is the follow-
ing summary (see [9, 10, 14] for a complete construction). Given a γ -Hölder d-
dimensional process X = (X(1), . . . ,X(d)) defined on an arbitrary interval [0, T ],
assume that one can define some iterated integrals of the form

Xn
st (i1, . . . , in) =

∫
s≤u1<···<un≤t

dXu1(i1) dXu2(i2) · · ·dXun(in),(1)

for 0 ≤ s < t ≤ T , n ≤ �1/γ � and i1, . . . , in ∈ {1, . . . , d}. As long as X is a non-
smooth function, the integral above cannot be defined rigorously in the Riemann
sense (and not even in the Young sense if γ ≤ 1/2). However, it is reasonable to
assume that some elements Xn can be constructed, sharing the following three
properties with usual iterated integrals (here and in the sequel, we denote by
Sk,T = {(u1, . . . , uk) : 0 ≤ u1 < · · · < uk ≤ T } the kth order simplex on [0, T ]):
(1) Regularity: each component of Xn is nγ -Hölder continuous [in the sense of

the Hölder norm introduced in (11)] for all n ≤ �1/γ � and X1
st = Xt − Xs .

(2) Multiplicativity: letting (δXn)sut := Xn
st − Xn

su − Xn
ut for (s, u, t) ∈ S3,T , one

requires

(δXn)sut (i1, . . . , in) =
n−1∑
n1=1

Xn1
su(i1, . . . , in1)X

n−n1
ut (in1+1, . . . , in).(2)
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(3) Geometricity: for any n,m such that n+m ≤ �1/γ �and (s, t) ∈ S2,T , we have

Xn
st (i1, . . . , in)X

m
st (j1, . . . , jm) = ∑

k̄∈Sh(ı̄,j̄ )

Xn+m
st (k1, . . . , kn+m),(3)

where, for two tuples ı̄, j̄ , �(ı̄,j̄ ) stands for the set of permutations of the in-
dices contained in (ı̄, j̄ ), and Sh(ı̄, j̄ ) is a subset of �(ı̄,j̄ ) defined by

Sh(ı̄, j̄ ) = {
σ ∈ �(ı̄,j̄ );σ does not change the orderings of ı̄ and j̄

}
.

We shall call the family {Xn;n ≤ �1/γ �} a rough path over X (it is also referred
to as the truncated signature of X in [9]).

Once a rough path over X is defined, the theory described in [9, 10, 14] can be
seen as a procedure which allows us to construct, starting from the family {Xn;n ≤
�1/γ �}, the complete stack {Xn;n ≥ 1}. Furthermore, with the rough path over
X in hand, one can also define rigorously and solve differential equations driven
by X.

The above general framework leads thus naturally to the question of a rough
path construction for standard stochastic processes. The first example one may
have in mind concerning this issue is arguably the case of a d-dimensional
fractional Brownian motion (fBm) B = (B(1), . . . ,B(d)) with Hurst parameter
H ∈ (0,1). This is a Gaussian process with zero mean whose components are in-
dependent and with covariance function given by

E(Bt (i)Bs(i)) = 1
2(t2H + s2H − |t − s|2H), s, t ∈ R+.

For H = 1
2 this is just the usual Brownian motion. For any H ∈ (0,1), the variance

of the increments of B is then given by

E
[(

Bt(i) − Bs(i)
)2] = (t − s)2H , (s, t) ∈ S2,T , i = 1, . . . , d,

and this implies that almost surely the trajectories of the fBm are γ -Hölder contin-
uous for any γ < H , which justifies the fact that the fBm is the canonical example
for a rough path construction.

The first successful rough path analysis for B has been implemented in [5] by
means of a linearization of the fBm path, and it leads to the construction of a
family {B1,B2,B3} satisfying (1), (2) and (3), for any H > 1/4 (see also [8] for
a generalized framework). Some other constructions can be found in [8, 16, 19]
by means of stochastic analysis methods, and in [21] thanks to complex analysis
tools. In all those cases, the barrier H > 1/4 remains, and it has long been believed
that this was a natural boundary, in terms of regularity, for an accurate rough path
construction.

Let us describe now several recent attempts to go beyond the threshold H =
1/4. One should first quote the interesting paper [15], where a general construc-
tion of a rough path is performed by means of a discretization procedure. However,
the rough path constructed in this reference is only defined on dyadic points, and
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then extended to any real positive number by an abstract analytic result. The com-
plex analysis methods used in [20] also allowed the authors to build a rough path
above a process � called analytic fBm, which is a complex-valued process whose
real and imaginary parts are fBm, for any value of H ∈ (0,1). It should be men-
tioned, however, that �� and �� are not independent, and thus the arguments in
[20] cannot be extrapolated to the real-valued fBm. Then a series of brilliant ideas
developed in [22, 23] lead to the rough path construction in the real-valued case.
We will try now to summarize briefly, in very vague terms, this series of ideas (see
Section 3 for a more detailed didactic explanation):

(i) Consider a smooth approximation Bε of the fBm B and the corresponding
approximation Bn,ε of Bn. Clearly Bn,ε satisfies relation (2), but may diverge as
ε → 0 whenever H < 1/4. Then, one can decompose Bn,ε

st as Bn,ε
st = An,ε

st + Cn,ε
st ,

where Cn,ε is the increment of a function f , namely Cn,ε
st = ft − fs , and An,ε

is obtained as a boundary term in the integrals defining Bn,ε . As explained in
Section 3, a typical example of such a decomposition is given (for n = 2) by
A2,ε

st (i1, i2) = −Bε
s (i1)δB

ε
st (i2) and C2,ε

st (i1, i2) = ∫ t
s Bε

u(i1) dBε
u(i2), and in this

case ft (i1, i2) = ∫ t
0 Bε

u(i1) dBε
u(i2). Then it can be easily checked, thanks to the

relation Cn,ε
st = ft − fs , that Cn,ε

st − Cn,ε
su − Cn,ε

ut = 0 for any (s, u, t) ∈ S3,T . This
means that replacing Bn,ε

st by An,ε
st = Bn,ε − Cn,ε

st does not affect the multiplicative
property (2) of Bn,ε . On the other hand, the boundary term An,ε

st is usually easily
seen to be convergent as ε → 0 to some limit An

st . Then, the limit An
st should fulfill

the desired multiplicative property, but it does not exhibit the desired Hölder reg-
ularity (kH)−. It should also be noticed that An,ε

st is not the only function of two
variables sharing the multiplicative property with Bn,ε . We refer to Section 3 for
further details, but let us mention that another possibility for n = 2 is the boundary
term δXε

st (i1)X
ε
t (i2), which is easily seen to satisfy relation (2).

(ii) The essential point in Unterberger’s method is then the following: carry
out the above program for some given regularizations of the fBm path. Then, it
turns out that there is a choice of boundary terms such that their sum satisfies
the desired Hölder and multiplicative properties. This idea has been successfully
implemented in [22, 23], providing an explicit construction of a rough path asso-
ciated to B . However, this construction is rather long and intricate, because the
changes in the order of integration in the multiple integrals are coded by admissi-
ble cuts in some trees associated to multiple integrals. This language, well known
by algebraists [3, 6], numerical analysts [2, 12] and theoretical physicists [4], may,
however, sound difficult to the noninitiated reader.

The purpose of the current paper is to take up the program initiated in [22], and
construct a rough path over B in a rather simple way, using the stochastic integral
representation of the fBm as a Volterra Gaussian process. We know that (see [18],
Proposition 5.1.3, for a justification) for H < 1/2, each component B(i) of B can
be written as

Bt(i) =
∫

R

K(t, u) dWu(i), t ≥ 0,(4)
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where W = (W(1), . . . ,W(d)) is a d-dimensional Wiener process, and where the
Volterra-type kernel K is defined on R+ × R+ by

K(t, u) = cH

[(
u

t

)1/2−H

(t − u)H−1/2

(5)

+
(

1

2
− H

)
u1/2−H

∫ t

u
vH−3/2(v − u)H−1/2 dv

]
1{0<u<t},

with a strictly positive constant cH , whose exact value is irrelevant for our pur-
poses. Then we show that the simple trick described at point (ii) above can be
applied in a straightforward way using the Volterra representation, leading to a
simple general formula for the multiple integrals Bn. To be more specific, let us
describe the main result of this paper.

THEOREM 1.1. Let B be a d-dimensional fractional Brownian motion with
Hurst parameter H ∈ (0,1/2), admitting representation (4). For 2 ≤ n ≤ �1/H�,
any tuple (i1, . . . , in) of elements of {1, . . . , d}, 1 ≤ j ≤ n and (s, t) ∈ S2,T , set

B̂n,j
st (i1, . . . , in)

= (−1)j−1
∫
An

j

j−1∏
l=1

K(s,ul)[K(t, uj ) − K(s,uj )](6)

×
n∏

l=j+1

K(t, ul) dWu1(i1) · · ·dWun(in),

where the kernel K is given by (5) and An
j is the subset of [0, t]n defined by

An
j = {(u1, . . . , un) ∈ [0, t]n;

uj = min(u1, . . . , un), u1 > · · · > uj−1 and uj+1 < · · · < un}.
Notice that the multiple stochastic integral in (6) is understood in the Stratonovich
sense, and is well defined as a L2(	) random variable as long as n ≤ �1/H�. Set
also B1

st (i) = Bt(i) − Bs(i), and for 2 ≤ n ≤ �1/H�,

Bn
st (i1, . . . , in) =

n∑
j=1

B̂n,j
st (i1, . . . , in).(7)

Then the family {Bn;1 ≤ n ≤ �1/H�} defines a rough path over B , in the sense
that Bn is almost surely nγ -Hölder continuous for any γ < H , and that it satisfies
relations (2) and (3).

As announced above, formula (6) defines in a compact and simple way the (sub-
stitute to) iterated integrals of B with respect to itself. Furthermore, this formula
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also yields a reasonably short way to estimate the moments of Bn
st , and thus its

Hölder regularity. It should be mentioned, however, that our construction is not as
general as the one proposed in [23], though it can be extended to a broad class
of Gaussian Volterra processes. More precisely, the reader can check that the only
properties of the kernel K used in this paper are

|K(t, u)| ≤ C[(t − u)H−1/2 + uH−1/2] and |∂tK(t, u)| ≤ C(t − u)H−3/2

for any H ∈ (0,1/2) and for some constant C > 0. It is also worth mentioning at
this point that our representation (7) of Bn is adapted to the past of the path B .

It is hard to compare our main result with the one given in [15], due to the ab-
stract nature of the latter. We can, however, say a few words about the relationship
between the processes Bn we have produced and the pathwise ones constructed
in the aforementioned references [5, 8, 16, 21], as well as with the recent objects
introduced in [23].

(i) When 1/4 < H ≤ 1/2, let us denote by B2,p (where p stands for pathwise)
the double iterated integral constructed in [5, 8, 16, 21]. Notice that these integrals
all coincide as limit of Riemann sums (a fact which is mentioned in [17]). One has
then to distinguish two situations:

(1) For H = 1/2, a slight extension of our construction also allows to define B2

for Brownian motion, and it is readily checked in this case that B2 coincides with
the usual Stratonovich double iterated integral.

(2) When 1/4 < H < 1/2, we know that δBn = δBn,p, and it can be seen from
this relation that Bn and Bn,p only differ by the increment of a function f . This
nontrivial correction term is identified at Section 5. Notice that the correction term
for B3 could be identified as well, but we did not include these computations for
the sake of conciseness.

(ii) For H ≤ 1/4, we shall see that our iterated integrals can be considered un-
der the framework of the rough path constructions by Fourier normal ordering
contained in [23]. As mentioned above, our main result gives a more direct an
elementary (though less general) representation of the iterated integrals. This rep-
resentation only uses direct (as opposed to Fourier) coordinates and is adapted
with respect to the underlying fBm B . All these considerations will be developed
at Section 5.

Here is how our article is divided: some preliminary results, including alge-
braic integration vocabulary, some estimates on the kernel K and Itô–Stratonovich
corrections, are given in Section 2. Then the basic ideas of the construction are
implemented in Section 3 on second order iterated integrals. This section is thus
intended as a didactic introduction to the construction, and could be enough for a
first quick glimpse at the topic. Then we give all the details concerning the general
iterated integral definition and prove Theorem 1.1 in Section 4. Finally, Section 5
establishes some links between our integrals and other well established iterated
integrals for fBm.
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2. Preliminaries. This section is first devoted to recall some notational con-
ventions for a special subset (called set of increments) of functions of sev-
eral variables. These conventions are taken from the algebraic integration theory
as explained in [10, 11]. We will then recall some basic estimates on iterated
Stratonovich integrals with respect to the Wiener process, which turn out to be
useful for the remainder of the article.

2.1. Some algebraic integration vocabulary. The current section is not in-
tended as an introduction to algebraic integration, which would be useless for
our purposes. However, we shall use in the sequel some notation taken from this
method of rough paths analysis, and we shall proceed to recall them now.

The algebraic integration setting is based on the notion of increment, together
with an elementary operator δ acting on them. The notion of increment can be
introduced in the following way: for an arbitrary real number T > 0, a vector
space V , and an integer k ≥ 1, we denote by Sk,T the kth order simplex on [0, T ],
and by Ck(V ) the set of continuous functions g : Sk,T → V such that gt1···tk = 0
whenever ti = ti+1 for some i ≤ k − 1. Such a function will be called a (k − 1)-
increment, and we will set C∗(V ) = ⋃

k≥1 Ck(V ). The operator δ alluded to above
can be seen as an operator acting on k-increments, and is defined as follows on
Ck(V ):

δ : Ck(V ) → Ck+1(V ), (δg)t1···tk+1 =
k+1∑
i=1

(−1)igt1···t̂i ···tk+1
,(8)

where t̂i means that this particular argument is omitted. Then a fundamental prop-
erty of δ, which is easily verified, is that δδ = 0, where δδ is considered as an
operator from Ck(V ) to Ck+2(V ). We will denote Z Ck(V ) = Ck(V ) ∩ Ker δ.

Some simple examples of actions of δ, which will be the ones we will really
use throughout the paper, are obtained by letting g ∈ C1 and h ∈ C2. Then, for any
(s, u, t) ∈ S3,T , we have

(δg)st = gt − gs and (δh)sut = hst − hsu − hut ,(9)

and in this particular case, it can be trivially checked that for any g ∈ C1, one has
δδg = 0. Conversely, any h ∈ Z C2 can be written as h = δg for an element g ∈ C1.
In the sequel of the paper, we shall write for two elements h1, h2 ∈ C2

h1 Z C2= h2 iff h1 = h2 + z with z ∈ Z C2.(10)

Otherwise stated, h1 Z C2= h2 iff δh1 = δh2.
Notice that our future discussions will rely on some analytical assumptions

made on elements of Ck(V ). Suppose V is equipped with a norm | · |. We mea-
sure the size of the increments by Hölder norms defined in the following way: for
g ∈ C2(V ) let

‖g‖μ ≡ sup
(s,t)∈S2,T

|gst |
|t − s|μ and Cμ

2 (V ) = {g ∈ C2(V ); ‖g‖μ < ∞}.(11)
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With this notation, we also set Cμ
1 (V ) = {f ∈ C1(V ); ‖δf ‖μ < ∞} (notice that the

sup norm of f is not taken into account in this definition). In the same way, for
h ∈ C3(V ), set

‖h‖γ,ρ = sup
(s,u,t)∈S3,T

|hsut |
|u − s|γ |t − u|ρ ,(12)

‖h‖μ ≡ inf
{∑

i

‖hi‖ρi,μ−ρi
;h = ∑

i

hi,0 < ρi < μ

}
,(13)

where the last infimum is taken over all sequences {hi ∈ C3(V )} such that h =∑
i hi and for all choices of the numbers ρi ∈ (0,μ). Then ‖ · ‖μ is easily seen to

be a norm on C3(V ), and we set

Cμ
3 (V ) := {h ∈ C3(V ); ‖h‖μ < ∞}.

In order to avoid ambiguities, we shall denote by N [f ; Cμ
j (V )] the μ-Hölder norm

(or semi-norm) on the space Cj (V ), for j = 1,2,3.
The lemma below, borrowed from [10], Lemma 4, will be an essential tool for

the analysis of Hölder-type regularity of our increments:

LEMMA 2.1. Let κ > 0 and p ≥ 1. Let R ∈ C2(R
l), with δR ∈ Cκ

3 (Rl) in the
sense given by (13). If ∫

S2,T

|Ruv|2p

|u − v|2κp+4 dudv < ∞,

then R ∈ Cκ
2 (Rl). In particular, there exists a constant Cκ,p,l > 0, such that

N [R; Cκ
2 (Rl)] ≤ Cκ,p,l

(∫
S2,T

|Ruv|2p

|u − v|2κp+4 dudv

)1/(2p)

+ Cκ,p,l N [δR; Cκ
3 (Rl)].

2.2. Analytic bounds on the fractional Brownian kernel. We gather in this sec-
tion some technical bounds on the kernel K involved in the Volterra representation
of B , for which we use the following convention (valid until the end of the arti-
cle): for two positive quantities a and b, we write a � b whenever there exists a
universal constant C such that a ≤ Cb.

First, a classical bound on K is the following:

LEMMA 2.2. Let K be the fBm kernel defined by (5). Then for any 0 < u < t ,
one has

|K(t, u)| � (t − u)H−1/2 + uH−1/2 and |∂tK(t, u)| � (t − u)H−3/2.(14)

The following simple integral estimate on K also turns out to be useful:
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LEMMA 2.3. Let 0 < v < t ≤ T . Then
∫ t
v K2(t,w)dw � (t − v)2H .

PROOF. Invoking the bound (14) on K , we have∫ t

v
K2(t,w)dw �

∫ t

v
[(t − w)H−1/2 + wH−1/2]2 dw

�
∫ t

v
(t − w)2H−1 dw +

∫ t

v
w2H−1 dw

� (t − v)2H + (t2H − v2H ).

Furthermore, since aα − bα ≤ (a − b)α for any 0 ≤ b < a and α ∈ (0,1), we end
up with

∫ t
v K2(t,w)dw � (t − v)2H , which is our claim. �

We shall also use a slightly more elaborated result on K :

LEMMA 2.4. Let 0 < s < t ≤ T , assume H < 1/2 and consider the quantity

Ist =
∫ t

0
[K(t, u1) − K(s,u1)]2

(∫ t

u1

K2(t, u2) du2

)
du1,

where we recall that we have used the convention K(t, u) = K(t, u)1[0,t)(u). Then
|Ist | � |t − s|4H .

PROOF. According to the fact that K(t, u) = 0 whenever u ≥ t , we obtain the
expression

Ist =
∫ s

0
[K(t, u1) − K(s,u1)]2

(∫ t

u1

K2(t, u2) du2

)
du1

+
∫ t

s
K2(t, u1)

(∫ t

u1

K2(t, u2) du2

)
du1 := I 1

st + I 2
st .

Let us bound now the first of those terms: thanks to Lemma 2.3, one can write∫ t
u1

K2(t, u2) du2 � (t − u1)
2H . Moreover, for 0 ≤ u < s the bound (14) on

∂tK(t, u) yields

|K(t, u) − K(s,u)| =
∣∣∣∣
∫ t

s
∂vK(v,u) dv

∣∣∣∣ � (s − u)H−1/2 − (t − u)H−1/2,(15)

and thus, putting these two estimates together, we obtain

I 1
st �

∫ s

0
[(s − u)H−1/2 − (t − u)H−1/2]2(t − u)2H du.

Performing the changes of variable v = s − u and y = v/(t − s), we end up with

I 1
st � (t − s)4H

∫ s/(t−s)

0
[(1 + y)H−1/2 − yH−1/2]2(1 + y)2H dy.
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Furthermore, it is easily checked that
∫ ∞

0 [(1 + y)H−1/2 − yH−1/2]2(1 + y)2H dy

is a convergent integral whenever H < 1/2, which gives the desired bound for I 1
st .

The term I 2
st is in fact easier to handle, and we leave those details to the reader for

the sake of conciseness. Then, the estimates on I 1
st and I 2

st yield our claim. �

Finally, the following related integral bound also turns out to be an important
estimate for the analysis of nth order iterated integrals:

LEMMA 2.5. Suppose that 2kH < 1. For A > 0, set

βA =
∫ A

0
[yH−1/2 − (1 + y)H−1/2][yH−1/2 + (A − y)H−1/2]y2(k−1)H dy.

Then supA>0 βA < ∞.

PROOF. We can write βA ≤ αA + γA, with

αA =
∫ ∞

0
[yH−1/2 − (1 + y)H−1/2]y2(k−1)H+H−1/2 dy,

γA =
∫ A

0
[yH−1/2 − (1 + y)H−1/2](A − y)H−1/2y2(k−1)H dy.

One can check easily, as in the proof of Lemma 2.4, that αA is finite as long as
2kH < 1. On the other hand, an obvious change of variables yields

γA = A2kH
∫ 1

0
hA(y)(1 − y)H−1/2y2(k−1)H dy,(16)

where the (positive) function hA is defined on R+ by hA(y) = yH−1/2 − ( 1
A

+
y)H−1/2. We now use two elementary estimates

hA(y) ≤
(

1

2
− H

)
yH−3/2

A
and hA(y) ≤ yH−1/2,

and we obtain

hA(y) = hA(y)2kHhA(y)1−2kH

≤
((

1

2
− H

)
1

A
yH−3/2

)2kH

y(H−1/2)(1−2kH)

= cH,ky
(1−2k)H−1/2

A2kH
,

where cH,k = (1
2 − H)2kH . Plugging this bound into (16), we get

γA ≤ cH,k

∫ 1

0
(1 − y)H−1/2y−H−1/2 dy.

This last integral being finite, our claim is now proved. �
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2.3. Contraction of Stratonovich iterated integrals. An important tool in our
analysis of iterated integrals will be a general formula of Itô–Stratonovich correc-
tions for iterated integrals. This kind of result has already been obtained in the
literature, and for our purposes, it will be enough to use a particular case of [1],
Proposition 1, recalled here for further use. Note that we need an additional nota-
tion for this intermediate result: we set dY for the Stratonovich-type differential
with respect to a process Y , while the Itô-type differential is denoted by ∂Y .

PROPOSITION 2.6. Let Y = (Y (1), . . . , Y (n)) be a n-dimensional mar-
tingale of Gaussian type, defined on an interval [s, t], of the form Yu(j) =∫ u
s ψv(j) dWv(ij ) for a family of L2([s, t]) functions (ψ(1), . . . ,ψ(n)), a set of

indices (i1, . . . , in) belonging to {1, . . . , d}n and where we recall that (W(1), . . . ,

W(d)) is a d-dimensional Wiener process. Then the following decomposition holds
true: ∫

s≤u1<···<un≤t
dYu1(i1) · · ·dYun(in) =

n∑
k=�n/2�

1

2n−k

∑
ν∈Dk

n

Jst (ν).

In the above formula, the sets Dk
n are subsets of {1,2}k given by

Dk
n =

{
ν = (n1, . . . , nk);

k∑
j=1

nj = n

}
,

and the Itô-type multiple integrals Jst (ν) are defined as follows:

Jst (ν) =
∫
s≤u1<···<uk≤t

∂Zu1(1) · · · ∂Zuk
(k),

where, setting
∑j

l=1 nl = m(j), we have

Z(j) = Y
(
im(j)

)
if nj = 1,

and

Zu(j) =
(∫ u

s
ψv

(
m(j) − 1

)
ψv(m(j)) dv

)
1(im(j)−1=im(j)) if nj = 2.

The previous Itô–Stratonovich decomposition allows us to bound the second
order moment of iterated Stratonovich integrals in the following way:

LEMMA 2.7. Let ϕ ∈ L2([s, t]). Consider the Stratonovich iterated integral

In
st (ϕ) =

∫
s<u1<···<un<t

n∏
i=1

ϕ(ui) dWu1(i1) · · ·dWun(in).

Then

E[In
st (ϕ)2] ≤ C

(∫ t

s
ϕ(u)2 du

)n

,(17)

where the constant C depends on n and the multiindex (i1, . . . , in).
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PROOF. By Proposition 2.6, we can decompose the Stratonovich integral
In
st (ϕ) into a sum of Itô integrals

In
st (ϕ) =

n∑
k=�n/2�

1

2n−k

∑
ν∈Dk

n

Jst (ν),

and it suffices to consider each Itô integral Jst (ν). Then we proceed by recurrence
with respect to k, with the notation of Proposition 2.6. Suppose first that nk = 1.
Then,

Jst (ν) =
∫ t

s
Jsu(ν

′)ϕ(u) ∂uW(in),

where ν′ = (n1, . . . , nk−1). As a consequence,

E[Jst (ν)2] =
∫ t

s
E[Jsu(ν

′)2]ϕ(u)2 du ≤ sup
s≤u≤t

E[Jsu(ν
′)2]

∫ t

s
ϕ(u)2 du.

On the other hand, if nk = 2, then Jst (ν) = ∫ t
s Jsu(ν

′′)ϕ(u)2 du, with ν′′ = (n1,
. . . , nk−2), and again

E[Jst (ν)2] ≤ sup
s≤u≤t

E[Jsu(ν
′′)2]

(∫ t

s
ϕ(u)2 du

)2

.

By recurrence we obtain (17), where C = (
∑n

k=�n/2�
|Dk

n|
2n−k )

2. �

3. Iterated integrals of order 2. In this section, we will define the element
B2 announced in Theorem 1.1. The study of this particular case will (hopefully)
allow us to introduce many of the technical ingredients needed for the general case
in a didactic way.

3.1. Heuristic considerations. Let us first specify what is meant by an iterated
integral of order 2: according to the definitions contained in the Introduction, we
are searching for a process {B2

st (i1, i2); (s, t) ∈ S2,T ,1 ≤ i1, i2 ≤ d} satisfying:

(i) the regularity condition B2 ∈ C 2γ
2 (Rd2

);
(ii) the multiplicative property

δB2
sut (i1, i2) = B1

su(i1)B
1
ut (i2) = [Bu(i1) − Bs(i1)][Bt(i2) − Bu(i2)],(18)

which should be satisfied almost surely for all (s, u, t) ∈ S3,T and 1 ≤ i1, i2 ≤ d;
(iii) the geometric relation, which can be read here as:

B2
st (i1, i2) + B2

st (i2, i1) = B1
st (i1)B

1
st (i2),

(19)
(s, t) ∈ S2,T ,1 ≤ i1, i2 ≤ d.
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In order to construct this kind of element, let us start with some heuristic con-
siderations, similar to the starting point of [22]: assume for the moment that X is a
smooth d-dimensional function defined on [0, T ]. Then the natural notion of iter-
ated integral of order 2 for X is obviously an element X̂2, defined in the Riemann
sense by

X̂2
st (i1, i2) =

∫
s≤u1≤u2≤t

dXu1(i1) dXu2(i2)

(20)

=
∫ t

s
[Xu(i1) − Xs(i1)]dXu(i2).

We shall now decompose X̂2 into terms of the form A2 and C2 as explained in
the Introduction. In our case, this can be done in two ways: first, equation (20)
immediately yields

X̂2
st (i1, i2) = Â2,2

st + Ĉ2,2
st

with

Â2,2
st = −Xs(i1)δXst (i2), Ĉ2,2

st =
∫ t

s
Xu(i1) dXu(i2),

where we have called those quantities Â2,2 and Ĉ2,2 because they involve incre-
ments of the second component X(i2) of X. Notice now that Ĉ2,2 is the increment
of a function f defined as ft = ∫ t

0 Xu(i1) dXu(i2). Hence, according to conven-

tion (10), one can write X̂2(i1, i2)
Z C2= Â2,2. By inverting the order of integration in

u1, u2 thanks to Fubini’s theorem, we also obtain

X̂2
st (i1, i2) = Â2,1

st + Ĉ2,1
st

with

Â2,1
st = δXst (i1)Xt(i2), Ĉ2,1

st = −
∫ t

s
Xu(i2) dXu(i1),

and thus X̂2(i1, i2)
Z C2= Â2,1.

Let us go back now to the case of the d-dimensional fBm B . If we wish
the iterated integral B2 we are constructing to behave in a similar manner as a
Riemann-type integral, then, by the Chen property, one should have δB2 = δA2,i ,
for i = 1,2, that is,

B2(i1, i2)
Z C2= A2,2 and B2(i1, i2)

Z C2= A2,1,

with A2,2
st = −Bs(i1)δBst (i2) and A2,1

st = δBst (i1)Bt (i2). This means in particular,
according to the fact that δ|Z C2 = 0, that both A2,1 and A2,2 satisfy the multiplica-
tive relation (18), as it can be easily checked by direct computations. However,
this naive decomposition has an important drawback: the increments A2,1 and A2,2
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only belong to Cγ
2 , instead of C 2γ

2 , for any γ < H (this point was also stressed in
[22]).

Our construction diverges from [22] in the way we cope with the regularity
problem mentioned above. Indeed, we start from the following observation: invok-
ing the representation (4) of B , one can write

A2,2
st = −Bs(i1)δBst (i2)

= −
∫

R

K(s,u1) dWu1(i1)

∫
R

[K(t, u2) − K(s,u2)]dWu2(i2)

= −
∫

R2
K(s,u1)[K(t, u2) − K(s,u2)]dWu1(i1) dWu2(i2),

where we recall that the stochastic differentials dW are defined in the Stratonovich
sense. In the same way, we get

A2,1
st =

∫
R2

[K(t, u1) − K(s,u1)]K(t, u2) dWu1(i1) dWu2(i2).

The idea in order to transform A2,1,A2,2 into C 2γ
2 increments is then to replace the

integrals over R
2 above by integrals on the simplex, as mentioned in the Introduc-

tion. Namely, we set now

B̂2,1
st (i1, i2) =

∫
u1<u2

[K(t, u1) − K(s,u1)]K(t, u2) dWu1(i1) dWu2(i2),(21)

B̂2,2
st (i1, i2) = −

∫
u2<u1

K(s,u1)[K(t, u2) − K(s,u2)]dWu1(i1) dWu2(i2),(22)

and notice that these formulas are a particular case of (6) for n = 2. We shall see
that B̂2,1(i1, i2) and B̂2,2(i1, i2) are elements of C 2γ

2 , but they do not satisfy the
multiplicative and geometric property anymore. However, it is now easily con-
ceived, by some symmetry arguments, that the sum of these last two terms do
satisfy the desired algebraic properties again. Indeed, we set now

B2
st (i1, i2) = B̂2,1

st (i1, i2) + B̂2,2
st (i1, i2),(23)

and we claim that B2 is a C 2γ
2 (Rd2

) increment which fulfills relations (18) and
(19). The remainder of this section is devoted to prove these claims.

3.2. Properties of the second order increment. It is obviously essential for the
following developments to check that B2 is a well defined object in L2(	). The
next proposition asserts the existence of B2

st as a L2 random variable for all s, t in
the interval [0, T ].

PROPOSITION 3.1. Let H < 1/2, (s, t) ∈ S2,T and B2
st be the matrix valued

random variable defined by (23). Then B2
st (i1, i2) ∈ L2(	;R

d2
) and E[|B2

st |2] �
(t − s)4H .
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PROOF. Assume first i1 �= i2. We shall focus on the relation E[(B̂2,1
st (i1,

i2))
2] � (t − s)4H , the bound on B̂2,2

st being obtained in a similar way. Now
Stratonovich and Itô-type integrals coincide when i1 �= i2, and according to ex-
pression (21) we have

E[(B̂2,1
st (i1, i2))

2]
=

∫
u1<u2

[
K(t, u1)1[0,t](u1) − K(s,u1)1[0,s](u1)

]2

× K2(t, u2)1[0,t](u2) du1 du2,

which is exactly the quantity Ist studied at Lemma 2.4. The desired bound follows
from Lemma 2.4.

Let us now treat the case i1 = i2 = i, still concentrating our efforts on the in-
equality E[(B̂2,1

st (i, i))2] � (t − s)4H . In this context, Proposition 2.6 yields the
decomposition B̂2,1

st (i, i) = Mst + Vst , with

Mst =
∫
u1<u2

[K(t, u1) − K(s,u1)]K(t, u2) ∂Wu1(i) ∂Wu2(i),

Vst = 1

2

∫ t

0
[K(t, u) − K(s,u)]K(t, u) du,

where we stress the fact that Vst is a deterministic correction term. It is thus ob-
viously enough to obtain the bounds E[M2

st ] � (t − s)4H and V 2
st � (t − s)4H

separately, the first of these bounds being obtained by evaluating Ist in Lemma 2.4
again. As far as Vst is concerned, we make the decomposition

Vst = 1

2

∫ s

0
[K(t, u) − K(s,u)]K(t, u) du +

∫ t

s
K(t, u)2 du.

The second term is bounded by a constant times (t − s)2H by Lemma 2.3. For the
first term we use the estimate

|K(t, u) − K(s,u)| � (t − s)2H(s − u)−H−1/2,

which trivially finishes the proof. �

By standard arguments (see [20]) it can be proved that the estimates in Proposi-
tion 3.1 imply that B2 ∈ C2H−

2 (Rd2
).

We are now equipped with the continuous version of B2 exhibited in the last
proposition, with which we will work without further mention, and we are now
ready to prove the algebraic relations satisfied by our second order increment.

PROPOSITION 3.2. The increment B2 defined by (23) satisfies relations (18)
and (19).
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PROOF. Recall that we are now dealing with a continuous version of B2. In
fact, one can easily modify the arguments of [20] in order to get a continuous
version of the pair (B1,B2). This means that it is enough to check relations (18)
and (19) for some fixed 0 ≤ s < u < t ≤ T .

Let us then verify (18) for s, u, t ∈ [0, T ] such that s < u < t . It is readily seen,
by writing the definitions of B2,1

st (i1, i2),B2,1
su (i1, i2) and B2,1

ut (i1, i2), that

δB2,1
sut (i1, i2) =

∫
u1<u2

[K(u,u1) − K(s,u1)]
× [K(t, u2) − K(u,u2)]dWu1(i1) dWu2(i2),

the right-hand side of this equality being well defined as a L2 random variable
(a fact which can be shown similarly to Proposition 3.1). Along the same lines, we
also get

δB2,2
sut (i1, i2) =

∫
u1>u2

[K(u,u1) − K(s,u1)]
× [K(t, u2) − K(u,u2)]dWu1(i1) dWu2(i2),

and thus

δB2
sut (i1, i2) = δB2,1

sut (i1, i2) + δB2,2
sut (i1, i2)

=
∫

R2
[K(u,u1) − K(s,u1)]
× [K(t, u2) − K(u,u2)]dWu1(i1) dWu2(i2)

= B1
su(i1)B

1
ut (i2),

which is relation (18).
As far as relation (19) is concerned, reorder the integration indices in (21) in

order to get

B̂2,1
st (i2, i1) =

∫
u2<u1

K(t, u1)[K(t, u2) − K(s,u2)]dWu1(i1) dWu2(i2).

Add this expression to (22), which yields

B̂2,1
st (i2, i1) + B̂2,2

st (i1, i2)

=
∫
u2<u1

[K(t, u1) − K(s,u2)](24)

× [K(t, u2) − K(s,u2)]dWu1(i1) dWu2(i2).

Exactly in the same way, we get

B̂2,1
st (i1, i2) + B̂2,2

st (i2, i1)

=
∫
u1<u2

[K(t, u1) − K(s,u2)](25)

× [K(t, u2) − K(s,u2)]dWu1(i1) dWu2(i2).
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Putting together equations (24) and (25), our claim (19) is now readily checked.
�

Finally, let us close this section by giving the proof of the announced regularity
result on B2.

PROPOSITION 3.3. The increment B2 is almost surely an element of C 2γ
2 (Rd2

),
for any γ < H .

PROOF. Consider a fixed Hölder exponent γ < H . The proof of this result is
based on Lemma 2.1, which can be read here as N [B2; C 2γ

2 (Rd2
)] � A + D, with

A =
(∫

S2,T

|B2
uv|2p

|u − v|4γp+4 dudv

)1/(2p)

and D = N [δB2; C 2γ
3 (Rd2

)].

Let us first deal with the term D above: we have seen that B2 satisfies the multi-
plicative property (18), which can be summarized as δB2 = δB ⊗δB . Furthermore,
B ∈ Cγ

1 (Rd) for any γ < H , and thus, for any 1 ≤ i1, i2 ≤ d and 0 ≤ s < u < t ≤ T

|δB2
sut (i1, i2)| = |δBsu(i1)||δBut (i2)| ≤ N 2[B; Cγ

1 (Rd)]|u − s|γ |t − u|γ .

In other words, the quantity ‖δB2‖γ,γ defined by (12) is almost surely finite, and
according to definition (13), we obtain that D is also almost surely finite.

We will now show that A is finite almost surely when p is large enough, by
proving that E[A] < ∞. Indeed, invoking Jensen’s inequality we obtain

E[A] ≤
(∫

S2,T

E[|B2
uv|2p]

|u − v|4γp+4 dudv

)1/(2p)

(26)

�
(∫

S2,T

Ep[|B2
uv|2]

|u − v|4γp+4 dudv

)1/(2p)

,

where we have used the fact that B2 belongs to the second chaos of W , on
which all the Lp norms are equivalent. On the other hand, Proposition 3.1 gives
Ep[|B2

uv|2] � |u − v|4pH , and plugging this inequality into (26), we obtain that
E[A] is finite as long as p > 1/(H − γ ). �

In conclusion, putting together the last two propositions, we have constructed
an element B2 which satisfies the properties (i)–(iii) given at the beginning of the
section, for any H < 1/2.

4. General case. The aim of this section is to prove Theorem 1.1 in its full
generality. Recall that we define our substitute Bn to nth order integrals in the
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following way: for 2 ≤ n ≤ �1/H�, any tuple (i1, . . . , in) of elements of {1, . . . , d},
1 ≤ j ≤ n and (s, t) ∈ S2,T , set

B̂n,j
st (i1, . . . , in)

= (−1)j−1
∫
An

j

j−1∏
l=1

K(s,ul)[K(t, uj ) − K(s,uj )](27)

×
n∏

l=j+1

K(t, ul) dWu1(i1) · · ·dWun(in),

where the kernel K is given by (5) and An
j is the subset of [0, t]n defined by

An
j = {(u1, . . . , un) ∈ [0, t]n;

uj = min(u1, . . . , un), u1 > · · · > uj−1 and uj+1 < · · · < un}.
The 1-increment Bn is then given by

Bn
st (i1, . . . , in) =

n−1∑
j=1

B̂n,j
st (i1, . . . , in).(28)

It is obviously harder to reproduce the heuristic considerations leading to this
expression than in Section 3.1. Let us just mention that the same kind of changes
in the order of integration allows us to produce some 1-increments similar to
A2,1,A2,2. Then the reordering trick yields some terms of the form B̂n,j

st . After
observing the form of several of these terms, the general expression (27) is then
intuited in a natural way.

Notation: in order to write shorter formulas in the computations below, we use
the following conventions in the sequel, whenever possible:

(i) A product of kernels of the form
∏n

j=1 K(τj , uj ) will simply be denoted
by

∏n
j=1 Kτj

, meaning that the variable uj has to be understood according to the
position of the kernel K in the product.

(ii) In the same context, we will also set δKst for a quantity of the form
K(t, uj ) − K(s,uj ).

(iii) Furthermore, when all the τj are equal to the same instant t , we write∏n
j=1 K(t, uj ) = K⊗n

t .
(iv) Finally, we will also shorten the notation for the increments of the Wiener

process W , and simply write dW for
∏n

j=1 dWuj
(ij ).

All these conventions allow us, for instance, to summarize formula (27) into

B̂n,j
st (i1, . . . , in) = (−1)j−1

∫
An

j

K⊗(j−1)
s δKstK

⊗(n−j)
t dW.(29)
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4.1. Moments of the nth order integrals. As in Section 3.2, an important step
of our analysis is a control of the second moment of Bn. This is given in the fol-
lowing proposition.

PROPOSITION 4.1. For n ≤ � 1
H

�, let Bn
st be defined by (28). Then for (s, t) ∈

S2,T , we have

E[|Bn
st |2] ≤ C(t − s)2nH ,

for a strictly positive constant C.

PROOF. Thanks to decomposition (28), it suffices to show that for any fixed
family of indexes i1, . . . , in ∈ {1, . . . , d} and for any 1 ≤ j ≤ n − 1, we have

E[|B̂n,j
st (i1, . . . , in)|2] ≤ C(t − s)2nH .

Invoking now expression (27) for B̂n,j and decomposing the integral over the re-
gion Aj appearing in the definition of B̂n,j

st (i1, . . . , in) into sums of integrals over
the simplex by means of Fubini’s theorem, it suffices to show an inequality of the
type

E[(Qst )
2] ≤ C(t − s)2nH with Qst =

∫
0<u1<···<un<t

δKst

n∏
i=2

Kτi
dW.(30)

Notice that in the expression above, we made use of the notation introduced at the
beginning of the current section, and for i = 1, . . . , n, we assume τi = s or t . We
concentrate our efforts now in proving (30).

Let us further decompose Q into Q = Q1 + Q2, where

Q1
st =

∫
s<u1<···<un<t

K⊗n
t dW and

(31)

Q2
st =

∫
0<u1<···<un<t,u1<s

δKst

n∏
i=2

Kτi
dW,

as in the proof of Lemma 2.4. Notice that in Q1
st we have assumed that τi = t for

all i, since otherwise this term vanishes. Moreover, the term Q1
st can be handled us-

ing the properties of the multiple Stratonovich integrals established in Lemma 2.7,
and applying the estimate obtained in Lemma 2.3. This yields easily the relation
E[(Q1

st )
2] � (t − s)2nH .

Concerning Q2
st , one can write Q2

st = ∑n
j=1 B

j
st where

B
j
st =

∫
0<u1<···<uj<s<uj+1<···<un<t

δKst

n∏
i=2

Kτi
dW.
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Notice that in the above equation τi = t if i = j + 1, . . . , n, since we have again
B

j
st = 0 otherwise. Each term B

j
st can thus be written as the product of two factors:

B
j
st = C

j
stD

j
st , where for j ≥ 2

C
j
st =

∫
0<u1<···<uj<s

δKst

j∏
i=2

Kτi
dW

and

D
j
st =

∫
s<uj+1<···<un<t

K
⊗(n−j)
t dW,

and for j = 1, C1
st = ∫ s

0 δKst dW and D1
st is given by the above formula.

The random variables C
j
st and D

j
st are independent, and E[(Dj

st )
2] can be

bounded easily like E[(Q1
st )

2]. Hence we obtain

E[(Bj
st )

2] = E[(Cj
st )

2]E[(Dj
st )

2] ≤ CE[(Cj
st )

2](t − s)2(n−j)H .(32)

In order to bound the second moment of C
j
st , we express this factor as a sum

of Itô integrals by means of Proposition 2.6. To do this, we give up for a moment
our convention on products of increments, and we define, for u ∈ [0, s] and l =
2, . . . , j , the processes

Yu(1) =
∫ u

0
[K(t, v) − K(s, v)]dWv(i1) and Yu(l) =

∫ u

0
K(τl, v) dWv(il).

Then, the processes {Yu(l);0 ≤ u ≤ s} are Gaussian martingales and

C
j
st =

∫
0<u1<···<uj<s

dYu1(1) dYu1(2) · · ·dYul
(l).

Thus, a direct application of Proposition 2.6 yields

C
j
st =

j∑
k=�j/2�

1

2j−k

∑
ν∈Dk

j

J0s(ν),

where

J0s(ν) =
∫

0<u1<···<uk<s
∂Zu1(1) · · · ∂Zuk

(k),

for ν = (j1, . . . , jk). Thus, setting
∑h

l=1 jl = m(h), we have Z(h) = Y(im(h)) if
jh = 1, and Zu(h) = 〈Y (m(h) − 1), Y (m(h))〉u if jh = 2 and im(h)−1 = im(h),
where 〈·, ·〉 designates the bracket of two continuous martingales. We are going
to estimate E[J0s(ν)2] using a recursive argument. This will be done in several
steps.
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Step 1: suppose jk, jk−1, . . . , j1 = 2. Then j = 2k, and we can assume that im =
im−1 for m = 2,4, . . . ,2k, otherwise J0s(ν) = 0. The term J0s(ν) is deterministic
and it can be expressed as follows:

J0s(ν) =
∫

0<u1<···<uk<s
[K(t, u1) − K(s,u1)]K(τ2, u1)

×
k∏

h=2

K(τ2h−1, uh)K(τ2h, uh) du1 · · ·duk.

As a consequence, owing to (14) and (15), we have

|J0s(ν)| ≤ C

∫
0<u1<···<uk<s

ϕ(1)
u1

k∏
h=2

ϕ(2)
uh

du1 · · ·duk,(33)

where

ϕ(1)
u1

= [(s − u1)
H−1/2 − (t − u1)

H−1/2][(s − u1)
H−1/2 + u

H−1/2
1 ]

and

ϕ(2)
uh

= [(s − uh)
H−1/2 + u

H−1/2
h ]2.

Moreover, the integral of
∏k

h=2 ϕ
(2)
uh is easily bounded: indeed, we have

∫
u1<u2<···<uk<s

k∏
h=2

ϕ(2)
uh

du2 · · ·duk

≤
∫
u1<u2<···<uk<s

k∏
h=2

[(s − uh)
H−1/2 + (uh − u1)

H−1/2]2 du2 · · ·duk

≤ C

∫
[u1,s]k−1

k∏
h=2

[(s − uh)
2H−1 + (uh − u1)

2H−1]du2 · · ·duk

≤ C(s − u1)
2(k−1)H ,

with the convention uk+1 = s. Therefore, plugging this inequality into (33) and
making the change of variables s − u1 = v and y = v

t−s
, we get

|J0s(ν)| ≤ C

∫ s

0
[(s − u1)

H−1/2 − (t − u1)
H−1/2][(s − u1)

H−1/2 + u
H−1/2
1 ]

× (s − u1)
2(k−1)H du1

= C

∫ s

0
[vH−1/2 − (t − s + v)H−1/2][vH−1/2 + (s − v)H−1/2]

× v2(k−1)H dv
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= C(t − s)2kH
∫ s/(t−s)

0
[yH−1/2 − (1 + y)H−1/2]

×
[
yH−1/2 +

(
s

t − s
− y

)H−1/2]
y2(k−1)H dy.

We are now in a position to use Lemma 2.5 with A = s/(t − s), and we obtain

|J0s(ν)| ≤ C(t − s)2kH ,(34)

which implies that J0s(ν)2 ≤ C(t − s)2jH , owing to the fact that 2k = j .
Step 2: suppose that jk = 1. Then Proposition 2.6 gives

J0s(ν) =
∫

0<u1<···<uk<s
∂Zu1(1) · · · ∂Zuk−1(k − 1)K(τj , uk) ∂Wu(ij )

and

E[J0s(ν)2] =
∫ s

0
E(J0u(ν

′)2)K(τj , u)2 du

≤
∫ s

0
E(J0u(ν

′)2)
(
(s − u)2H−1 + u2H−1)

du,

with ν′ = (j1, . . . , jk−1). This relation allows us to set an induction procedure, as
we shall see later.

Step 3: suppose that jk, jk−1, . . . , jb+1 = 2 and jb = 1, where b ≥ 2. We assume
that im(h) = im(h)−1 for h = b + 1, . . . , k. Here again, Proposition 2.6 implies

J0s(ν) =
∫

0<u1<···<uk<s
∂Zu1(1) · · · ∂Zub

(b)

×
k∏

h=b+1

K
(
τm(h)−1, uh

)
K

(
τm(h), uh

)
du1 · · ·duk,

and Fubini’s theorem yields

J0s(ν) =
∫ s

0
J0ub

(ν′)K
(
τm(h), ub

)
G(ub) dWub

(
im(h)

)
,

with ν′ = (j1, . . . , jb−1), and where

G(ub) =
∫

0<ub<ub+1<···<uk<s

k∏
h=b+1

K
(
τm(h)−1, uh

)

× K
(
τm(h), uh

)
dub+1 · · ·duk.

As for the previous bound (34) we obtain

|G(ub)| ≤ C(s − ub)
2(k−b)H .
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Therefore

E[J0s(ν)2] =
∫ s

0
E[J0ub

(ν′)2]K(
τm(h), ub

)2
G(ub)

2 dub

≤ C

∫ s

0
E[J0ub

(ν′′)2][(s − ub)
2H−1 + u2H−1

b ](s − ub)
4(k−b)H dub.

Notice that the above inequality includes the inequality obtained in Step 2, which
corresponds to the case b = k.

Step 4: suppose that jk, jk−1, . . . , jb+1 = 2, jb = 1, jb−1, jb−2, . . . , jc+1 = 2
and jc = 1, where 2 ≤ c ≤ b. We assume also that im(h) = im(h)−1 for h = c +
1, . . . , b − 1, b + 1, . . . , k. By the same arguments as in Step 2 we obtain

E[J0s(ν)2] ≤ C

∫
0<uc<ub<s

E[J0uc(ν
′)2][(ub − uc)

2H−1 + u2H−1
c ]

× (ub − uc)
4(b−c)H [(s − ub)

2H−1 + u2H−1
b ]

× (s − ub)
4(k−b)H duc dub,

with ν′ = (j1, . . . , jc−1). Replacing u2H−1
b by (ub − uc)

2H−1 and integrating with
respect to ub yields

E[J0s(ν)2] ≤ C

∫ s

0
E[J0uc(ν

′)2][(s − uc)
2H−1 + u2H−1

c ]

× (s − uc)
4(k−c)H+2H duc.

Step 5: iteration scheme. Iterating the argument in Step 4, we reduce the size
of ν′ until we obtain a multiindex of length r such that ν′ = (1,2, . . . ,2) or ν′ =
(2,2, . . . ,2), with jr+1 = 1, and we obtain an estimate of the form

E[J0s(ν)2] ≤ C

∫ s

0
E[J0u(ν

′)2][(s − u)2H−1 + u2H−1]
(35)

× (s − u)2H
∑k

l=r+2 jl du.

Suppose first that ν′ = (1,2, . . . ,2). Then,

J0s(ν
′) =

∫
0<u1<···<ur<u

[K(t, u1) − K(s,u1)]

×
r∏

h=2

K
(
τm(h)−1, uh

)
K

(
τm(h), uh

)
dWu1(i1) du2 · · ·dur,

and by Fubini’s theorem

J0s(ν
′) =

∫ u

0
[K(t, u1) − K(s,u1)]F(u1) dWu1(i1),
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where

F(u1) =
∫
u1<u2<···<ur<u

r∏
h=2

K
(
τm(h)−1, uh

)
K

(
τm(h), uh

)
du2 · · ·dur .

As in the proof of (34) we get

|F(u1)| ≤ C(u − u1)
2(r−1)H .

Therefore,

E[J0s(ν
′)2] ≤ C

∫ u

0
[(t − u1)

H−1/2 − (s − u1)
H−1/2]2

(36)
× (u − u1)

4(r−1)H du1.

Substituting (36) into (35) yields, after integrating in the variable u,

E[J0s(ν)2] ≤ C

∫ s

0
[(t − u)H−1/2 − (s − u)H−1/2]2(s − u)2(j−1)H du.

Performing the changes of variables v = s − u and y = v/(t − s), we end up with

E[J0s(ν)2] ≤ C(t − s)2jH
∫ s/(t−s)

0
[(1 + t)H−1/2 − yH−1/2]2y2(j−1)H dy

(37)
≤ C(t − s)2jH ,

where the last step is obtained thanks to a slight variation of Lemma 2.5.
If ν′ = (2,2, . . . ,2), then we proceed as in Step 1 and we obtain

|J0u(ν
′)| ≤ C

∫ u

0
[(s − u1)

H−1/2 − (t − u1)
H−1/2]

× [(u − u1)
H−1/2 + u

H−1/2
1 ](38)

× (u − u1)
2(r−1)H du1.

Substituting (38) into (35), integrating first in the variable u and using the same
arguments as in Step 1 we obtain also the estimate

E[J0s(ν)2] ≤ C(t − s)2jH .(39)

Step 6: conclusion. Our bounds (37) and (39) on J0s(ν) yield the same kind of
estimate for the term C

j
st . Thus relation (32) gives B

j
st � (t − s)2nH . This estimate

can now be plugged into the definition (31) of Q2, then in the definition of Q,
which leads to our claim (30). The proof is now complete. �
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4.2. Proof of Theorem 1.1. Before we prove our main theorem, we need a last
elementary technical ingredient, which relies on the notational convention given at
the beginning of the current section.

LEMMA 4.2. For n ≥ 3, j = 2, . . . , n − 1 and 0 ≤ s < t ≤ T , set

M
n,j
st = K⊗(j−1)

s δKstK
⊗(n−j)
t .

Recall that for an element M ∈ C2, δM is defined by (9). Then

δM
n,j
sut = −

j−1∑
m=1

K⊗(m−1)
s δKsuK

⊗(j−1−m)
u δKutK

⊗(n−j)
t

+ K⊗(j−1)
s δKsu

n−j∑
m=1

K⊗(m−1)
u δKutK

⊗(n−j−m)
t .

The relation still holds true for j ∈ {1, n} and n = 2, with the convention K⊗0 = 1
and δK⊗0 = 0.

PROOF. This proof is completely elementary, and included here for the sake
of completeness, since it uses heavily the notation of Section 2.1.

First, if a, b, c are 3 increments in C1, and if we define N ∈ C2 by Nst =
asδbst ct , then a simple application of Definition (9) gives

δNsut = −δasuδbutct + asδbsuδcut .

Our claim is thus proved by applying this relation to a = K⊗(j−1), b = K , c =
K⊗(n−j), and observing that [δK⊗l]st = ∑l

p=1 K
⊗(p−1)
s δKstK

⊗(l−p)
t . �

PROOF OF THEOREM 1.1. The structure of the proof is the same as in the
second order case of Section 3.2: we first reduce the algebraic relations (2) and (3)
to the case of some fixed s, u, t by standard considerations. Then we first focus
on (2).

Step 1: proof of the multiplicative property (2). Fix (s, u, t) ∈ S3,T . Recall that
B̂n,j

st is defined by (29). Therefore, invoking Lemma 4.2, δB̂n,j is given by

δB̂n,j
sut (i1, . . . , in)

= (−1)j
∫
An

j

j−1∑
m=1

K⊗(m−1)
s δKsuK

⊗(j−1−m)
u δKutK

⊗(n−j)
t dW(40)

+ (−1)j−1
∫
An

j

K⊗(j−1)
s δKsu

n−j∑
m=1

K⊗(m−1)
u δKutK

⊗(n−j−m)
t dW.
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On the other hand, set Zsut = ∑n−1
n1=1 Bn1

suBn−n1
ut . One can easily check that

Zsut =
n−1∑
n1=1

n1∑
k=1

n−n1∑
h=1

B̂n1,k
su B̂n−n1,h

ut

=
n−1∑
n1=1

n1∑
k=1

n−n1∑
h=1

(−1)k+h
∫
Ak,h(n1)

K⊗(k−1)
s δKsuK

⊗(n1−k+h−1)
u δKut(41)

× K
⊗(n−n1−h)
t dW,

where Ak,h(n1) is the set defined by

Ak,h(n1) = A
n1
k × A

n−n1
h

= {(u1, . . . , un);uk < uk+1 < · · · < un1, uk < uk−1 < · · · < u1,

un1+h < un1+h+1 < · · · < un,un1+h < un1+h−1 < · · · < un1+1}.
We want to show that (41) and (40) coincide.

In order to follow the computations below, it might be useful to keep in mind
an illustration of the coordinate ordering on a set of the form Ak,h(m), for which
an example is provided at Figure 1 (note that the ordering between um and um+1
is not specified).

Notice that on the set Ak,h(n1) ∩ {uk < un1+h} the minimum of the coordinates
is uk , and on the set Ak,h(n1) ∩ {un1+h < uk} the minimum is un1+h. Define

A1
h,k(n1) = Ak,h(n1)∩{uk < un1+h} and A2

h,k(n1) = Ak,h(n1)∩{un1+h < uk}.
Consider now the decomposition Z = Z1 + Z2, where

Zi
sut =

n−1∑
n1=1

n1∑
k=1

n−n1∑
h=1

(−1)k+h
∫
Ai

k,h(n1)
K⊗(k−1)

s δKsuK
⊗(n1−k+h−1)
u δKut

× K
⊗(n−n1−h)
t dW.

We fix j and we try to compute the contribution of Zi
sut on the set An

j for i = 1,2.

This contribution will be the sum of the integrals on the set An
j ∩Ai

k,h(n1), for each
k = 1, . . . , n1, h = 1, . . . , n − n1 and for each n1 = 1, . . . , n − 1.

n1 k m m+1 m+h

FIG. 1. Coordinates ordering on Ak,h(m).
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Notice first that the intersection An
j ∩ A1

k,h(n1) is nonempty only if k = j ,
h = 1 and un1 < un1+1 which also implies j ≤ n1. Moreover, in this case we have
A1

j,1(n1)∩{un1 < un1+1} = An
j . In this way we obtain that the contribution of Z1

sut

on An
j is

(−1)j−1
n−1∑
n1=j

∫
An

j

K⊗(j−1)
s δKsuK

⊗(n1−j)
u δKutK

⊗(n−n1−1)
t dW

(42)

= (−1)j−1
n−j∑
m=1

∫
An

j

K⊗(j−1)
s δKsuK

⊗(m−1)
u δKutK

⊗(n−m−j)
t dW,

where we have used the simple change of variables n1 − j = m − 1. In the same
manner, on the set An

j ∩ A2
k,h(n1) we have k = n1, n1 + h = j , which also implies

n1 ≤ j − 1. Therefore, the contribution of Z2
sut on An

j is

(−1)j
j−1∑
n1=1

∫
An

j

K⊗(n1−1)
s δKsuK

⊗(j−1−n1)
u δKutK

⊗(n−j)
t dW.(43)

One can now easily verify that the sum of (42) and (43) is equal to the term (40).
It remains to prove that the contribution of Zsut to the set (

⋃
j An

j )
c is zero.

For this, observe that (
⋃

j An
j )

c can be split into slices Dk,p,h of the following
form: for 1 ≤ k ≤ p ≤ n − 1, we assume that uk < uk−1 < · · · < u1 and uk <

uk+1 < · · · < up but up > up+1. Suppose also that 1 ≤ h ≤ n−p and that up+h is
the minimum of the coordinates up+1, . . . , un. Then, for Dk,p,h to be a subset of⋃n

n1=1
⋃

k,h Ak,h(n1), we need the further condition up+h < up+h+1 < · · · < un

and up+h < up+h−1 < · · · < up+1. With all these constraints in mind, it is easily
seen that Dk,p,h corresponds to two possible choices of set Ak,h(n1). Indeed, we
have

Dk,p,h = Ak,h(p) = Ak,h+1(p − 1).

Going back now to the expression (41) of Zsut , it is readily checked that the two
contributions, respectively, on Ak,h(p) and Ak,h+1(p − 1), yield two terms with
opposite sign, which cancel out in the sum.

Step 2: proof of the geometric property (3). Fix n,m such that n + m ≤ �1/γ �
and let (s, t) ∈ S2,T . Consider the product

Bn
st (i1, . . . , in)B

m
st (j1, . . . , jm)

=
n∑

j=1

m∑
h=1

(−1)j+h

(∫
An

j

K⊗(j−1)
s δKstK

⊗(n−j)
t dW

)

×
(∫

Am
h

K⊗(h−1)
s δKstK

⊗(m−h)
t dW

)
,
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where we have used notation (29) and where we recall that the sets An
j and Am

h are
defined by

An
j = {u ∈ [0, t]n :uj < uj−1 < · · · < u1, uj < uj+1 < · · · < un},

Am
h = {v ∈ [0, t]m :vh < vh−1 < · · · < v1, vh < vh+1 < · · · < vm}.

The product of the two Stratonovich integrals can be expressed as a Stratonovich
integral on the region An

j × Am
h with respect to the differential

dWu1(i1) · · ·dWun(in) dWv1(j1) · · ·dWvm(jm).

We will make use of the notation z = (u, v), where zα = uα , for α = 1, . . . , n and
zα = vα−n for α = n+ 1, . . . , n+m. As in Step 1, the region An

j ×Am
h can be first

decomposed into the union of the disjoint regions Dj,h and Ej,h, corresponding,
respectively, to the additional constraints {uj < vh} and {uj > vh} (notice that this
decomposition is valid up to the set {uj = vh}, whose contribution to the stochastic
integral is null).

Consider first the case {uj < vh}. On Dj,h the minimum of all the coordinates
zα is zj . Then Dj,h can be further decomposed into the disjoint union of the sets

Dπ
j,h,1 = {z ∈ [0, t]n+m : zj < zαj+h−2 < · · · < zα1,

zj < zβ1 < · · · < zβn−j+1+m−h
}

∩ {zn+h < zn+h−1},
where

π(1, . . . , n + m) = (α1, . . . , αj+h−2, j, β1, . . . , βn−j+1+m−h)

runs over all permutations of the coordinates 1, . . . , n+m such that π(j +h−1) =
j and:

(i) α1, . . . , αj+h−2 is a permutation of the coordinates 1, . . . , j − 1 and n +
1, . . . , n + h − 1 that preserves the orderings of the indices 1, . . . , j − 1 and n +
1, . . . , n + h − 1.

(ii) β1, . . . , βn−j+1+m−h is a permutation of the coordinates j + 1, . . . , n and
n + h, . . . , n + m that preserves the orderings of the indices j + 1, . . . , n and n +
h, . . . , n + m.

Notice that α is the inverse of a shuffle since it splits an ordered list into two
ordered sublists. The same remark applies to β .

Moreover, Dj,h can be also be decomposed into the disjoint union of the sets

Dπ̃
j,h,2 = {z ∈ [0, t]n+m : zj < zαj+h−1 < · · · < zα1,

zj < zβ1 < · · · < zβn−j+m−h
}

∩ {zn+h < zn+h+1},
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where

π̃(1, . . . , n + m) = (α1, . . . , αj+h−1, j, β1, . . . , βn−j+m−h)

runs over all permutations of the coordinates 1, . . . , n + m such that π̃ (j + h) = j

and:
(i) α1, . . . , αj+h−1 is a permutation of the coordinates 1, . . . , j − 1 and

n + 1, . . . , n + h that preserves the orderings of the indices 1, . . . , j − 1 and
n + 1, . . . , n + h.

(ii) β1, . . . , βn−j+m−h is a permutation of the coordinates j + 1, . . . , n and n +
h + 1, . . . , n + m that preserves the orderings of the indices j + 11, . . . , n and
n + h + 1, . . . , n + m.

Then, on the set Dj,h we write

K⊗(j−1)
s δKstK

⊗(n−j)
t K⊗(h−1)

s δKstK
⊗(m−h)
t

= K⊗(j−1)
s δKstK

⊗(n−j)
t K⊗(h−1)

s K
⊗(m−h+1)
t

− K⊗(j−1)
s δKstK

⊗(n−j)
t K⊗h

s K
⊗(m−h)
t ,

and the integral

Ij,h :=
∫
Dj,h

K⊗(j−1)
s δKstK

⊗(n−j)
t K⊗(h−1)

s δKstK
⊗(m−h)
t dW

can be expressed as the sum Ij,h = I+
j,h + I−

j,h, with

I+
j,h = ∑

π

∫
Dπ

j,h,1

(−1)j+h−2

×
j+h−2∏

l=1

K(s, zαl
)δKst (zj )

×
n−j+1+m−h∏

l=1

K(t, zβl
) dWz1(i1) · · ·dWzn+m(in+m)

and

I−
j,h = ∑

π̃

∫
Dπ̃

j,h,2

(−1)j+h−1

×
j+h−1∏

l=1

K(s, zαl
)δKst (zj )

×
n−j+m−h∏

l=1

K(t, zβl
) dWz1(i1) · · ·dWzn+m(in+m).
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Let us handle first the term I+
j,h: consider the permutation σ = π−1 of 1, . . . , n+

m which maps α1, . . . , αj+h−2 into 1, . . . , j +h−2 and β1, . . . , βn−j+1+m−h into
j + h, . . . , n + m, with the additional condition σ(j) = j + h − 1. If we make this
permutation in the coordinates of I+

j,h we obtain

I+
j,h =

∫
An+m

j+h−1∩{zν<zη}
(−1)j+h−2

×
j+h−2∏

l=1

K(s, zl)δKst (zj+h−1)

×
n+m∏

l=j+h

K(t, zl) dWz1(k1) · · ·dWzn+m(kn+m),

where k1, . . . , kn+m is a permutation of the indexes i1, . . . , in, j1, . . . , jm defined
by k� = iσ (�) if 1 ≤ σ(�) ≤ n and k� = jσ(�) if n + 1 ≤ σ(�) ≤ n + m, and where
ν, η are defined by

ν = min
{
i ≥ j + h :ki ∈ {j1, . . . , jm}},

η = max
{
i ≤ j + h − 2 :ki ∈ {j1, . . . , jm}}.

In the same way, we can consider a permutation σ = π̃−1 in the coordinates zi

which maps α1, . . . , αj+h−1 into 1, . . . , j + h − 1 and β1, . . . , βn−j+m−h into j +
h+1, . . . , n+m, and σ(j) = j +h. If we make this permutation in the coordinates
of I−

j,h we obtain

I−
j,h =

∫
An+m

j+h ∩{zν>zη}
(−1)j+h−1

×
j+h−1∏

l=1

K(s, zl)δKst (zj+h−1)

×
n+m∏

l=j+h+1

K(t, zl) dWz1(k1) · · ·dWzn+m(kn+m),

where again k1, . . . , kn+m is a permutation of the indexes i1, . . . , in, j1, . . . , jm de-
fined by k� = iσ (�) if 1 ≤ σ(�) ≤ n and k� = jσ(�) if n + 1 ≤ σ(�) ≤ n + m, and
where ν, η are now defined by

ν = min
{
i ≥ j + h + 1 :ki ∈ {j1, . . . , jm}},

η = max
{
i ≤ j + h − 1 :ki ∈ {j1, . . . , jm}}.

When we sum these integrals over all permutations σ of the above type, that is
σ = π−1 or σ = π̃−1, and also over j and h, we obtain

∑
k̄∈Sh(ı̄,j̄ ) Bn+m,1

st (k1, . . . ,
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kn+m), where

Bn+m,1
st (k1, . . . , kn+m)

=
n+m∑

p=1,kp∈{i1,...,in}

∫
An+m

p

(−1)p−1

×
p−1∏
l=1

K(s, zl)δKst (zp)

×
n+m∏

l=p+1

K(t, zl) dWz1(k1) · · ·dWzn+m(kn+m).

In a similar manner we could show that the sum of the integrals over Ej,h give
rise to

∑
k̄∈Sh(ı̄,j̄ ) Bn+m,2

st (k1, . . . , kn+m), for h = 1, . . . ,m, where

Bn+m,2
st (k1, . . . , kn+m)

=
n+m∑

p=1,kp∈{j1,...,jm}

∫
An+m

p

(−1)p−1

×
p−1∏
l=1

K(s, zl)δKst (zp)

×
n+m∏

l=p+1

K(t, zl) dWz1(k1) · · ·dWzn+m(kn+m).

Taking into account the two contributions Bn+m,1
st and Bn+m,2

st , the proof of the
geometric property is now easily finished.

Step 3: proof of the regularity property. As in Proposition 3.3, the fact that Bn

belongs to Cnγ
2 for any γ < H is an easy consequence of the moment estimate of

Proposition 4.1, plus a simple induction procedure.
Indeed, assume that Bk ∈ Ckγ

2 ((Rd)⊗k) for any k ≤ n − 1. Then Lemma 2.1

gives here that N [Bn; Cnγ
2 (Rd2

)] � A + D, with

A =
(∫

S2,T

|Bn
uv|2p

|u − v|2nγp+4 dudv

)1/(2p)

and D = N [δBn; Cnγ
3 (Rd2

)].

Furthermore, since we have seen that Bn satisfies the multiplicative property (2),
then D is easily shown to be almost surely finite thanks to our induction hypothe-
sis. Finally, the quantity E[A] can be bounded along the same lines as in Proposi-
tion 3.3, except that Proposition 4.1 is used instead of Proposition 3.1. �
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5. Relationship with other iterated integrals. This section is devoted to a
comparison of the rough path above fBm we have just constructed with other ex-
isting iterated integrals. We first treat the case of canonical (or pathwise) integrals
defined in [5, 9], focusing on the double iterated integral case. Then we shall try
to replace our construction into the general context of Fourier normal ordering as
introduced in [23].

5.1. Comparison with the canonical double iterated integral. Consider 1/4 <

H < 1. We wish to compare B2 defined by (23) with the increment B2,p, where

B2,p
st :=

∫
s<u1<u2<t

dBu1(i1) dBu2(i2)(44)

is interpreted in the following way:
(i) If 1/2 < H < 1, B2,p

st is defined in the Young sense (or equivalently in the
Stratonovich sense of Malliavin calculus–see [18]).

(ii) If H = 1/2, B2,p
st corresponds to a Stratonovich integral with respect to

Brownian motion.
(iii) When 1/4 < H < 1/2, B2,p

st is defined by a limiting procedure in [5, 9],
but is also shown in [5] to correspond to a Stratonovich integral in the Malliavin
calculus sense.

In all those cases, B2,p can thus be defined thanks to Malliavin calculus tools,
and is also thought of as the canonical double iterated integral for B . We shall
keep this definition in mind in the sequel, and refer to [18] for further definitions
of Malliavin calculus. Notice that “p” in in our notation B2,p stands for pathwise.

Our comparison result for double iterated integrals can be read as follows:

PROPOSITION 5.1. Consider a d-dimensional fBm B with Hurst index 1/4 <

H < 1. Let B2 be the increment defined by (23), and B2,p defined by (44). For 0 <

b < a < t , set ψt(a, b) = ∫ t
a K(v, a)∂vK(v, b) dv. Then for H ∈ (1/4,1) \ {1/2},

we have B2 − B2,p = δf , where f : R+ → R
d2

is the process defined by

ft (i1, i2)

=
∫

0<u1<u2<t
ψt(u2, u1) dWu1(i1) dWu2(i2)(45)

−
∫

0<u2<u1<t
ψt (u1, u2) dWu1(i1) dWu2(i2).

In particular, f (i1, i2) ≡ 0 if i1 = i2. For H = 1/2, one gets the relation B2 −
B2,p = 0.

REMARK 5.2. Consider the antisymmetric parts B2,a and B2,p,a of B2 and
B2,p, respectively, considered as matrix-valued increments. These objects are usu-
ally referred to as Lévy areas of B . Then it is readily checked that B2,a − B2,p,a =
δf as well.
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PROOF OF PROPOSITION 5.1. It is easily shown, thanks to Proposition 3.2,
that δB2 = δB2,p. We thus know that B2 − B2,p = δf for a certain function f ∈ C1.
Furthermore, a possible choice for f (unique up to constants) is simply

ft = B2
0t − B2,p

0t .

We shall try to simplify the latter expression, and distinguish 3 cases:
Case 1: H = 1/2. In this situation the computations differ slightly from the case

1/4 < H < 1/2, since in Kt(u) = 1[0,t](u) instead of the expression given by (5).
However, the relation B2 − B2,p = 0 is easily verified directly.

Case 2: 1/2 < H < 1. We treat this situation first, since it is technically simpler
than the rougher case H < 1/2. The kernel K is given here by [18], equation (5.8),
instead of (5), but still satisfies a relation of the form (14), which allows to translate
many of the bounds in Section 3. In particular, both increments B2,p and B2 are
well defined. However, when H > 1/2 we cannot assume δf := B2 − B2,p lies
in C 2γ

1 , since Lemma 2.4 cannot be applied anymore (additionally, f ∈ C 2γ
1 would

mean f ≡ Constant). We shall thus only work with f ∈ Cγ
1 .

In order to find an amenable expression for f , decompose again B2
0t into B̂2,1

0t +
B̂2,2

0t . Thanks to the fact that K(0, ·) ≡ 0, it is then easily seen from equation (22)

that B̂2,2
0t = 0. Thus, reading (22) in our particular situation yields

B2
0t (i1, i2) =

∫
u1<u2

Kt(u1)Kt(u2) dWu1(i1) dWu2(i2).(46)

For H > 1/2, a suitable expression for B2,p
0t , obtained by means of a Fubini-type

arguments, is

B2,p
0t (i1, i2) =

∫ t

0

(∫ t

u2

∂vKv(u2)Bv(i1) dv

)
dWu2(i2)

=
∫
[0,t]2

(∫ t

u1∨u2

∂vKv(u2)Kv(u1) dv

)
dWu1(i1) dWu2(i2)

:= J 1
st + J 2

st ,

where

J 1
st =

∫
0<u1<u2<t

(∫ t

u2

∂vKv(u2)Kv(u1) dv

)
dWu1(i1) dWu2(i2),

J 2
st =

∫
0<u2<u1<t

(∫ t

u1

∂vKv(u2)Kv(u1) dv

)
dWu1(i1) dWu2(i2).

Owing to a simple integration by parts argument, we have∫ t

u2

∂vKv(u2)Kv(u1) dv = Kt(u1)Kt(u2) −
∫ t

u2

Kv(u2)∂vKv(u1) dv,
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and hence

J 1
st =

∫
0<u1<u2<t

[
K(t, u1)K(t, u2)

−
∫ t

u2

Kv(u2)∂vKv(u1) dv

]
dWu1(i1) dWu2(i2)

= B2
0t (i1, i2) −

∫
0<u1<u2<t

(∫ t

u2

Kv(u2)∂vKv(u1) dv

)
dWu1(i1) dWu2(i2).

Gathering all the expressions we have obtained so far and recalling our notation
ψt(a, b) = ∫ t

a K(v, a) ∂vK(v, b) dv for 0 < b < a < t , the proof of (45) is now
readily completed.

Case 3: 1/4 < H < 1/2. Many of the computations of Case 2 can be reproduced
here, and we will just outline the main differences.

Since H < 1/2, Lemma 2.4 and the results in [5, 9] assert that f is an element
of C 2γ

1 in the current situation. Moreover, (46) is still valid for H < 1/2, so that we

only have to find an alternative expression for B2,p
0t .

Thanks to expression (5.29) in [18], one can write

B2,p
0t (i1, i2) =

∫ t

0
[K∗

t B(i1)]u2 dWu2(i2) := L1
st + L2

st ,

where

L1
st =

∫ t

0

(∫ t

u2

∂vKv(u2)δBu2v(i1) dv

)
dWu2(i2),

L2
st =

∫ t

0
Kt(u2)Bu2(i1) dWu2(i2).

Then the same kind of arguments as for Case 2 (Fubini-type relations and integra-
tion by parts for K) yield L1

st = L11
st + L12

st , with

L11
st =

∫
0<u1<u2<t

[Kt(u2)δKtv(u1) − ψt(u2, u1)]dWu1(i1) dWu2(i2),

L12
st =

∫
0<u2<u1<t

ψt(u1, u2) dWu1(i1) dWu2(i2).

It is also easily checked that

L2
st =

∫
0<u1<u2<t

Kt(u2)Ku2(u1) dWu1(i1) dWu2(i2).

Recalling then B2,p
0t (i1, i2) = L11

st + L12
st + L2

st we end up, after some elementary
algebraic manipulations, with expression (45). �
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5.2. Comparison with the construction by Fourier normal ordering. It is im-
possible to reproduce here the elegant formalism on which [23] is based. We will
thus just content ourselves with giving some hints on the possibility to link our
construction with the general Fourier normal ordering program described in the
latter reference.

One of the starting points in [23] is that any iterated integral with respect to a
function X can be encoded by a tree whose vertices are decorated by {1, . . . , d}
if X is R

d -valued. A Hopf algebra structure is usually added to this set of trees
after the pioneering work of Connes and Kreimer [4], the resulting structure being
denoted by H.

In case of a smooth function X, consider Xn(i1, . . . , in) defined by (1) in the
Riemann sense. Let also σ ∈ �n be a permutation of {1, . . . , n}. When one wishes
to express Xn(iσ(1), . . . , iσ (n)) in terms of integrals involving the indices i1, . . . , in
in this exact order, one is naturally led to use operations on trees and forests, en-
coded in the Hopf algebra structure alluded to above. After a huge amount of
formalization explained in [23], this allows us to write, for 0 ≤ s < t ≤ T ,

Xn
st (i1, . . . , in) = [(χs

X ◦ S) ∗ χt
X](Tn),(47)

where Tn designates the trunk tree of order n decorated by i1, . . . , in, χs
X is a

character defined on H, S stands for the antipode operation characteristic of Hopf
algebras and ∗ is a certain convolution product defined on H. Notice that the equiv-
alent of decomposition (47) in [23] involves some so-called skeleton integrals,
which refer to Fourier transform techniques. Our character χs

X is defined in direct
coordinates, in concordance with the Volterra-type representation we have chosen.

Still in case of a smooth function X, a further analysis of the terms χs
X allows the

decomposition (valid for a multiindex (j1, . . . , jn) assimilated with its associated
trunk tree)

χs
X(j1, . . . , jn) = ∑

σ∈�n

Is(T
σ ),(48)

where T
σ is a forest called permutation graph (see [23], Lemma 1.5). This kind

of decomposition is the one which has to be generalized to nonsmooth situations.
In our context, Is(T

σ ) is obviously a Wiener multiple integral weighted by the
kernel K , whose generic form is given by

Is(T
σ ) =

∫
uσ(1)<···<uσ(n)

n∏
j=1

Kaj
(uj ) dWuj

(ij ),

where each aj = s or t according to the permutation graph under consideration.
The algorithm set up in [23] in order to cope with nonsmooth situations basically

replaces the integrals Is(T
σ ) for any T

σ having more than two vertices by some-
thing smoothed in Fourier coordinates. Our approach is simpler (and rougher), in
the sense that we replace all those integrals by 0. We are thus just left with the
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permutation graph T
σ0 corresponding to σ0 : (1, . . . , n) �→ (n, . . . ,1), which is the

only one containing trees reduced to a root (see [7] for further explanations). It can
then be shown that, reading [23], Lemma 3.6, in this context leads to our definition
(28) of the multiple iterated integral with respect to B . In a sense, our construction
is thus included in the broader context of [23]. Nevertheless, let us insist on the
fact that we provide a simple and direct alternative approach to the problem.
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