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We define and solve Volterra equations driven by an irregular signal, by means of a
variant of the rough path theory called algebraic integration. In the Young case, that
is for a driving signal with Hölder exponent γ > 1/2, we obtain a global solution, and
are able to handle the case of a singular Volterra coefficient. In case of a driving signal
with Hölder exponent 1/3 < γ ≤ 1/2, we get a local existence and uniqueness theorem.
The results are easily applied to the fractional Brownian motion with Hurst coefficient
H > 1/3.
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1. Introduction

This paper is the first of a series of two papers dealing with Volterra equations
driven by rough paths. For an arbitrary positive constant T , this kind of equation
can be written, in its general form, as:

yt = a+
∫ t

0

σ(t, u, yu) dxu, for s ∈ [0, T ], (1)

where x is an n-dimensional Hölder continuous path with Hölder exponent γ > 0,
a ∈ R

d stands for an initial condition, and σ : R+ × R+ × R
d → R

d,n is a smooth
enough function.

Motivated by the previous works on Volterra equations driven by a Brow-
nian motion or a semi-martingale [2, 3, 15, 21], often in an anticipative context
[1, 4, 5, 19, 18, 20], we have taken up the program of defining and solving Eq. (1) in
a pathwise way, allowing for instance a straightforward application to a fractional
Brownian motion with Hurst parameter H > 1/3. This will be achieved thanks to
a variation of the rough path theory due to Gubinelli [11], whose main features
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are recalled below at Sec. 2 (we refer to [9, 13, 14] for further classical references on
rough paths theory). To the best of our knowledge, this is the first occurrence of a
paper dealing with Volterra systems driven by a fractional Brownian motion with
H < 1/2.

More specifically, this paper focuses on the following three cases:

(i) The Young case: When x is a γ-Hölder continuous path with γ > 1/2 (in
particular for an n-dimensional fBm with Hurst parameter H ∈ (1/2, 1)), and
assuming that σ : [0, T ]2 × R

d → R
d,n is regular enough (with respect to its

three variables), we shall prove that Eq. (1) can be interpreted and solved in
the Young sense (Sec. 3).

(ii) The Young singular case: Under the same conditions as in the previous case
for x, we are able to handle the case of a coefficient σ admitting a singularity
with respect to its first two variables t, u. Namely, if σ can be expressed as
σ(t, u, z) = (t− u)−αψ(z), for some α > 0 and ψ : R

d → R
d,n regular enough,

then under some conditions on α, γ, κ (roughly speaking, we ask that γ − α >

1/2 and 1/2 < κ < γ), it is still possible to interpret
∫ t
0
σ(t, u, yu) dxu as

a Young integral when y belongs to a space of κ-Hölder functions, denoted
below by Cκ1 ([0, T ],Rd). This extension of the Young integral however requires
a careful analysis, which will be detailed in Sec. 4. We can then solve Eq. (1)
in the space Cκ1 ([0, T ],Rd).

(iii) The rough case: When x is a γ-Hölder signal with γ ∈ (1/3, 1/2) (this applies
obviously to an n-dimensional fBm with Hurst parameter H ∈ (1/3, 1/2)),
the integral appearing in Eq. (1) then has to be interpreted in some rough
path sense. As mentioned before, we shall resort in this case to the formalism
introduced in [11], which allows us to prove the existence and uniqueness of a
local solution, defined on a small interval [0, T0] for some T0 ∈ (0, T ] (Sec. 5).
We will then point out the technical difficulties one must cope with when trying
to extend this local solution.

Here is a brief sketch of the strategy we have followed in order to obtain our
results: the algebraic integration formalism relies heavily on the notion of incre-
ments, which are simply given, in case of a function y of one parameter t ∈ [0, T ],
by (δy)st = yt − ys. At a heuristic level, the main difference between classical
differential equations driven by rough signals and our Volterra setting lies in the
dependence of the increment (δy)st of the possible solution on the whole past of
the trajectory. Indeed, if y is a solution to Eq. (1), then one has

(δy)st =
∫ t

s

σ(t, u, yu) dxu +
∫ s

0

[σ(t, u, yu) − σ(s, u, yu)] dxu. (2)

As one might expect, the first integral in (2) can be dealt with just as the classical
diffusion case treated in [11]. In other words, under suitable regularity conditions
on σ, the variable t appearing in the integrand does not play a prominent role.
The second term on the right-hand side of (2) is the one which is typical of the
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Volterra setting, and involves the whole of x. It is still possible to retrieve some
|t− s|-increments from this term thanks to the regularity of σ with respect to its
first variable, in order to solve our equation by a fixed point argument. However,
as we shall see in Sec. 5.3, the term

∫ s
0
[σ(t, u, yu) − σ(s, u, yu)] dxu will eventually

induce some severe problems in the classical arguments allowing to get a global
solution for our differential system in the rough case. This explains why we have
decided to change radically the setting presented here in the companion paper
[7]. In this latter reference, by means of what we call generalized convolutional
increments, we show how to get a global solution to Eq. (1) in case of a rough
driving noise x, for a wide class of coefficients σ. It was however important for us
to also include a direct treatment of Volterra systems by the existing rough paths’
methods, mainly because (i) it allows to consider a more general driving coefficient
σ. (ii) The method presented here works perfectly well for the Young setting, and
can be further extended in order to cover the case of a singular coefficient σ.

Here is how our paper is structured: we recall in Sec. 2 the notions of algebraic
integration which will be needed later on. Section 3 is devoted to the study of Eq. (1)
driven by a γ-Hölder continuous process with γ > 1/2, when the coefficient σ is
regular. Section 4 deals with the same kind of equation, with a singular coefficient
σ. Section 5 treats the case of a rough driving signal x, and finally the proof of
some technical lemmas can be found in the Appendix.

Let us finish this Introduction by fixing some notations which are used through-
out the paper: we call Df the gradient of a function f , defined on R

n, and when
we want to stress the fact that we are differentiating f with respect to the jth
variable, we denote this by Djf . As far as the regularity of σ is concerned, the
following spaces come into play. If E,F are Banach spaces and U an open set of
E, denote Cn,b(U ;F ) the set of n-times differentiable mappings from U to F with
bounded derivatives. For each κ ∈ (0, 1), let us also introduce the subset

Cn,b,κ(U ;F ) =
{
σ ∈ Cn,b(U ;F ) : sup

x,y∈U

‖D(n)σ(x) −D(n)σ(y)‖
‖x− y‖κ <∞

}
.

2. Algebraic Integration

This section is devoted to recall the main concepts of algebraic integration, which
will be essential in order to define suitable notions of generalized integrals in our
setting. Namely, we shall recall the definition of the spaces of increments Cκn, of the
operator δ, and its inverse called Λ (or sewing map according to the terminology
of [8]). We will also recall some elementary but useful algebraic relations on the
spaces of increments.

2.1. Increments

As mentioned in the Introduction, the extended integral we deal with is based on
the notion of increment, together with an elementary operator δ acting on them.
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The notion of increment can be introduced in the following way: for two arbitrary
real numbers �2 > �1 ≥ 0, a vector space V , and an integer k ≥ 1, we denote by
Ck(V ) the set of continuous functions g : [�1, �2]k → V such that gt1···tk = 0 when-
ever ti = ti+1 for some i ≤ k−1. Such a function will be called a (k−1)-increment,
and we will set C∗(V ) =

⋃
k≥1 Ck(V ). The operator δ alluded to above can be seen

as an operator acting on k-increments, and is defined as follows on Ck(V ):

δ : Ck(V ) → Ck+1(V ) (δg)t1···tk+1 =
k+1∑
i=1

(−1)igt1···t̂i···tk+1
, (3)

where t̂i means that this particular argument is omitted. Then a fundamental prop-
erty of δ, which is easily verified, is that δδ = 0, where δδ is considered as an
operator from Ck(V ) to Ck+2(V ). We will denote ZCk(V ) = Ck(V ) ∩ Kerδ and
BCk(V ) = Ck(V ) ∩ Imδ.

Some simple examples of actions of δ, which will be the ones we will use
throughout the paper, are obtained by letting g ∈ C1 and h ∈ C2. Then, for any
t, u, s ∈ [�1, �2], we have

(δg)st = gt − gs and (δh)sut = hst − hsu − hut. (4)

Furthermore, it is readily checked that the complex (C∗, δ) is acyclic, i.e. ZCk(V ) =
BCk(V ) for any k ≥ 1. In particular, the following basic property, which we label
for further use, holds true:

Lemma 2.1. Let k ≥ 1 and h ∈ ZCk+1(V ). Then there exists a (non-unique)
f ∈ Ck(V ) such that h = δf .

Observe that Lemma 2.1 implies that all the elements h ∈ C2(V ) such that δh = 0
can be written as h = δf for some (non-unique) f ∈ C1(V ). Thus we get a heuristic
interpretation of δ|C2(V ): it measures how much a given 1-increment is far from
being an exact increment of a function (i.e. a finite difference).

Notice that our future discussions will mainly rely on k-increments with k ≤ 23,
for which we will use some analytical assumptions. Namely, we measure the size of
these increments by Hölder norms defined in the following way: for f ∈ C2(V ) let

‖f‖µ ≡ sup
s,t∈[�1,�2]

|fst|
|t− s|µ , and Cµ2 (V ) = {f ∈ C2(V ); ‖f‖µ <∞}.

With this notation, Cµ1 (V ) = {f ∈ C1(V ); ‖δf‖µ < ∞}. In the same way, for
h ∈ C3(V ), set

‖h‖γ,ρ = sup
s,u,t∈[�1,�2]

|hsut|
|u− s|γ |t− u|ρ ,

‖h‖µ ≡ inf

{∑
i

‖hi‖ρi,µ−ρi ; h =
∑
i

hi, 0 < ρi < µ

}
,

(5)

where the last infimum is taken over all sequences {hi ∈ C3(V )} such that h =
∑

i hi
and for all choices of the numbers ρi ∈ (0, µ). Then ‖·‖µ is easily seen to be a norm
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on C3(V ), and we set

Cµ3 (V ) := {h ∈ C3(V ); ‖h‖µ <∞}.
Eventually, let C1+

3 (V ) =
⋃
µ>1 Cµ3 (V ), and remark that the same kind of norms

can be considered on the spaces ZC3(V ), leading to the definition of some spaces
ZCµ3 (V ) and ZC1+

3 (V ). In order to avoid ambiguities, we shall denote by N [f ; Cκj ]
the κ-Hölder norm on the space Cj, for j = 1, 2, 3. For ζ ∈ Cj(V ), we also set
N [ζ; C0

j (V )] = sups∈[�1;�2]j‖ζs‖V .
Recall that Lemma 2.1 states that for any h ∈ ZC3, there exists a f ∈ C2 such

that δf = h. Importantly enough for the construction of our generalized integrals,
this increment f is unique under some additional regularity conditions expressed
in terms of the Hölder spaces we have just introduced:

Theorem 2.2. (The sewing map) Let µ > 1. For any h ∈ ZCµ3 ([0, 1];V ), there
exists a unique Λh ∈ Cµ2 ([0, 1];V ) such that δ(Λh) = h. Furthermore,

‖Λh‖µ ≤ cµN [h; Cµ3 (V )], (6)

with cµ = 2 + 2µ
∑∞

k=1 k
−µ. This gives rise to a linear continuous map Λ :

ZCµ3 ([0, 1];V ) → Cµ2 ([0, 1];V ) such that δΛ = IdZCµ
3 ([0,1];V ).

Proof. The original proof of this result can be found in [11]. We refer to [7, 12] for
two simplified versions.

At this point the connection of the structure we introduced with the problem
of integration of irregular functions can still be quite obscure to the non-initiated
reader. However, something interesting is already going on and the previous corol-
lary has a very nice consequence which is the subject of the following property.

Corollary 2.3. (Integration of small increments) For any 1-increment g ∈ C2(V )
such that δg ∈ C1+

3 , set h = (Id − Λδ)g. Then there exists f ∈ C1(V ) such that
h = δf and

(δf)st = lim
|Πst|→0

n∑
i=0

gtiti+1 ,

where the limit is over any partition Πst = {t0 = s, . . . , tn = t} of [s, t] whose mesh
tends to zero. The 1-increment δf is the indefinite integral of the 1-increment g.

Proof. For any partition Πt = {s = t0 < t1 < · · · < tn = t} of [s, t], write

(δf)st =
n∑
i=0

(δf)titi+1 =
n∑
i=0

gtiti+1 −
n∑
i=0

Λtiti+1(δg).

Observe now that for some µ > 1 such that δg ∈ Cµ3 ,∥∥∥∥∥
n∑
i=0

Λtiti+1(δg)

∥∥∥∥∥
V

≤
n∑
i=0

‖Λtiti+1(δg)‖V ≤ ‖Λ(δg)‖µ |Πst|µ−1 |t− s| ,

and as a consequence, lim|Πst|→0

∑n
i=0 Λtiti+1(δg) = 0.
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2.2. Computations in C∗

We gather in this section some elementary but useful algebraic rules for increments.
We refer again to [7, 12] for the proof of these statements.

For the sake of simplicity, let us assume for the moment that V = R (the
multidimensional version of the below considerations can be found in [16]), and
set Ck(R) = Ck. Then the complex (C∗, δ) is an (associative, non-commutative)
graded algebra once endowed with the following product: for g ∈ Cn and h ∈ Cm
let gh ∈ Cn+m the element defined by

(gh)t1,...,tm+n−1 = gt1,...,tnhtn,...,tm+n−1, t1, . . . , tm+n+1 ∈ [�1, �2]. (7)

In this context, we have the following useful properties.

Proposition 2.4. The following differentiation rules hold true:

(1) Let g, h be two elements of C1. Then

δ(gh) = δgh+ gδh. (8)

(2) Let g ∈ C1 and h ∈ C2. Then

δ(gh) = δgh+ gδh, δ(hg) = δhg − hδg.

The iterated integrals of smooth functions on [�1, �2] are obviously particular
cases of elements of C which will be of interest for us, and let us recall some basic
rules for these objects: consider f, g ∈ C∞

1 , where C∞
1 is the set of smooth functions

from [�1, �2] to R. Then the integral
∫
dg f , which will be denoted by J (dg f), can

be considered as an element of C∞
2 . That is, for s, t ∈ [�1, �2], we set

Jst(dg f) =
(∫

dgf

)
st

=
∫ t

s

dgufu.

The multiple integrals can also be defined in the following way: given a smooth
element h ∈ C∞

2 and s, t ∈ [�1, �2], we set

Jst(dg h) ≡
(∫

dgh

)
st

=
∫ t

s

dguhus.

In particular, the double integral Jst(df3df2 f1) is defined, for f1, f2, f3 ∈ C∞
1 , as

Jst(df3df2 f1) =
(∫

df3df2 f1

)
st

=
∫ t

s

df3
u Jus(df2 f1).

Now, suppose that the nth order iterated integral of dfn · · ·df2 f1, still denoted by
J (dfn · · · df2 f1), has been defined for f1, f2, . . . , fn ∈ C∞

1 . Then, if fn+1 ∈ C∞
0 ,

we set

Jst(dfn+1dfn · · · df2f1)
∫ t

s

dfn+1
u Jus(dfn · · · df2 f1), (9)

which defines the iterated integrals of smooth functions recursively. Observe that an
nth order integral J (dfn · · · df2df1) (instead of J (dfn · · · df2f1)) could be defined
along the same lines.
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The following relations between multiple integrals and the operator δ will also
be useful in the remainder of the paper:

Proposition 2.5. Let f, g be two elements of C∞
1 . Then, recalling the convention

(7), it holds that

δf = J (df), δ (J (dgf)) = 0, δ (J (dgdf)) = (δg)(δf) = J (dg)J (df),

and, in general,

δ
(J (dfn · · · df1)

)
=
n−1∑
i=1

J (dfn · · · df i+1)J (df i · · · df1).

3. The Young Case

In this section, we assume that the driving process x of Eq. (1) is a continuous
process in Cγ1 ([0, T ]; Rn), for some γ ∈ (1/2, 1). If z ∈ Cρ1 ([0, T ]; Rd,n), the formalism
introduced in the previous section enables to give a meaning to the integral

∫ t
s zu dxu

when ρ+ γ > 1, in the Young sense. This is the issue of the following proposition,
borrowed from [11] :

Proposition 3.1. If z ∈ Cρ1 ([0, T ]; Rd,n) for some ρ > 0 such that ρ + γ > 1, we
can define, for any s, t ∈ [0, T ],

Jst(z dx) := zs(δx)st − Λst(δz δx). (10)

Then J (z dx) ∈ Cγ2 ([0, T ]; Rd) and

N [J (z dx); Cγ2 ([0, T ]; Rd)]

≤ cx{N [z; C0
1([0, T ]; Rd,n)] + T ρN [z; Cρ1([0, T ]; Rd,n)]}. (11)

Remark 3.2. Thanks to Corollary 2.3, Jst(z dx) can also be seen as a Young
integral, that is

Jst(z dx) = lim
|∆|→0

∑
∆

zti(δx)titi+1 . (12)

Nevertheless, as we shall see in a moment, the exact expression (10) of the integral
is easier to deal with for computational purposes than the limit expression (12),
owing to a better knowledge of the remainder Λ(δz δx).

With this definition in mind, the Volterra equation (1) will now be interpreted
in the Young sense, and is written as:

yt = a+ J0t(σ(t, ., y.) dx). (13)

The next lemma ensures that the latter integral is well-defined:

Lemma 3.3. If y ∈ Cγ1 ([0, T ]; Rd) and σ ∈ C1,b([0, T ]2 × R
d; Rd,n), then for any

t ≥ 0, σ(t, ., y.) ∈ Cγ1 ([0, T ]; Rd,n) and

N [σ(t, ., y.); Cγ1 ] ≤ cσ(T 1−γ + N [y; Cγ1 ]). (14)
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Proof. This is obvious: recall that we denote by Dσ the gradient of σ. Then, if
0 ≤ u < v ≤ T we get:

‖σ(t, v, yv) − σ(t, u, yu)‖ ≤ ‖Dσ‖∞(|v − u| + N [y; Cγ1 ]|v − u|γ).
Hence N [σ(t, ., y.); Cγ1 ] ≤ ‖Dσ‖∞(T 1−γ + N [y; Cγ1 ]).

We are now in a position to prove the existence and uniqueness result for the
Volterra equation in the Young case:

Theorem 3.4. Assume that the driving process x is an element of Cγ1 ([0, T ]; Rn)
with γ > 1/2. Let κ ∈ (0, 1) such that κ(1 + γ) > 1, a ∈ R

d, σ ∈ C2,b,κ([0, T ]2 ×
R
d; Rd,n). Then Eq. (13) admits a unique solution in Cγ1 ([0, T ]; Rd).

This theorem can obviously be applied to the fractional Brownian motion, in
the following sense:

Corollary 3.5. Let B be an n-dimensional fractional Brownian motion with Hurst
parameter H > 1/2, defined on a complete probability space (Ω,F , P ). Then almost
surely, B fulfills the hypotheses of Theorem 3.4.

We divide the proof of Theorem 3.4 into two propositions: first, we will look for
a local solution defined on some interval [0, T0] with 0 < T0 ≤ T , and then we will
settle a patching argument to extend it onto the whole interval [0, T ].

Notations. Before going into the details of the proof, let us mention a few conven-
tions that will be used in the sequel. We assume that we always work with a fixed
(finite) horizon T to be distinguished from the intermediate times T1, T0, . . . . In par-
ticular, this means that the constants that will appear in the following calculations
may depend on T without explicit note.

For the sake of conciseness, let us denote Yu = (u, yu) ∈ [0, T ]×R
d and σt(Yu) =

σ(t,Yu).
The local existence and uniqueness result for our Volterra equation is as follows:

Proposition 3.6. Under the hypothesis of Theorem 3.4, there exists T0 ∈ (0, T ]
such that Eq. (13) admits a unique solution in Cγ1 ([0, T0]; Rd).

Proof. We are going to resort to a fixed point argument. To this end, let us asso-
ciate to each y ∈ Cγ1 ([0, T0]) the element z = Γ(y) defined by

zt = Γ(y)t = y0 + J0t(σt(Y.) dx).
The solution we are looking for will then be constructed as a fixed point of Γ.

Step 1. Invariance of a ball. Fix a time T1 ∈ (0, T ] (T1 will be chosen retrospec-
tively). Let y ∈ Cγ1 ([0, T1]) such that y0 = a and set z = Γ(y), where, of course, the
application Γ has been adapted to [0, T1].

At this point, let us remind the reader of some specification of the Volterra
setting that we evoked in the Introduction. As in (2), the increment (δz)ts can
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be decomposed as a sum of two terms that will receive a distinct treatment:
I1
st = Jst(σt(Y) dx) and I2

st = Jos([σt − σs](Y) dx). In order to estimate those
two integrals, we shall of course resort to inequality (11). However, as far as I2

st is
concerned, it is clear that the latter inequality will not be sufficient so as to retrieve
|t− s|-increments (remember that we are looking for an estimation of N [z; Cγ1 ],
hence a relation of the form ‖I2

st‖ ≤ |t− s|γ f(y)). This is where the following
lemma, which also anticipates the contraction argument, will come into play.

Lemma 3.7. Let I = [a, b] ⊂ [0, T ] and y, ỹ ∈ Cγ1 (I; Rd) such that ya = ỹa. Then,
under the hypothesis of Theorem 3.4, for any s, t ∈ I,

N [[σt − σs](Y); Cγ1 (I)] ≤ cσ |t− s| {1 + N [y; Cγ1 (I)]}, (15)

N [σt(Y) − σt(Ỹ); Cγ1 (I)] ≤ cσ{1 + N [y; Cγ1 (I)] + N [ỹ; Cγ1 (I)]}N [y − ỹ; Cγ1 (I)],

(16)

N [[σt − σs](Y) − [σt − σs](Ỹ); Cκγ1 (I)]

≤ cσ |t− s| {1 + N [y; Cγ1 (I)]κ + N [ỹ; Cγ1 (I)]κ}N [y − ỹ; Cγ1 (I)]. (17)

Proof. See the Appendix.

Now, let us go into the details. To deal with I1, use (11) to get

‖I1
st‖ ≤ cx |t− s|γ {N [σt(Y); C0

1 ] + T γ1 N [σt(Y); Cγ1 ]}
≤ cx,σ |t− s|γ {1 + T γ1 N [σt(Y); Cγ1 ]},

and thus, thanks to Lemma 3.3, N [I1; Cγ2 ] ≤ cx,σ{1 + T γ1 N [y; Cγ1 ]}.
Split I2 into I2 = I2,1 + I2,2, with

I2,1
st = [σt − σs](Y0) (δx)0s and I2,2

st = Λ0s(δ([σt − σs](Y)) δx).

First, notice that ‖I2,1
st ‖ ≤ ‖Dσ‖∞ |t− s| N [x; Cγ1 ]T γ1 , which gives N [I2,1; Cγ2 ] ≤

cx,σT1. As for I2,2, use the contraction property (6) and the estimate (15) to deduce

‖I2,2
st ‖ ≤ cxN [[σt − σs](Y); Cγ1 ]T γ1

≤ cx,σ |t− s| {1 + N [y; Cγ1 ]}T 2γ
1 ,

so that N [I2,2; Cγ2 ] ≤ cx,σ T
1+γ
1 (1 + N [y; Cγ1 ]).

Therefore, putting together our bounds on I1 and I2, we have obtained
N [z; Cγ1 ] ≤ cx,σ{1 + T γ1 N [y; Cγ1 ]}. We can thus pick T1 ∈ (0, T ] such that for each
0 < T0 ≤ T1, there exists a radius AT0 for which the ball

B
AT0
T0,a

= {y ∈ Cγ1 ([0, T0]) : y0 = a, N [y; Cγ1 ([0, T0])] ≤ AT0}
is invariant by Γ. Notice that the radius AT0 is an increasing function of T0, a fact
which will be used in the second step.



September 11, 2009 12:20 WSPC/168-SD 00273

446 A. Deya & S. Tindel

Step 2. Contraction property. Fix a time T0 ∈ (0, T1] and let y, ỹ ∈ B
AT0
T0,a

. Set
z = Γ(y), z̃ = Γ(ỹ) and decompose again δ(z − z̃) into δ(z − z̃) = J1,1 + J1,2 + J2,
with

J1,1
st = (σt(Ys) − σt(Ỹs)) (δx)st, J1,2

st = Λst(δ(σt(Y) − σt(Ỹ)) δx),

J2
st = Λ0s(δ([σt − σs](Y) − [σt − σs](Ỹ)) δx).

Let us now estimate the γ-Hölder norm of each of these three terms.

Case of J1,1. We have N [J1,1; Cγ2 ] ≤ ‖Dσ‖∞N [y− ỹ; C0
1 ]N [x; Cγ1 ]. However, since

y0 = ỹ0 = a, we have ys − ỹs = ys − ỹs − (y0 − ỹ0), N [y − ỹ; C0
1 ] ≤ N [y − ỹ; Cγ1 ]T γ0 ,

so that

N [J1,1; Cγ2 ] ≤ cx,σN [y − ỹ; Cγ1 ]T γ0 .

Case of J1,2. Inequalities (6) and (16) yield:

‖J1,2
st ‖ ≤ cN [σt(Y) − σt(Ỹ); Cγ1 ]N [x; Cγ1 ] |t− s|2γ

≤ cx,σ |t− s|γ (1 + N [y; Cγ1 ] + N [ỹ; Cγ1 ])N [y − ỹ; Cγ1 ]T γ0 ,

which gives N [J1,2; Cγ2 ] ≤ cx,σ (1 + N [y; Cγ1 ] + N [ỹ; Cγ1 ])N [y − ỹ; Cγ1 ]T γ0 .

Case of J2. By (6) and (17),

‖J2
st‖ ≤ cN [[σt − σs](Y) − [σt − σs](Ỹ); Cκγ1 ]N [x; Cγ1 ]T γ(1+κ)

0

≤ cσ,x |t− s|γ T 1+γκ
0 N [y − ỹ; Cγ1 ]{1 + N [y; Cγ1 ]κ + N [ỹ; Cγ1 ]κ},

or in other words, N [J2; Cγ2 ] ≤ cσ,xT
1+γκ
0 N [y − ỹ; Cγ1 ]{1 + N [y; Cγ1 ]κ + N [ỹ; Cγ1 ]κ}.

Therefore, N [z − z̃; Cγ1 ] ≤ cσ,xT
γ
0 N [y − ỹ; Cγ1 ]{1 + AT0}. Since the radius AT0

decreases as T0 tends to 0, we can choose a sufficiently small time T0 ∈ (0, T1] such
that the application Γ, restricted to the (stable) ball BAT0

T0,a
, is a strict contraction.

Hence the existence and uniqueness of a fixed point in this set.
The next proposition summarizes our considerations in order to get the global

existence and uniqueness for solution to Eq. (13):

Proposition 3.8. Under the hypothesis of Theorem 3.4, the local solution y(1)

defined by the previous proposition can be extended to a global and unique solution
in Cγ1 ([0, T ]; Rd).

Proof. In fact, we are going to show the existence of a small ε > 0, which shall
not depend on y(1), such that y(1) can be extended to a solution on [0, T0 + ε]. The
conclusion then follows by a simple iteration argument.

To this end, let us introduce the application Γ defined for any z ∈ Cγ1 ([0, T0 +ε])
such that z|[0,T0] = y(1) as

ẑt = Γ(z)t =

{
y
(1)
t if t ∈ [0, T0],

a+ J0t(σt(Z) dx) if t ∈ [T0, T0 + ε].

Just as in the previous proof, we are looking for a fixed point of Γ.



September 11, 2009 12:20 WSPC/168-SD 00273

Rough Volterra Equations 447

Step 1. Invariance of a ball. In order to estimate N [ẑ; Cγ1 ([0, T0+ε])], let us consider
the three cases (s, t ∈ [0, T0]), (s, t ∈ [T0, T0 + ε]) and (s ≤ T0 ≤ t ≤ T0 + ε).

In the first case, we simply have N [ẑ; Cγ1 ([0, T0])] ≤ N [y(1); Cγ1 ([0, T0])]. Consider
the second case s, t ∈ [T0, T0 + ε], and decompose (δẑ)st as above, that is (δẑ)st =
I1,1
st + I1,2

st + I2,1
st + I2,2

st , with

I1,1
st = σt(Zs) (δx)st, I1,2

st = Λst(δ(σt(Z)) δx),

I2,1
st = [σt − σs](Z0) (δx)0s, I2,2

st = Λ0s(δ([σt − σs](Z)) δx).

Let us now bound each of these terms: first, owing to (6) and (14), I1,2
st can be

estimated as follows:

‖I1,2
st ‖ ≤ cN [σt(Z); Cγ1 ([0, T0 + ε])]N [x; Cγ1 ] |t− s|2γ

≤ cσ,x{1 + N [z; Cγ1 ([0, T0 + ε])]} |t− s|2γ .
It is thus readily checked that N [I1,2; Cγ2 ([T0, T0 +ε])] ≤ cσ,x ε

γ{1+N [z; Cγ1 ([0, T0+
ε])]}. Thanks to (6) and (15), we also have the following bound for I2,2

st :

‖I2,2
st ‖ ≤ cN [[σt − σs](Z); Cγ1 ([0, T0 + ε])]N [x; Cγ1 ]T 2γ

≤ cσ,x |t− s| {1 + N [z; Cγ1 ([0, T0 + ε])]},
which gives N [I2,2; Cγ2 ([T0, T0 + ε])] ≤ cσ,x ε

1−γ{1 + N [z; Cγ1 ([0, T0 + ε])]}. Since
trivially N [Ii,1; Cγ2 ([T0, T0 + ε])] ≤ cσ,x for i = 1, 2, we get

N [ẑ; Cγ1 ([T0, T0 + ε])] ≤ cσ,x{1 + ε1−γN [z; Cγ1 ([0, T0 + ε])]}.
Finally, let us treat the third case 0 ≤ s ≤ T0 ≤ t ≤ T0 + ε: write

‖(δẑ)st‖ = ‖(δẑ)sT0 + (δẑ)T0t‖
≤ N [y(1); Cγ1 ([0, T0])] |T0 − s|γ + N [ẑ; Cγ1 ([T0, T0 + ε])] |t− T0|γ

≤ {N [y(1); Cγ1 ([0, T0])] + N [ẑ; Cγ1 ([T0, T0 + ε])]} |t− s|γ .
Putting together the three cases we have just studied, the following bound is

obtained for ẑ on the whole interval [0, T0 + ε])]:

N [ẑ; Cγ1 ([0, T0 + ε])] ≤ c1σ,x{1 + N [y(1); Cγ1 ([0, T0])] + ε1−γN [z; Cγ1 ([0, T0 + ε])]}.
Therefore, set

ε = (2c1σ,x)
−1/(1−γ) (ε does not depend on y(1)) and

N1 = 2c1σ,x{1 + N [y(1); Cγ1 ([0, T0])]},
so that if N [z; Cγ1 ([0, T0 + ε])] ≤ N1, then N [ẑ; Cγ1 ([0, T0 + ε])] ≤ N1

2 + N1
2 = N1. In

other words, we have found that the ball

BN1
y(1),T0,ε

= {z ∈ Cγ1 ([0, T0 + ε]) : z|[0,T0] = y(1), N [z; Cγ1 ([0, T0 + ε])] ≤ N1}
is invariant by Γ.
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Step 2. Contraction property. This second step consists of finding a small η ∈ (0, ε]
such that the previous application Γ (adapted to [0, T0 + η]) satisfies a contraction
property when restricted to some (invariant) ball.

Let z(1), z(2) ∈ BN1
y(1),T0,η

and set ẑ(1) = Γ(z(1)), ẑ(2) = Γ(z(2)). Of course,
since ẑ(1) and ẑ(2) share the same initial condition on [0, T0], we have N [ẑ(1) −
ẑ(2); Cγ1 ([0, T0 + η])] = N [ẑ(1) − ẑ(2); Cγ1 ([T0, T0 + η])]. Let then T0 ≤ s < t ≤ T0 + η

and as in the proof of Proposition 3.6, use the decomposition δ(ẑ(1) − ẑ(2))st =
J1,1
st + J1,2

st + J2
st, where

J1,1
st = (σt(Z(1)

s ) − σt(Z(2)
s )) (δx)st, J1,2

st = Λst(δ(σt(Z(1)) − σt(Z(2))) δx),

J2
st = Λ0s(δ([σt − σs](Z(1)) − [σt − σs](Z(2))) δx).

We will bound again each of these terms separately: for J1,1, we have

‖J1,1
st ‖ ≤ ‖Dσ‖∞‖z(1)

s − z(2)
s ‖N [x; Cγ1 ] |t− s|γ .

But

‖z(1)
s − z(2)

s ‖ = ‖[z(1)
s − z(2)

s ] − [z(1)
T0

− z
(2)
T0

]‖ ≤ N [z(1) − z(2); Cγ1 ([0, T0 + η])] ηγ ,

and so

N [J1,1; Cγ2 ([T0, T0 + η])] ≤ cx,σ η
γN [z(1) − z(2); Cγ1 ([0, T0 + η])]. (18)

The term J1,2
st can be estimated as follows: by (6) and (16),

‖J1,2
st ‖ ≤ cN [σt(Z(1)) − σt(Z(2)); Cγ1 ([0, T0 + η])]N [x; Cγ1 ] |t− s|2γ

≤ cσ,x |t− s|γ ηγ{1 + 2N1}N [z(1) − z(2); Cγ1 ([0, T0 + η])].

Finally, according to (6) and (17), we have:

‖J2
st‖ ≤ cN [[σt − σs](Z(1)) − [σt − σs](Z(2)); Cκγ1 ([0, T0 + η])]N [x; Cγ1 ]T γ(1+κ)

≤ cσ,x |t− s|γ η1−γ{1 + 2Nκ
1 }N [z(1) − z(2); Cγ1 ([0, T0 + η])].

As a result, putting together the bounds on J1,1
st , J1,2

st and J2
st, we end up with:

N [ẑ(1) − ẑ(2); Cγ1 ([0, T0 + η])] ≤ c1σ,xη
1−γ{1+Nκ

1 +N1}N [z(1)− z(2); Cγ1 ([0, T0 + η])].

We can now pick η ∈ (0, ε] such that c1σ,xη1−γ{1 + Nκ
1 + N1} ≤ 1

2 , and the
application Γ becomes a strict contraction on BN1

y(1),T0,η
. It is easy to check (see

Lemma 3.9 below) that BN1
y(1),T0,η

is also invariant by Γ, hence the existence and
uniqueness of a fixed point in this set, denoted by y(1),η.
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Notice now that the arguments leading to uniqueness remain true on the (stable)
ball

{z ∈ Cγ1 ([0, T0 + 2η]) : z|[0,T0+η] = y(1),η, N [z; Cγ1 ([0, T0 + 2η])] ≤ N1}.
For instance, to establish the equivalent of relation (18) on this extended interval,
notice that if s ∈ [T0 + η, T0 + 2η],

‖z(1)
s − z(2)

s ‖ = ‖[z(1)
s − z(2)

s ]− [z(1)
T0+η − z

(2)
T0+η]‖ ≤ N [z(1) − z(2); Cγ1 ([0, T0 + 2η])] ηγ .

This enables to extend y(1),η into a solution y(1),2η on [0, T0 + 2η], and then y(1),3η

on [0, T0 + 3η], . . . until [0, T0 + ε] is covered, as we wished.

Lemma 3.9. With the notations of the previous proof, the sets

{z ∈ Cγ1 ([0, T0 + lη]) : z|[0,T0+(l−1)η] = y(1),(l−1)η, N [z; Cγ1 ([0, T0 + lη])] ≤ N1}
are invariant by Γ.

Proof. If z belongs to such a ball, set

z̃t =

{
zt if t ∈ [0, T0 + lη],

zT0+lη if t ∈ [T0 + lη, T0 + ε].

Clearly, z̃ ∈ BN1
y(1),T0,ε

, so that, thanks to the first step of the previous proof,

Γ(z̃) ∈ BN1
y(1),T0,ε

. Now, since y(1),(l−1)η is a solution on [0, T0 + (l − 1)η], we have
Γ(z̃)|[0,T0+(l−1)η] = y(1),(l−1)η, which means that Γ(z̃) is an extension of Γ(z) and
as a result

N [Γ(z); Cγ1 ([0, T0 + lη])] ≤ N [Γ(z̃); Cγ1 ([0, T0 + ε])] ≤ N1.

A classical and fundamental result of Rough Path Theory is the continuity of
the Itô map, which associates to any initial condition a and any driving signal x the
unique solution to the (standard) differential system (see [11] for further details)

(δy)st = Jst(σ(y) dx), y0 = a.

In our Volterra context, this continuity result still holds true. It is contained in the
following proposition.

Proposition 3.10. Define the Itô map F by F (a, x) = y, where y is the unique
solution (given by Theorem 3.4) to the Volterra system (13). Then F is locally Lip-
schitz in the following sense: there exists an application C : (R+)2 → R

+ bounded
on compact sets such that for any a, ã ∈ R

d, x, x̃ ∈ Cγ1 ([0, T ]),

N [F (a, x) − F (ã, x̃); Cγ1 ([0, T ])] ≤ C
(N [x; Cγ1 ([0, T ])],N [x̃; Cγ1 ([0, T ])])

{‖a− ã‖ + N [x− x̃; Cγ1 ([0, T ])]}. (19)
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Proof. In fact, (19) is easily obtained by combining the estimations we established
in the proofs of Propositions 3.6 and 3.8. We only outline here the main steps of
the reasoning, leaving the details to the reader.

Fix two elements (a, x), (ã, x̃) ∈ R
d × Cγ1 ([0, T ]) and denote y = F (a, x), ỹ =

F (ã, x̃).

Step 1. Local inequality. Consider a time T0 ≤ T that will be fixed at the
end of this first step. For the sake of conciseness, we shall write N [.; Cγ1 ] =
N [.; Cγ1 ([0, T ])] and we introduce the notation R = {1 + N [y; Cγ1 ] + N [ỹ; Cγ1 ]}{1 +
N [x; Cγ1 ] + N [x̃; Cγ1 ]}. By definition of y, ỹ, one has yt = a + J0t(σt(Y) dx) and
ỹt = ã + J0t(σt(Ỹ) dx̃), hence, for any s, t ∈ [0, T0], δ(y − ỹ)st = I1,1,∆

st + I1,2,∆
st +

I2,1,∆
st + I2,2,∆

st , with

I1,1,∆
st = σt(Ys)(δx)st − σt(Ỹs)(δx̃)st, I1,2,∆

st = Λst(δ(σt(Y))δxs − δ(σt(Ỹ))δx̃),

I2,1,∆
st = [σt − σs](Y0)(δx)0s − [σt − σs](Ỹ0)(δx̃)0s,

I2,2
st = Λ0s(δ([σt − σs](Y))δx − σt − σs](Ỹ))δx̃).

Then write for instance

I1,1,∆
st = σt(Ys)δ(x− x̃)st + [σt(Ys) − σt(Ỹs)](δx̃)st, (20)

so that, as in the proof of (3.6),

N [I1,1,∆; Cγ2 ([0, T0])] ≤ cσR{T γ0 N [y − ỹ; Cγ1 ([0, T0])] + ‖a− ã‖ + N [x − x̃; Cγ1 ]}.
Proceed in the same way for I1,2,∆, I2,1,∆, I2,2,∆ to get

N [y − ỹ; Cγ1 ([0, T0])] ≤ c1σR{T γ0 N [y − ỹ; Cγ1 ([0, T0])] + ‖a− ã‖ + N [x − x̃; Cγ1 ]}.
Choose now T0 = (2c1σR)−1/γ and the previous inequality gives

N [y − ỹ; Cγ1 ([0, T0])] ≤ 2c1σR{‖a− ã‖ + N [x− x̃; Cγ1 ]}.

Step 2. Extending the inequality. Consider a small ε > 0 that we shall fix retro-
spectively. Following the same lines as in the proof of Proposition 3.8, together with
decompositions such that (20), it is not hard to establish that

N [y − ỹ; Cγ1 ([0, T0 + ε])] ≤ c2σR{N [y − ỹ; Cγ1 ([0, T0])] + ‖a− ã‖

+N [x− x̃; Cγ1 ] + ε1−γN [y − ỹ; Cγ1 ([0, T0 + ε])]}.
As a result, take ε = (2c2σR)−1/(1−γ) to obtain

N [y − ỹ; Cγ1 ([0, T0 + ε])] ≤ 2c2σR(2c1σR + 1){‖a− ã‖ + N [x− x̃; Cγ1 ]}.
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We can repeat this procedure on [0, T0 +2ε], [0, T0 +3ε], . . . , [0, T0 + l(R)ε] until
T0 + l(R)ε = T , and finally N [y− ỹ; Cγ1 ([0, T ])] ≤ D(R){‖a− ã‖+N [x− x̃; Cγ1 ]} for
some growing function D : [1,∞[→ R

+.

Step 3. Conclusion. It only remains to notice that the same kind of reasoning easily
leads to N [y; Cγ1 ] ≤ G(N [x; Cγ1 ]) and N [ỹ; Cγ1 ] ≤ G(N [x̃; Cγ1 ]) for some function
G : R

+ → R
+ bounded on compact sets. Thus

R ≤ {1 +G(N [x; Cγ1 ]) +G(N [x̃; Cγ1 ])}{1 + N [x; Cγ1 ] + N [x̃; Cγ1 ]}
and inequality (19) holds with C(a, b) = D({1 +G(a) +G(b)}{1 + a+ b}).

4. The Young Singular Case

This section is devoted to the study of a particular case of Eq. (1), when the
coefficient σ admits a singularity in (t, u) on the diagonal. Namely, we shall consider
an equation of the form

yt = a+
∫ t

0

(t− u)−αψ(yu) dxu, (21)

with ψ : R
d → R

d,n a sufficiently regular mapping and x ∈ Cγ1 ([0, T ]; Rn), for some
γ and α to be precised. Thus, the application σ appearing in (1) tends to explode
when approaching the diagonal

D × R
d = {(t, t, y), t ∈ [0, T ], y ∈ R

d}.
This singularity prevents us from directly applying the algebraic formalism intro-
duced in Sec. 2 in order to define the integral

∫ t
0
(t−u)−αψ(yu) dxu above. However,

as in Sec. 3, we shall see that this latter integral can still be defined thanks to a
slight extension of Young’s interpretation, insofar as the integral will simply be seen
as the limit of the associated Riemann sums. In other words, we will be able to set∫ t

s

(t− u)−αψ(yu) dxu = lim
k→∞

∑
∆k([s,t))

(t− ti)−αψ(yti) (δx)titi+1 , (22)

where ∆k([s, t)) = {s = t0 < t1 < · · · < tk < t} is any sequence of partitions whose
meshes tend to 0, and where tk → t. In this context, Theorem 4.6 is quite close to
Theorem 3.4.

Remark 4.1. The tedious calculations to come will give us an idea of how the Λ-
formalism used in the previous sections makes the writing more fluent (when it can
be applied), by avoiding the often cumbersome study of Riemann sums. One may
then be tempted to resort to a regularization argument so as to reduce the problem
to the regular case we dealt with in the previous section. And yet, as explained in
Remark 4.9, this procedure also requires estimations of Riemann sums similar to
those we are about to set.
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4.1. Young singular integrals

This section deals with a rigorous definition of integrals like (22). A first technical
lemma in this direction is then the following:

Lemma 4.2. Let a < b, f ∈ C1,b([a, b]; R), g ∈ Cλ1
1 ([a, b]; Rd,n), h ∈ Cλ2

1 ([a, b]; Rn)
with λ1 + λ2 > 1. Then∫ b

a

d(fg)u hu =
∫ b

a

dfu guhu +
∫ b

a

dgu fuhu,

the three integrals being understood in the Young sense.

Proof. Consider a partition ∆ = {a = t0 < · · · < tn = b}, with mesh |∆|, and use
the decomposition∑

i

δ(fg)titi+1hti =
∑
i

(δf)titi+1gtihti +
∑
i

(δg)titi+1ftihti

+
∑
i

(δf)titi+1(δg)titi+1hti .

Notice then that∥∥∥∥∥
∑
i

(δf)titi+1(δg)titi+1hti

∥∥∥∥∥ ≤ N [f ; C1,b]N [g; Cλ1
1 ] |∆|λ1 N [h; C0

1 ] |b− a|,

which tends to 0 as |∆| → 0. The proof is thus completed.

Note that if x ∈ Cγ1 and y ∈ Cκ1 , the Young (regular) integral J (y dx) is well-
defined if γ+κ > 1. The latter hypothesis ensures that the Riemann sums actually
converge. In the Young singular case (22), this condition extends to (γ−α)+κ > 1.
This fact can be easily understood by the following heuristic argument: assume
that the Riemann sums in (22) are considered along a dyadic partition of the form
sin = s+ [i(t− s)]/2n, for n ≥ 1 and i ≤ 2n (as will be done in Proposition 4.5). It
is then easily seen that a necessary condition for a convergence of those Riemann
sums is that, when (t− sin) is of order 2−n, then

(t− s2in+1)
−α[ψ(ys2i+1

n+1
) − ψ(ys2i

n+1
)](δx)s2i+1

n+1 ,s
2i+2
n+1

is of order 2−µn with µ > 1. But provided ψ is a Lipschitz function, the latter
condition is obviously ensured by the assumption (γ−α)+ κ > 1. This simple idea
is formalized in the following lemma:

Lemma 4.3. Let x ∈ Cγ1 ([0, T ]; Rn), ψ ∈ C1,b(Rd; Rd,n) and assume that 0 < α <

γ. Then for any κ such that (γ−α)+κ > 1 and any y ∈ Cκ1 ([0, T ]; Rd), the integral
Ist :=

∫ t
s (t − u)−αψ(yu) dxu exists in the Young sense. More specifically, for any

0 ≤ s < t ≤ T and 0 < ε < t− s, set Iεst :=
∫ t−ε
s (t− u)−αψ(yu) dxu, defined in the

Young sense of Proposition 3.1. Then Iεst converges to a quantity, which is denoted
again by

∫ t
s (t− u)−αψ(yu) dxu.
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Proof. Let ε > 0. If u, v ∈ [s, t− ε],∥∥∥∥ ψ(yv)
(t− v)α

− ψ(yu)
(t− u)α

∥∥∥∥ ≤ ‖ψ‖∞
∣∣∣∣ 1
(t− v)α

− 1
(t− u)α

∣∣∣∣+
∣∣∣∣ 1
(t− u)α

∣∣∣∣ ‖ψ(yv) − ψ(yu)‖

≤ ‖ψ‖∞ α

εα+1
|v − u| + 1

εα
‖ψ′‖∞N [y; Cκ1 ([0, T ])] |v − u|κ ,

hence u 
→ ψ(yu)
(t−u)α ∈ Cκ([s, t−ε]) and since κ+γ > 1, the integral Iεst is well-defined

in the Young sense of Proposition 3.1. We will now study the convergence of Iεst
when ε→ 0.

It is easily checked from relation (10) that one is allowed to perform an integra-
tion by parts in Iεst, in order to deduce

Iεst =
∫ t−ε

s

(t− u)−αψ(yu) dxu

=
∫ t−ε

s

(t− u)−αψ(yu) d(xu − xt)

=
ψ(yt−ε)
εα

(xt−ε − xt) +
ψ(ys)

(t− s)α
(xt − xs) +

∫ t−ε

s

d

(
ψ(yu)

(t− u)α

)
(xt − xu)

:= Iε,1st + Iε,2st + Iε,3st .

Let us analyze now the three terms we have obtained: since∥∥∥∥ψ(yt−ε)
εα

(xt−ε − xt)
∥∥∥∥ ≤ ‖ψ‖∞N [x; Cγ1 ]εγ−α,

it is readily checked that Iε,1st → 0 as ε→ 0. In order to treat the term Iε,3st observe
that, according to Lemma 4.2, we have

Iε,3st =
∫ t−ε

s

d

(
ψ(yu)

(t− u)α

)
(xt − xu)

=
∫ t−ε

s

d(ψ(yu))
(xt − xu)
(t− u)α

+ α

∫ t−ε

s

du

(t− u)α+1
ψ(yu)(xt − xu)

:= Iε,3,1st + Iε,3,2st . (23)

Notice then that∥∥∥∥ ψ(yu)
(t− u)α+1

(xt − xu)
∥∥∥∥ ≤ ‖ψ‖∞N [x; Cγ1 ]

1

|t− u|1−(γ−α)
,

and thus u 
→ ψ(yu)
(t−u)α+1 (xt − xu) is (Lebesgue-)integrable in t. This trivially yields

the convergence of Iε,3,2st as ε→ 0. As for the first term Iε,3,1st in (23), we know that
u 
→ ψ(yu) ∈ Cκ1 . In order to study the convergence of Iε,3,1st , it only remains to
prove that the application ϕ : [s, t) → R

n, u 
→ (xt−xu)
(t−u)α , continuously extended by

0 in t, belongs to Cρ1 ([s, t]), for some ρ > 0 satisfying ρ+ κ > 1.
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However, if 0 < u < v < t,

‖ϕv − ϕu‖
≤ ‖xt − xv‖|(t− v)−α − (t− u)−α| + |(t− u)−α| ‖xt − xv − (xt − xu)‖

≤ N [x; Cγ1 ]|t− v|γ
(

1
|t− v|α

)1−(γ−α)(
α

|v − u|
|t− v|α+1

)γ−α

+
1

|v − u|αN [x; Cγ1 ]|v − u|γ

≤ cN [x; Cγ1 ]|v − u|γ−α + N [x; Cγ1 ]|v − u|γ−α,

while if u < v = t, as ϕt = 0,

‖ϕv − ϕu‖ =
‖xv − xu‖
|(v − u)α| ≤ N [x; Cγ1 ] |v − u|γ−α .

Thus, ϕ ∈ Cγ−α1 ([0, t]), which achieves the proof since, by hypothesis, (γ−α)+κ > 1.

It is also important to control the Hölder continuity of the singular Young
integral defined above, just as in Proposition 3.1. Before we turn to this task, let
us quote an elementary estimate for further use:

Lemma 4.4. Let 0 < s < t ≤ T . For any β ∈ [0, 1], there exists a constant cβ such
that for any u ∈ (0, s),∣∣(t− u)−α − (s− u)−α

∣∣ ≤ cβ |s− u|−α−β |t− s|β . (24)

Then our regularity result is the following:

Proposition 4.5. Under the same hypotheses as in Lemma 4.3, and assuming in
addition that κ < γ − α, set zt = I0t for all t ∈ [0, T ]. Then, for any T0 ≤ T, the
path z is an element of Cκ1 ([0, T0]), and the following estimate holds true:

N [z; Cκ1 ([0, T0])] ≤ cψ,xT
γ−α−κ
0 {1 + N [y; Cκ1 ([0, T0])]}. (25)

Proof. We rely on the decomposition (δz)st = Ist + II st, with

Ist =
∫ t

s

(t− u)−αψ(yu)dxu and

II st =
∫ s

0

[(t− u)−α − (s− u)−α]ψ(yu) dxu.

(26)

Notice that the term I is exactly the one introduced in Lemma 4.3. Let us now
bound each of these terms.
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Case I. It is easily seen that I can also be obtained thanks to the following approx-
imation sequence: for n ≥ 1, set

Jn =
2n−1∑
i=0

(t− sin)−αψ(ysi
n
)(δx)si

n ,s
i+1
n
, where sin = s+

i(t− s)
2n

.

Then Ist is obtained as limn→∞ Jn. Moreover, it is readily checked that

Jn+1 − Jn =
2n−1∑
i=0

[(t− s2i+1
n+1 )−αψ(ys2i+1

n+1
) − (t− s2in+1)

−αψ(ys2i
n+1

)](δx)s2i+1
n+1 ,s

2+2
n+1

=
2n−1∑
i=0

[(t− s2i+1
n+1 )−α − (t− s2in+1)

−α]ψ(ys2i+1
n+1

)(δx)s2i+1
n+1 ,s

2i+2
n+1

+
2n−1∑
i=0

(t− s2in+1)
−α[ψ(ys2i+1

n+1
) − ψ(ys2i

n+1
)](δx)s2i+1

n+1 ,s
2i+2
n+1

:= A+B. (27)

But

‖A‖ ≤ ‖ψ‖∞N [x; Cγ1 ]
|t− s|γ
(2n+1)γ

2n−1∑
i=0

∣∣(t− s2i+1
n+1 )−α − (t− s2in+1)

−α∣∣,
and we can show that

2n−1∑
i=0

∣∣(t− s2i+1
n+1 )−α − (t− s2in+1)

−α∣∣

= (t− s)−α
2n−1∑
i=0

{(
1 − 2i+ 1

2n+1

)−α
−
(

1 − 2i
2n+1

)−α}

≤ (t− s)−α
(

1 − 2n+1 − 1
2n+1

)−α

≤ (t− s)−α(2n+1)α. (28)

Hence

‖A‖ ≤ cψ,x |t− s|γ−α
(

1
2γ−α

)n+1

≤ cψ,x |t− s|κ T γ−α−κ0

(
1

2γ−α

)n+1

. (29)

As for B, the following bound holds true:

‖B‖ ≤
(

2n−1∑
i=0

(t− s2in+1)
−α
)
‖ψ′‖∞N [y; Cκ1 ]

|t− s|κ
(2n+1)κ

N [x; Cγ1 ]
|t− s|γ
(2n+1)γ

,
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with
2n−1∑
i=0

(t− s2in+1)
−α = (t− s)−α

2n−1∑
i=0

(
1 − 2i

2n+1

)−α

≤ 2n+1

(t− s)α

∫ 1

0

du

(1 − u)α

≤ 2n+1

1 − α
(t− s)−α,

and accordingly

‖B‖ ≤ cψ,xN [y; Cκ1 ] |t− s|κ+γ−α
(

1
2κ+γ−1

)n+1

≤ cψ,x |t− s|κN [y; Cκ1 ]T γ−α0

(
1

2κ+γ−1

)n+1

. (30)

Going back to (27) and putting together our estimates for A and B, we get

‖Jn+1 − Jn‖ ≤ T γ−α−κ0 |t− s|κ {1 + N [y; Cκ1 ]} vn,
where vn is the general term of a converging series. Now, write JN = J0 +∑N−1

n=0 (Jn+1 − Jn), so that, by letting N tend to infinity, we obtain∥∥∥∥
∫ t

s

(t− u)−αψ(yu)dxu

∥∥∥∥ ≤ ‖J0‖ + T γ−α−κ0 |t− s|κ {1 + N [y; Cκ1 ]}.

It only remains to note that

‖J0‖ = ‖(t− s)−αψ(ys)(δx)st‖ ≤ ‖ψ‖∞N [x; Cγ1 ] |t− s|γ−α ≤ cψ,x |t− s|κ T γ−α−κ0

(31)

to conclude

‖Ist‖ ≤ T γ−α−κ0 |t− s|κ {1 + N [y; Cκ1 ]}.

Case II. We use the same strategy as for I, with this time sin = is
2n and

Jn =
2n−1∑
i=0

fs,t(sin)ψ(ysi
n
)(δx)si

n,s
i+1
n
, where fs,t(u) = (t− u)−α − (s− u)−α.

Then

Jn+1 − Jn =
2n−1∑
i=0

{fs,t(s2i+1
n+1 )ψ(ys2i+1

n+1
) − fs,t(s2in+1)ψ(ys2i

n+1
)}(δx)s2i+1

n+1 ,s
2i+2
n+1

=
2n−1∑
i=0

{fs,t(s2i+1
n+1 ) − fs,t(s2in+1)}ψ(ys2i+1

n+1
)(δx)s2i+1

n+1 ,s
2i+2
n+1

+
2n−1∑
i=0

fs,t(s2in+1){ψ(ys2i+1
n+1

) − ψ(ys2i
n+1

)}(δx)s2i+1
n+1 ,s

2i+2
n+1

:= D + E. (32)
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To deal with D, note that u 
→ fs,t(u) is a decreasing function on [0, s], and
hence

2n−1∑
i=0

∣∣fs,t(s2i+1
n+1 ) − fs,t(s2in+1)

∣∣ ≤ 2n+1−1∑
i=0

∣∣fs,t(si+1
n+1) − fs,t(sin+1)

∣∣
≤
∣∣∣∣fs,t

(
2n+1 − 1

2n+1
s

)∣∣∣∣. (33)

Furthermore, according to our elementary bound (24) applied with β = κ, we have
|fs,t

(
2n+1−1
2n+1 s

)
| ≤ c

sα+κ |t− s|κ (2α+κ)n+1, so that

‖D‖ ≤ c‖ψ‖∞N [x; Cγ1 ]sγ−α−κ |t− s|κ
(

1
2γ−α−κ

)n+1

≤ cψ,x T
γ−α−κ
0 |t− s|κ

(
1

2γ−α−κ

)n+1

. (34)

As far as E is concerned, use (24) with β = γ − α to deduce

‖E‖ ≤ c ‖ψ′‖∞N [y; Cκ1 ]N [x; Cγ1 ]sκ |t− s|γ−α
(

1
2κ+γ

)n+1 2n−1∑
i=0

(
1 − 2i

2n+1

)−γ

≤ cψ,xN [y; Cκ1 ]sκ |t− s|γ−α
(

1
2κ+γ−1

)n+1 ∫ 1

0

dx

(1 − x)γ

≤ cψ,xN [y; Cκ1 ] |t− s|κ |t− s|γ−α−κ T κ0
(

1
2κ+γ−1

)n+1

, (35)

hence

‖E‖ ≤ cψ,xN [y; Cκ1 ]T γ−α0 |t− s|κ
(

1
2κ+γ−1

)n+1

.

Just as for I, gathering our bounds on D and E, we can then assert that∥∥∥∥
∫ s

0

[(t− u)−α − (s− u)−α]ψ(yu) dxu

∥∥∥∥ ≤ ‖J0‖+cψ,xT
γ−α−κ
0 |t− s|κ {1+N [y; Cκ1 ]}.

Since |t−α − s−α| ≤ c s−α−κ |t− s|κ, the term J0 above can be estimated as:

‖J0‖ = ‖{t−α − s−α}(δx)0s‖ ≤ N [x; Cγ1 ]sγ−α−κ |t− s|κ , (36)

so that

‖II st‖ =
∥∥∥∥
∫ s

0

(t− u)−α − (s− u)−α]ψ(yu) dxu

∥∥∥∥
≤ cψ,xT

γ−α−κ
0 |t− s|κ {1 + N [y; Cκ1 ]}.

Finally, going back to decomposition (26), our bounds on I and II yield

N [z; Cκ1 ] ≤ cψ,xT
γ−α−κ
0 (1 + N [y; Cκ1 ]),

which was the announced result.
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4.2. Solving Volterra equations

Thanks to the considerations of the last section, we can now interpret Eq. (21), and
especially its integral term, in the sense given by Lemma 4.3 and Proposition 4.5.
We are now in a position to state the main result of this section:

Theorem 4.6. Assume that x ∈ Cγ1 ([0, T ]; Rn) for some γ ∈ (1/2, 1), let ψ be a
function in C1,b(Rd; Rd,n), and α ∈ (0, 1/2) such that γ − α > 1/2. Then, for any
κ ∈ (1 − (γ − α); γ − α), Eq. (21) admits a unique solution in Cκ1 ([0, T ]; Rd).

Fix κ ∈ (1−(γ−α), γ−α). As in Sec. 3, we shall solve our equation by identifying
its solution with the fixed point of the map Γ defined, for any y ∈ Cκ1 ([0, T ]; Rd), by

zt = Γ(y)t = a+
∫ t

0

(t− u)−αψ(yu) dxu. (37)

We divide again our proof into two propositions, dealing respectively with local and
global existence and uniqueness for the solution.

Proposition 4.7. (Local existence) Under the hypothesis of Theorem 4.6, there
exists T0 ∈ (0, T ] such that Eq. (21) admits a unique solution y(1) in Cκ1 ([0, T0]; Rd).

Proof. Fix a time T0 ∈ (0, T ] and let y ∈ Cκ([0, T0]). Define then z = Γ(y) as in
Eq. (37).

Step 1. Invariance of a ball. A simple application of Proposition 4.5 allows one to
conclude the existence of a stable ball

Ba,T0 = {y ∈ Cκ([0, T0]), y0 = a, N [y; Cκ1 ] ≤ AT0}

for any T0 small enough and AT0 large enough.

Step 2. Contraction property. Let y, ỹ ∈ Ba,T0 , and set z = Γ(y), z̃ = Γ(ỹ). Thus,
δ(z − z̃)st = III st + IV st, with

III st =
∫ t

s

(t− u)−α[ψ(yu) − ψ(ỹu)]dxu,

IV st =
∫ s

0

[(t− u)−α − (s− u)−α]ψ(yu) − ψ(ỹu)]dxu.

(38)

We will now estimate these two terms, according to the same strategy as for Propo-
sition 4.5, i.e. invoking approximations by dyadic partitions.
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Case III. Denote

sin = s+
i(t− s)

2n
, Jn =

2n−1∑
i=0

(t− sin)
−α[ψ(ysi

n
) − ψ(ỹsi

n
)](δx)si

n,s
i+1
n
.

Then

Jn+1 − Jn =
2n−1∑
i=0

{[(t− s2i+1
n+1 )−α − (t− s2in+1)

−α][ψ(ys2i+1
n+1

)

−ψ(ỹs2i+1
n+1

)]}(δx)s2i+1
n+1 ,s

2i+2
n+1

+
2n−1∑
i=0

{(t− s2in+1)
−α[ψ(ys2i+1

n+1
) − ψ(ỹs2i+1

n+1
) − ψ(ys2i

n+1
)

+ψ(ỹs2i
n+1

)]}(δx)s2i+1
n+1 ,s

2i+2
n+1

:= F +G. (39)

For F , we have, since (y − ỹ)0 = 0,

‖F‖ ≤ N [x; Cγ1 ]
|t− s|γ
(2n+1)γ

‖ψ′‖∞N [y − ỹ; Cκ1 ]T κ0
2n−1∑
i=0

|(t− s2i+1
n+1 )−α − (t− s2in+1)

−α|,

which, thanks to (28), gives

‖F‖ ≤ cψ,xN [y − ỹ; Cκ1 ] |t− s|γ−α−κ |t− s|κ
(

1
2γ−α

)n+1

T κ0 . (40)

As far as G is concerned, use (16) to assert that

‖ψ(ys2i+1
n+1

) − ψ(ỹs2i+1
n+1

) − ψ(ys2i
n+1

) + ψ(ỹs2i
n+1

)‖

≤ cψ{1 + N [y; Cκ1 ] + N [ỹ; Cκ1 ]}N [y − ỹ; Cκ1 ]
|t− s|κ
(2n+1)κ

.

Besides,

2n−1∑
i=0

(t− s2in+1)
−α ≤ 2n+1

(t− s)α

∫ 1

0

du

(1 − u)α
,

so that

‖G‖ ≤ cψ,xN [y − ỹ; Cκ1 ]{1 + 2AT0} |t− s|κ
(

1
2γ+κ−1

)n+1

|t− s|γ−κ . (41)

Now, relations (40) and (41) entail

‖III st‖ ≤ ‖J0‖+
∞∑
i=0

‖Jn+1−Jn‖ ≤ ‖J0‖+cψ,xT
γ−α
0 {1+2AT0}N [y− ỹ; Cκ1 ] |t− s|κ .
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Furthermore, we have

‖J0‖ = ‖(t− s)−α[ψ(ys) − ψ(ỹs)](δx)st‖
≤ |t− s|κ |t− s|γ−α−κN [x; Cγ1 ]‖Dψ‖∞N [y − ỹ; Cκ1 ]sκ,

≤ cψ,xT
γ−α−κ
0 |t− s|κN [y − ỹ; Cκ1 ] (42)

which finally yields

‖III st‖ ≤ cψ,xT
γ−α−κ
0 {1 + 2AT0}N [y − ỹ; Cκ1 ] |t− s|κ .

Case IV. In this case, the approximating sequence is defined by:

sin =
is

2n
, Jn =

2n−1∑
i=0

fs,t(sin)[ψ(ysi
n
) − ψ(ỹsi

n
)](δx)si

n ,s
i+1
n
.

Hence, the difference Jn+1 − Jn can be decomposed into:

Jn+1 − Jn =
2n−1∑
i=0

{[fs,t(s2i+1
n+1 ) − fs,t(s2in+1)][ψ(ys2i+1

n+1
) − ψ(ỹs2i+1

n+1
)]}(δx)s2i+1

n+1 ,s
2i+2
n+1

+
2n−1∑
i=0

{fs,t(s2in+1)[ψ(ys2i+1
n+1

) − ψ(ỹs2i+1
n+1

) − ψ(ys2i
n+1

)

+ψ(ỹs2i
n+1

)]}(δx)s2i+1
n+1 ,s

2i+2
n+1

:= H +K. (43)

In order to bound these two terms, let us introduce first some λ ∈ (κ, γ −α). From
(33), and invoking (24) with β = λ, we obtain

2n−1∑
i=0

∣∣fs,t(s2i+1
n+1 ) − fs,t(s2in+1)

∣∣ ≤ c |t− s|λ (2α+λ)n+1

sα+λ
,

while ‖ψ(ys2i+1
n+1

) − ψ(ỹs2i+1
n+1

)‖ ≤ ‖ψ′‖∞N [y − ỹ; Cκ1 ] sκ, and so

‖H‖ ≤ cψ,x |t− s|κ |t− s|λ−κN [y − ỹ; Cκ1 ]sγ+κ−α−λ
(

1
2γ−α−λ

)n+1

≤ cψ,x |t− s|κ T γ−κ0 N [y − ỹ; Cκ1 ]
(

1
2γ−α−λ

)n+1

. (44)

To estimate ‖K‖, remember that

‖ψ(ys2i+1
n+1

) − ψ(ỹs2i+1
n+1

) − ψ(ys2i
n+1

) + ψ(ỹs2i
n+1

)‖

≤ cψ{1 + N [y; Cκ1 ] + N [ỹ; Cκ1 ]}N [y − ỹ; Cκ1 ]
sκ

(2n+1)κ
,
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which, together with (24) applied with β = γ − α, gives

‖K‖ ≤ cψ,x |t− s|γ−α {1 + 2AT0}N [y − ỹ; Cκ1 ]sκ
(

1
2κ+γ

)n+1 2n−1∑
i=0

(
1 − 2i

2n+1

)−γ

≤ cψ,x |t− s|κ |t− s|γ−α−κ {1 + 2AT0}

×N [y − ỹ; Cκ1 ]T κ0

(
1

2κ+γ−1

)n+1 ∫ 1

0

du

(1 − u)γ

≤ cψ,x |t− s|κ T γ−α0 {1 + 2AT0}N [y − ỹ; Cκ1 ]
(

1
2κ+γ−1

)n+1

. (45)

As a result, combining the estimates for H and K along the same lines as for
the term III st, we end up with:

‖IV st‖ ≤ ‖J0‖ + cψ,x{1 + 2AT0}N [y − ỹ; Cκ1 ] |t− s|κ T γ−α0 .

But J0 = [t−α − s−α][ψ(y0) − ψ(ỹ0)](δx)0s = 0, so that finally

‖IV st‖ ≤ cψ,xT
γ−α
0 {1 + 2AT0}N [y − ỹ; Cκ1 ] |t− s|κ .

We have thus proved that

N [z − z̃; Cκ1 ] ≤ cψ,xT
γ−α−κ
0 {1 + 2AT0}N [y − ỹ; Cκ1 ].

The contraction property then clearly holds when Γ is restricted to a stable ball
Ba,T0 , for T0 small enough. This easily yields the existence and uniqueness of a
solution to (21) on [0, T0].

The following proposition summarizes the extension of the unique solution to
(21) to an arbitrary interval.

Proposition 4.8. (Global existence) Under the same hypothesis as for Theo-
rem 4.6, the local solution y(1) ∈ Cκ1 ([0, T0]) can be extended in a unique way into a
global solution in Cκ1 ([0, T ]).

Proof. We resort to the same scheme as in Proposition 3.8, in which we try to
exploit the estimations of the previous proof.

Step 1. Invariance of a ball. Let ε > 0 and y ∈ Cκ([0, T0 + ε]) such that y|[0,T0] =
y(1). Set

zt = Γ(y)t =

{
y
(1)
t if t ∈ [0, T0],

a+
∫ t
0
(t− u)−αψ(yu) dxu if t ∈ [T0, T0 + ε].
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Let s, t ∈ [T0, T0 + ε] and consider the decomposition (26) of (δz)st. For I, use
(27), together with the estimations (29)–(31), to deduce∥∥∥∥

∫ t

s

(t− u)−αψ(yu) dxu

∥∥∥∥ ≤ cψ,x |t− s|κ {1 + εγ−αN [y; Cκ1 ]}.

As for II , use (32), together with (34), (35) and (36) to assert∥∥∥∥
∫ s

0

[(t− u)−α − (s− u)−α]ψ(yu) dxu

∥∥∥∥ ≤ cψ,x |t− s|κ {1 + εγ−α−κN [y; Cκ1 ]}.

As a result,

N [z; Cκ1 ([T0, T0 + ε])] ≤ cψ,x{1 + εγ−α−κN [y; Cκ1 ]}.
By copying the arguments of the proof of Proposition 3.8, we then deduce the
existence of a small ε, independent of y(1), and a radius N1, such that the ball

By(1),T0,ε := {y ∈ Cκ1 ([0, T0 + ε]) : y|[0,T0] = y(1), N [y; Cκ1 ] ≤ N1}
is invariant by Γ.

Step 2. Contraction property. Let η ≤ ε, and consider y, ỹ ∈ Cκ1 ([0, T0 + η]) such
that y|[0,T0] = ỹ|[0,T0] = y(1), N [y; Cκ1 ] ≤ N1 and N [ỹ; Cκ1 ] ≤ N1. Set z = Γ(y),
z̃ = Γ(ỹ).

Let s, t ∈ [T0, T0 + η] and consider the decomposition (38) of δ(z− z̃)st. For III ,
use (39), together with (40)–(42), to obtain

‖III st‖ ≤ cψ,xη
γ−α−κ |t− s|κ {1 + 2N1}N [y − ỹ; Cκ1 ].

As far as IV is concerned, the decomposition (43), together with (44), (45) and the
fact that ψ(y0) = ψ(ỹ0), provides

‖IV st‖ ≤ cψ,xη
λ−κ |t− s|κ {1 + 2N1}N [y − ỹ; Cκ1 ].

Therefore,

N [z − z̃; Cκ1 ([T0, T0 + η])] ≤ cψ,xη
λ−κ{1 + 2N1}N [y − ỹ; Cκ1 ].

The end of the proof follows then exactly the same line as the proof of Proposi-
tion 3.8.

Remark 4.9. Another natural approach to this singular Young case would have
consisted in regularizing the kernel Kts = |t− s|−α into Kε

ts = |t− s+ ε|−α and
solving the associated Volterra system

yεt = a+
∫ t

0

Kε
tu ψ(yεu) dxu (46)

in Cγ1 ([0, T ]) by means of Theorem 3.4. The convergence of the solution yε in
Cκ1 ([0, T0]) can then be established thanks to the arguments of Proposition 4.5.
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Indeed, following the proof of (25) (which involves the study of Riemann sums), it
is not hard to check that

N [yε; Cκ0
1 ([0, T0])] ≤ cψ,x|T0|γ−α−κ0{1 + N [yε; Cκ0

1 ([0, T0])]}
uniformly in ε ∈ (0, 1], provided γ−α−κ0 > 0. In particular, if T0 is small enough,
the sequence (yε) is bounded in Cκ0

1 ([0, T0]), hence it converges (at least along a
subsequence) to an element y ∈ Cκ1 ([0, T0]), for any κ < κ0.

To see that y actually satisfies our problem on [0, T0], it only remains to justify
the passage to the limit in (46). This can be done using the arguments of Lemma
4.3, under the additional condition (γ−α)+κ > 1, which ensures that the integral∫ t
s Ktuψ(yu) dxu is well-defined.

However, this regularization procedure only provides us with a local and (at this
point) not necessarily unique solution y to (21). The uniqueness and extension of
y then require a specific treatment: even with a compactness argument, the proof
should follow the steps of Theorem 4.6, which means that we cannot avoid some
lengthy estimations of Riemann sums.

Remark 4.10. As we have followed the same steps as in the proof of Theorem 3.4,
it is quite obvious that the regularity result for the Itô map contained in
Proposition 3.10 also holds true for this singular case. We do not repeat it though,
for the sake of conciseness.

5. The Rough Case

In this section, we go back to Eq. (1), with a smooth and bounded coefficient σ. How-
ever, we will only assume that x belongs to Cγ1 ([0, T ]; Rn) for some γ ∈ (1/3, 1/2),
which means in particular that we can no longer resort to Young’s interpretation
for
∫ t
0
σ(t, u, yu) dxu and some rough path type considerations must come into the

picture. We will thus briefly review the setting used in this context, and then prove
a local existence and uniqueness result for our equation.

5.1. Controlled processes

For the sake of conciseness, we only recall here the key ingredients of the formalism
introduced in [11] in order to handle integrals driven by an irregular signal x. First,
as usual in the rough path theory, we will have to assume a priori the following
hypothesis:

Hypothesis 1. The path x admits a Levy area, that is a process x2 ∈
C2γ
2 ([0, T ]; Rn,n) such that

δx2 = δx⊗ δx, i.e. (δx2)sut(i, j) = (δxi)su ⊗ (δxj)ut,

for all s, u, t ∈ [0, T ] and i, j ∈ {1, . . . , n}.
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As explained in [11], we are then incited to introduce a particular subspace of
the space of Hölder continuous functions Cγ1 ([0, T ]; R1,k), which are the convenient
processes to be integrated with respect to x:

Definition 5.1. Let k ∈ N
∗ and η > γ. A process y ∈ Cγ1 ([0, T ]; R1,k) is

said to be (γ, η)-controlled by x if there exists y′ ∈ Cη−γ1 ([0, T ];L(Rn,R1,k)),
ry ∈ Cη2 ([0, T ]; R1,k) such that

(δy)st = y′s(δx)st + ryst, for any s, t ∈ [0, T ]. (47)

Remark 5.2. The decomposition (47) is not necessarily unique, but if we fix
y, y′, then, of course, the remainder ry is uniquely determined. For this rea-
son, define Qγ,η([0, T ]; R1,k) as the space of couples (y, y′) ∈ Cγ1 ([0, ; R1,k) ×
Cη−γ1 ([0, T ];L(Rn,R1,k)) such that the decomposition (47) holds. In the sequel,
however, and for the sake of conciseness, we shall mostly write y instead of (y, y′).
The space Qγ,η([0, T ]; R1,k) is endowed with the natural semi-norm

N [y;Qγ,η([0, T ]; R1,k)] = N [(y, y′);Qγ,η([0, T ]; R1,k)]

:= N [y; Cγ1 ([0, T ]; R1,k)] + N [y′; C0
1([0, T ];L(Rn,R1,k)]

+N [y′; Cγ−η1 ([0, T ];L(Rn,R1,k)]

+N [ry ; Cη2 ([0, T ]; R1,k)].

Observe that if (y, y′) ∈ Qγ,η([0, T ]; R1,k), then

N [y; Cγ1 ([0, T ]; R1,d)] ≤ cx{‖y′0‖ + T η−γN [y;Qγ,η([0, T ]; R1,d)]}. (48)

Finally, let us denote Qγ([0, T ]; R1,k) = Qγ,2γ([0, T ]; R1,k).
With our main equation (13) in mind, it is important for us to get a stability

property for controlled processes, when composed with the map σ. This is the
object of the following proposition (for which we recall the notation on gradient of
functions given at the end of the introduction).

Proposition 5.3. Let (y, y′) ∈ Qγ([0, T ]; R1,d), with decomposition δy = y′(δx) +
ry , and consider σ ∈ C2,b([0, T ]2 × R

1,d; Rd,n). For i = 1, . . . , d, denote by
σi(z) the ith line of σ(z) when considered as a matrix. Then, for any t ≥
0, (σi(t, ., y.), D3σi(t, ., y.) ◦ y′) ∈ Qγ([0, T ]; R1,n) and

N [σi(t, ., y.);Qγ([0, T ]; R1,n)] ≤ cσ{1 + N [y;Qγ([0, T ]; R1,d)]2}, (49)

where cσ does not depend on t.

Proof. See the Appendix.

Let us now turn to the integration of weakly controlled paths, which is sum-
marized in the following proposition, borrowed from [11]. This result requires a
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little additional notation: if ϕ ∈ L(Rn,R1,n) and A ∈ R
n,n, we denote ϕ · A =∑n

i,j=1

〈
ϕei, e

∗
j

〉
Aij .

Proposition 5.4. Let x be a signal satisfying Hypothesis 1, and let also (z, z′) be
an element of Qγ([0, T ]; R1,n) with decomposition δz = z′(δx) + rz. One can define
A ∈ Cγ1 ([0, T ]; R) by A0 = a ∈ R and

(δA)st = zs(δx)st + z′s · x2
st + Λst(rzδx+ δz′ · x2),

and set J (z dx) = J ((z, z′) dx) = δA. Then J (z dx) coincides with the usual Rie-
mann integral of z with respect to x in case of smooth functions. Moreover, it holds

J (z dx) = lim
|Πst|→0

∑
i

{zti(δx)titi+1 + z′ti · x2
titi+1

},

for any 0 ≤ s < t ≤ T, where the limit is taken over all the partitions Πst = {s =
t0 < t1 < · · · < tn = t} of [s, t], as the mesh of the partition goes to zero.

It only remains to enunciate the multidimensional version of the previous
proposition:

Definition 5.5. Assume that z ∈ Cγ1 ([0, T ]; Rd,n) is such that for each zi (ith line
of z), there exists z′i ∈ Cγ1 ([0, T ];L(Rn,R1,n)) for which (zi, z′i) ∈ Qγ([0, T ]; R1,n).
Then we define J (z dx) = J ((z, z′) dx) ∈ Cγ1 ([0, T ]; R1,d) by the natural relations

J (z dx)(i) = J ((zi, z′i) dx), i = 1, . . . , d.

5.2. Rough Volterra equations

Let us say a few words about the strategy to be used in order to solve Eq. (13)
in case of a rough driving signal. First, this Volterra system will be interpreted
according to Propositions 5.3 and 5.4 when (y, y′) belongs to Qγ([0, T ]; R1,d) and
σ ∈ C2,b([0, T ]2 × R

1,d; Rd,n). Moreover, in order to settle a fixed point argument,
we shall see that the process z defined by z0 = a and

(δz)st = Jst(σ(t, ., y.) dx) + J0s([σt − σs](Y) dx)

is a controlled process (recall that Y stands for the multidimensional function s 
→
(s, ys)). Indeed, if we assume that the path wi = σti(Y) can be decomposed as

δwi = δσti(Y) = σti(Y)′(δx) + rσ
t
i (Y),

which can be done owing to Proposition 5.3, and if we set δz(i) = J (wi dx), then
one can write (δz)(i)st = σi(s, s, ys)(δx)st + (rzst)

(i) for i = 1, . . . , d, with

(rzst)
(i) = [σi(t, s, ys) − σi(s, s, ys)](δx)st + σti(Y)′s · x2

st

+ Λst(rσ
t
i (Y)δx+ δ(σti(Y)′) · x2)

+J0s([σ(t, ., y.) − σ(s, ., y.)] dx)(i).

If we manage to show that σ(., ., y.)∗ : x 
→ (σ1(., ., y.)(x), . . . , (σd(., ., y.)(x)) belongs
to Cγ1 ([0, T ];L(Rn,R1,d)) and rz ∈ C2γ

2 ([0, T ]; R1,d) (which will be done in the course
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of the following proof), then (z, σ(., ., y.)∗) ∈ Qγ([0, T ]; R1,d) and the application Γ
introduced in the Young setting becomes here

Γ : Qγ([0, T ]; R1,d) → Qγ([0, T ]; R1,d), (y, y′) 
→ (z, σ(., ., y.)∗). (50)

With this notation, a solution of (13) corresponds to a fixed point of Γ.
We have now all the tools in hand to express the announced (local) result

properly:

Theorem 5.6. Let κ ∈ (0, 1) such that γ(κ+2) > 1, σ ∈ C3,b,κ([0, T ]2 ×R
d; Rd,n)

and a ∈ R
1,d. Then there exists T0 ∈ (0, T ] such that the equation

yt = a+ J0t(σ(t, ., y.) dx),

interpreted in the sense of Definition 5.5, admits a unique solution in
Qγ([0, T0]; R1,d).

As in the Young case, the result will stem from a contraction argument (Propo-
sition 5.9) on some invariant ball (Proposition 5.8). Before we give details of these
arguments, let us state an equivalent of Lemma 3.7:

Lemma 5.7. Let (y, y′), (ỹ, ỹ′) ∈ Qγ([0, T ]; R1,d) such that y0 = ỹ0 and y′0 = ỹ′0.
Then, under the hypothesis of Theorem 5.6, for any i ∈ {1, . . . , d} and any s, t ∈
[0, T ],

N [[σti − σsi ](Y);Qγ([0, T ]; R1,n)] ≤ cσ |t− s| {1 + N [y;Qγ([0, T ]; R1,d)]2}, (51)

the path σt(Y) − σt(Ỹ) satisfies

N [σti (Y) − σti(Ỹ);Qγ([0, T ]; R1,d)]

≤ cσ{1 + N [y;Qγ([0, T ]; R1,d)]2 + N [ỹ;Qγ([0, T ]; R1,d)]2}
×N [y − ỹ;Qγ([0, T ]; R1,d)] (52)

and

N [[σti − σsi ](Y) − [σti − σsi ](Ỹ);Qγ,γ+γκ([0, T ]; R1,d)]

≤ cσ |t− s| {1 + N [y;Qγ([0, T ]; R1,d)]1+κ + N [ỹ;Qγ([0, T ]; R1,d)]1+κ}
×N [y − ỹ;Qγ([0, T ]; R1,d)]. (53)

Proof. See the Appendix.

We can now state the result concerning the invariance of a ball for the map Γ:

Proposition 5.8. (Invariance of a ball) Under the hypothesis of Theorem 5.6, there
exists T0 ∈ (0, T ] such that for each T1 ∈ (0, T0], the ball

B
AT1
T1

= {(y, y′) ∈ Qγ([0, T1]) : y0 = a, y′0 = σ(0, 0, a)∗,

N [(y, y′);Qγ([0, T1])] ≤ AT1}
is invariant by Γ (defined by (50)) for some large enough radius AT1 .
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Proof. Fix a time T0 ≤ T and let (y, y′) ∈ B
AT0
T0

with decomposition δy =
y′δx+ ry. Set (z, z′) = Γ(y, y′). Then δz = z′δx + rz , where rz can be further
decomposed into:

rz = rz,0 + rz,1,1 + rz,1,2 + rz,2,1 + rz,2,2, (54)

with

r
z,0,(i)
st = [σti − σsi ](Ys)(δx)st, r

z,1,1,(i)
st = σti(Y)′s · x2

st

r
z,1,2,(i)
st = Λst(rσ

t
i (Y)δx+ δ(σti(Y)′) · x2),

and

r
z,2,1,(i)
st = [σti − σsi ](Y0)(δx)0s + [σti − σsi ](Y)′0 · x2

0s,

r
z,2,2,(i)
st = Λ0s([rσ

t
i (Y) − rσ

s
i (Y)]δx+ δ([σti − σsi ](Y)′) · x2).

Let us check that this decomposition actually identifies z as an element of Qγ ,
that is z′ ∈ Cγ1 and rz ∈ C2γ

2 . For z′, pick 0 ≤ s < t ≤ T1 and observe that

‖(δz′)st‖ = ‖σ(t, t, yt)∗ − σ(s, s, ys)∗‖
≤ ‖σ(t, t, yt)∗ − σ(s, t, yt)∗‖ + ‖σ(s, t, yt)∗ − σ(s, s, ys)∗‖

≤ ‖Dσ‖∞ |t− s| +
d∑
i=1

‖δ(σsi (Y))st‖.

But, according to (48),

‖δ(σsi (Y))st‖ ≤ cx |t− s|γ {‖D3σi(s,Y0) ◦ y′0‖ + T γ0 N [σsi (Y);Qγ ]}
≤ cx,σ |t− s|γ {1 + T γ0 N [σsi (Y);Qγ ]},

which, together with (49), leads to N [z′; Cγ1 ] ≤ cx,σ{1 + T γ0 N [y;Qγ ]2}.
Let us now estimate the 2γ-Hölder norm of the remaining terms.

Case rz,0. Clearly, N [rz,0; C2γ
2 ] ≤ ‖Dσ‖∞N [x; Cγ1 ]T 1−γ

0 ≤ cσ,x.

Case rz,1,1. Since ‖σti(Y)′0‖ = ‖D3σi(t,Y0) ◦ y′0‖ ≤ cσ, one has, owing to (49),

‖rz,1,1,(i)st ‖ ≤ cσ |t− s|2γ N [x2; C2γ
2 ]{1 + T γ0 N [σti(Y)′; Cγ1 ]}

≤ cσ,x |t− s|2γ {1 + T γ0 N [σti(Y);Qγ ]}
≤ cσ,x |t− s|2γ {1 + T γ0 N [y;Qγ ]2}.

Case rz,1,2. It is readily checked, invoking (6) and (49), that

‖rz,1,2,(i)st ‖ ≤ c |t− s|3γ {N [rσ
t
i (Y); C2γ

2 ]N [x; Cγ1 ] + N [(σti(Y))′; Cγ1 ]N [x2; C2γ
2 ]}

≤ cx |t− s|3γ N [σi(t,Y);Qγ ] ≤ cx,σ |t− s|2γ T γ0 {1 + N [y;Qγ ]2}.
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Case rz,2,1. The following elementary estimates hold true.

‖rz,2,1,(i)st ‖ ≤ ‖Dσi‖∞ |t− s|T γ0 N [x; Cγ1 ] + ‖D3σi(t,Y0)

−D3σi(s,Y0)‖‖y′0‖N [x2; C2γ
2 ]T 2γ

0

≤ cx,σ |t− s|2γ .

Case rz,2,2. Owing to (6) and (51), we have

‖rz,2,2,(i)st ‖ ≤ c T 3γ
0 {N [rσ

t
i (Y) − rσ

s
i (Y); C2γ

2 ]N [x; Cγ1 ]

+N [([σti − σsi ](Y))′; Cγ1 ]N [x2; C2γ
2 ]}

≤ cx T
3γ
0 N [[σti − σsi ](Y);Qγ ]

≤ cx,σ T
3γ
0 |t− s| {1 + N [y;Qγ ]2}.

Finally, gathering all our estimates for the terms in (54), it is easily seen that
N [rz ; C2γ

2 ] ≤ cσ,x{1 + T γ0 N [y;Qγ ]2}. Hence we have obtained that rz ∈ C2γ
2 and

(z, z′) ∈ Qγ .
Notice that the above estimations also easily lead to N [z;Qγ ] ≤ cx,σ{1 +

T γ0 N [y;Qγ ]2}. Choose now for T0 the greatest time τ ∈ (0, T ] such that the equa-
tion cσ,x1 + τγA2 = A admits a unique solution Aτ . Then T0 satisfies the property
announced in our proposition.

We can now prove the contraction property allowing to establish the existence
and uniqueness of a local solution to Eq. (13).

Proposition 5.9. (Contraction property) Under the hypothesis of Theorem 5.6,
there exists T1 ∈ (0, T0] such that for each T2 < T1, the application Γ is a strict
contraction on the (stable) ball BAT2

T2
.

Proof. Let (y, y′) and (ỹ, ỹ′) of two elements of BAT1
T1

, and set (z, z′) = Γ(y, y′),
(z̃, z̃′) = Γ(ỹ, ỹ′). Thus, δ(z − z̃) = (z′ − z̃′)δx + (rz − rz̃), where z′ = σ(., ., y.)∗,
z̃′ = σ(., ., ỹ.)∗, and rz is given by (54), with a similar expression for rz̃ . Let us now
estimate each term of

N [z − z̃;Qγ ] = N [z′ − z̃′; C0
1 ] + N [z′ − z̃′; Cγ1 ]

+N [rz − rz̃ ; C2γ
2 ] + N [z − z̃; Cγ1 ].

Case N [z′ − z̃′; C0
1 ]. If s ∈ [0, T1], ‖z′s − z̃′s‖ = ‖σ(s, s, ys)∗ − σ(s, s, ỹs)∗‖ ≤

‖Dσ‖∞‖ys−ỹs‖. But y0 = ỹ0, so that ‖ys−ỹs‖ ≤ T γ1 N [y−ỹ; Cγ1 ] and N [z′−z̃′; C0
1 ] ≤

cσT
γ
1 N [y − ỹ;Qγ ].
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Case N [z′ − z̃′; Cγ
1 ]. Pick 0 ≤ s < t ≤ T1 and observe that

‖(z′t − z̃′t) − (z′s − z̃′s)‖ = ‖(σ(t,Yt)∗ − σ(t, Ỹt)∗ − σ(s,Ys)∗ + σ(s, Ỹs)∗‖
≤ ‖[σt − σs](Yt) − [σt − σs](Yt)‖ + ‖δ(σs(Y) − σs(Ỹ))st‖.

Then

‖[σt − σs](Yt) − [σt − σs](Yt)‖ ≤ ‖D(σt − σs)‖∞‖yt − ỹt‖
≤ ‖D2σ‖∞ |t− s|N [y − ỹ; Cγ1 ]T γ1

≤ cσ |t− s|γ N [y − ỹ;Qγ ]T1,

while, according to (48) and (52),

‖δ(σsi (Y) − σsi (Ỹ))st‖ ≤ |t− s|γ N [σsi (Y) − σsi (Ỹ); Cγ1 ]

≤ cx |t−s|γ {‖(σsi (Y) − σsi (Ỹ))′0‖ + T γ1 N [σsi (Y)−σsi (Ỹ);Qγ ]}
≤ cx,σ |t− s|γ T γ1 {1 + N [y;Qγ ]2 + N [ỹ;Qγ ]2}N [y − ỹ;Qγ ]

since (σsi (Y) − σsi (Ỹ))′0 = 0. Hence, thanks to the fact that we are working on the
invariant ball BAT1

T1
, we get N [z′ − z̃′; Cγ1 ] ≤ cx,σ{1 +A2

T1
}N [y − ỹ;Qγ ]T γ1 .

Case N [rz − rz̃; C2γ
2 ]. Since (y0, y′0) = (ỹ0, ỹ′0), r

z−z̃ = rz − rz̃ reduces to the
sum of

r
z−z̃,0,(i)
st = {[σti − σsi ](Ys) − [σti − σsi ](Ỹs)}(δx)st,

r
z−z̃,1,1,(i)
st = [σti(Y)′s − σti(Ỹ)′s] · x2

st,

r
z−z̃,1,2,(i)
st = Λst([rσ

t
i (Y) − rσ

t
i (Ỹ)]δx+ δ(σti(Y)′ − σti(Ỹ)′) · x2),

r
z−z̃,2,(i)
st = Λ0s([rσ

t
i (Y) − rσ

s
i (Y) − rσ

t
i (Ỹ) + rσ

s
i (Ỹ)]δx

+ δ([σti − σsi ](Y)′ − [σti − σsi ](Ỹ)′ · x2).

We will now bound each of these terms.

Study of rz−z̃,0
st . One has

‖rz−z̃,0,(i)st ‖ ≤ cx |t− s|γ ‖D(σti − σsi )‖∞‖Ys − Ỹs‖
≤ cx |t− s|1+γ ‖D2σi‖∞‖ys − ỹs‖
≤ cx,σ |t− s|2γ N [y − ỹ; Cγ1 ]T 1−γ

1

≤ cx,σ |t− s|2γ N [y − ỹ;Qγ ]T 1−γ
1 .

Study of rz−z̃,1,1
st . Since (σt(Y) − σt(Ỹ))′0 = 0, we get, owing to (52),

‖rz−z̃,1,1,(i)st ‖ ≤ cx |t− s|2γ ‖(σti(Y) − σti(Ỹ))′s‖
≤ cx |t− s|2γ N [σti(Y) − σti(Ỹ);Qγ ]T γ1

≤ cx |t− s|2γ {1 + N [y;Qγ ]2 + N [ỹ;Qγ ]2}N [y − ỹ;Qγ ]T γ1 .
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Study of rz−z̃,1,2. By (6) and (52),

‖rz−z̃,1,2,(i)st ‖ ≤ cx |t− s|3γ N [σti (Y) − σti(Ỹ);Qγ ]

≤ cσ,x |t− s|2γ {1 + N [y;Qγ ]2 + N [ỹ;Qγ ]2}N [y − ỹ;Qγ ]T γ1 .

Study of rz−z̃,2. By (6) and (53),

‖rz−z̃,2,(i)st ‖ ≤ cxT
γ(κ+2)
1 N [[σti − σsi ](Y) − [σti − σsi ](Ỹ);Qγ,γ(1+κ)]

≤ cx,σT
γ(κ+2)
1 |t− s| {1 + N [y;Qγ ]1+κ + N [ỹ;Qγ ]1+κ}N [y − ỹ;Qγ ].

Finally, putting together all our estimates of the remainder terms, we end up with
the relation N [rz − rz̃ ; C2γ

2 ] ≤ cx,σ{1 + A2
T1
}N [y − ỹ;Qγ ]T γ1 , which together with

the above estimation of N [z′ − z̃′; Cγ1 ], gives

N [z − z̃;Qγ ] ≤ cx,σ{1 +A2
T1
}N [y − ỹ;Qγ ]T γ1 .

The greatest time T1 ∈ (0, T0] such that cx,σ{1 +A2
T1
}T γ1 ≤ 1/2 then clearly yields

the contraction property for Γ on [0, T1].

In the rough case, it is also easily seen that our existence and uniqueness result
for Eq. (13) can be applied to the fractional Brownian motion:

Corollary 5.10. Let B be an n-dimensional fractional Brownian motion with
Hurst parameter 1/3 < H ≤ 1/2, defined on a complete probability space (Ω,F , P ).
Then almost surely, B fulfills the hypotheses of Theorem 5.6.

Proof. We only have to show that B satisfies Hypothesis 1. But this kind of result
is easily deduced from the convergence results contained in [6].

5.3. Extending the solution

To finish with, let us briefly evoke the technical difficulties we encounter when trying
to extend the solution on [0, T ] along the same lines as in the Young case. Denote
(y(1), (y(1))′) the solution on [0, T0].

The first step would consist in finding some small ε > 0, independent of
(y(1), (y(1))′), and some radius N1 such that the ball

{(y, y′) ∈ Qγ([0, T0 + ε]) : (y, y′)|[0,T0]

= (y(1), (y(1))′), N [(y, y′);Qγ([0, T0 + ε])] ≤ N1}
is invariant by Γ. In fact, if we set (z, z′) = Γ(y, y′) for (y, y′) in this ball, then some
standard estimations, similar to those appearing in the proofs above, show that

N [(z, z′);Qγ([0, T0 + ε])]

≤ c1N [y(1);Qγ([0, T0])] + c2{1 + ελN [(y, y′);Qγ([0, T0 + ε])]2}, (55)

for some λ > 0 and some constants c1, c2 with c1 > 2. It is then rather clear
that, owing to the exponent 2 in the latter expression, the constant ε ensuring the
stability of the ball has to depend on N [y(1);Qγ([0, T0])].
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More specifically, imagine the reasoning of the proof of Proposition 3.8 remains
true when starting with (55), which means that we can find some constant ε > 0
and some sequence of radii (Ni) such that

c1Ni + c2{1 + ελN2
i+1} ≤ Ni+1. (56)

Then Ni+1 ≥ c1Ni ≥ 2Ni and the sequence (Ni) diverges to infinity. On
the other hand, if relation (56) is meant to admit solutions, then the relation
1 − 4ελc2(c1Ni+ c2) ≥ 0 must be fulfilled, so that (Ni) is bounded, hence a
contradiction.

At this point, it is interesting to notice that even if ε is allowed to vary and
becomes a sequence εi such that

∑
i εi = ∞ (in order to be sure that [0, T ] is

covered), then we get N1
2 2i ≤ Ni ≤ c

ελ
i+1

, so that εi ≤ c
(21/λ)i , which of course

contradicts
∑

i εi = ∞.
This failure in our apprehension of (1) motivated the study of a particular case

of Volterra equations (see our companion paper [7]) for which some modifications
of the δ-formalism enable one to get rid (in some way) of the past-dependent term
in (2).

Remark 5.11. In case the driving process x is a usual Brownian motion, by
means of an identification of our generalized integral with Itô’s stochastic inte-
gral (see [11]), one could certainly obtain a global solution, filling thus a gap
between this paper and the existing literature. It would in particular be inter-
esting to compare our results with the ones contained in [21] , especially for the
less stringent regularity conditions imposed on σ in the latter reference (roughly
speaking, σ is only assumed to be C1,b in the first variable, and Lipschitz in the
others).

Appendix

We gather in this section some regularity results for the functions and controlled
processes we handle in throughout the paper.

Proof of Lemma 3.7. To obtain (15), pick u < v and observe that

‖[σt − σs](Yv) − [σt − σs](Yu)‖ ≤ ‖D(σt − σs)‖∞ ‖Yv − Yu‖
≤ ‖D2σ‖∞ |t− s| (|v − u| + N [y; Cγ1 ] |v − u|γ) ,

which gives the result.
In order to establish (16), let us introduce the operator R defined for any ϕ ∈

C1,b(Rd+1), ξ, ξ′ ∈ R
d+1, by

Rϕ(ξ, ξ′) =
∫ 1

0

Dϕ(αξ + (1 − α)ξ′) dα.
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Then of course ‖Rϕ‖∞ ≤ ‖Dϕ‖∞ and ‖Rϕ(ξ1, ξ′1) −Rϕ(ξ2, ξ′2)‖ ≤ ‖D2ϕ‖∞(‖ξ1 −
ξ2‖ + ‖ξ′1 − ξ′2‖). With this notation, if 0 < u < v < T ,

‖[σt(Yv) − σt(Ỹv)] − [σt(Yu) − σt(Ỹu)]‖
= ‖Rσt(Yv, Ỹv)(Yv − Ỹv) −Rσt(Yu, Ỹu)(Yu − Ỹu)‖
≤ ‖Rσt(Yv, Ỹv)([Yv − Ỹv] − [Yu − Ỹu])‖

+ ‖[Rσt(Yv, Ỹv) −Rσt(Yu, Ỹu)](Yu − Ỹu)‖
≤ ‖Dσt‖∞‖[yv − ỹv] − [yu − ỹu]‖

+ ‖D2σt‖∞(2 |v − u| + ‖yv − yu‖ + ‖ỹv − ỹu‖)‖yu − ỹu‖
≤ N [y − ỹ; Cγ1 ] |v − u|γ {‖Dσ‖∞ + ‖D2σ‖∞(2T 1−γ + N [y; Cγ1 ] + N [ỹ; Cγ1 ])T γ},

where, in the last inequality, we have used the fact that yu−ỹu = [yu−ỹu]−[y0−ỹ0].
Inequality (16) follows easily. Notice that those are the same arguments as in the
proof of [11, Lemma 5].

To prove (17), let us introduce the operator L defined for any ϕ ∈ C2,b,κ(Rd+2)
and any s, t ∈ R, ξ, ξ′ ∈ R

d+1, as

Lϕ(s, t, ξ, ξ′) =
∫ 1

0

∫ 1

0

D2ϕ(s+ µ(t− s), ξ + λ(ξ′ − ξ)) dµ dλ.

Thus, Lϕ(s, t, ξ, ξ′) is a bilinear mapping on R × (R × R
d) such that ‖Lϕ‖∞ ≤

‖D2ϕ‖∞ and ‖Lϕ(s, t, ξ1, ξ′1)−Lϕ(s, t, ξ2, ξ′2)‖ ≤ ‖D2ϕ‖κ(‖ξ1 − ξ2‖κ+ ‖ξ′1 − ξ′2‖κ).
With this notation, it is readily checked that

σ(t, ξ) − σ(s, ξ) − σ(t, ξ′) + σ(s, ξ′) = Lσ(s, t, ξ, ξ′)((t− s, 0), (0, ξ − ξ′))

for any s, t ∈ [0, T ], ξ, ξ′ ∈ [0, T ]× R
d, so that

‖[σt − σs](Yu) − [σt − σs](Ỹu) − [σt − σs](Yv) + [σt − σs](Ỹv)‖
= ‖Lσ(s, t,Yu, Ỹu)((t− s, 0), (0,Yu − Ỹu))
−Lσ(s, t,Yv, Ỹv)((t − s, 0), (0,Yv − Ỹv))‖

≤ ‖Lσ(s, t,Yu, Ỹu)((t− s, 0), (0, [Yu − Ỹu] − [Yv − Ỹv]))‖
+ ‖[Lσ(s, t,Yu, Ỹu) − Lσ(s, t,Yv, Ỹv)]((t − s, 0), (0,Yv − Ỹv))‖

≤ ‖D2σ‖∞ |t− s| ‖[yu − ỹu] − [yv − ỹv]‖
+ ‖D2σ‖κ (2 |u− v|κ + ‖yu − yv‖κ + ‖ỹu − ỹv‖κ) |t− s| ‖yv − ỹv‖

≤ cσ |t− s| {N [y − ỹ; Cκ1 ] |u− v|γ

+ (2 |u− v|κ + |u− v|κγ {N [y; Cγ1 ]κ + N [ỹ; Cγ1 ]κ})N [y − ỹ; Cγ1 ]T γ}, (57)

which leads to the result.
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Proof of Proposition 5.3. This is a matter of elementary differential calculus.
For the sake of conciseness, denote σ = σi and ϕuv(r) = Yu + r(Yv − Yu). Then

(δ(σt(Y))uv = σt(Yv) − σt(Yu)

=
∫ 1

0

dr D2σ(t, ϕuv(r))(v − u) +
∫ 1

0

dr D3σ(t, ϕuv(r))(δy)uv

= D3σ(t,Yu)(δy)uv +
∫ 1

0

dr [D3σ(t, ϕuv(r)) −D3σ(t,Yu)](δy)uv

+
∫ 1

0

dr D2σ(t, ϕuv(r))(v − u)

:= (D3σ(t,Yu) ◦ y′u)(δx)uv + ruv, (58)

where r has to be interpreted as a remainder, whose exact expression is given by:

ruv = D3σ(t,Yu)ryuv +
∫ 1

0

dr [D3σ(t, ϕuv(r)) −D3σ(t,Yu)](δy)uv

+
∫ 1

0

dr D2σ(t, ϕuv(r))(v − u).

We will now bound the two terms in expression (58).
First, ‖D3σ(t,Y) ◦ y′‖∞ ≤ ‖D3σ‖∞N [y′; C0

1 ] ≤ cσN [y;Qγ ], and if 0 ≤ u <

v ≤ T ,

‖D3σ(t,Yv) ◦ y′v −D3σ(t,Yu) ◦ y′u‖
≤ ‖[D3σ(t,Yv) −D3σ(t,Yu)] ◦ y′v‖ + ‖D3σ(t,Yu) ◦ [y′v − y′u]‖
≤ ‖D2σ‖∞‖Yv − Yu‖N [y′; C0

1 ] + ‖D3σ‖∞N [y′; Cγ1 ] |v − u|γ

≤ ‖D2σ‖∞(|v − u| + N [y; Cγ1 ] |v − u|γ)N [y′; C0
1 ] + ‖D3σ‖∞N [y′; Cγ1 ] |v − u|γ

≤ cσ |v − u|γ {1 + N [y;Qγ ]2},

hence D3σ(t,Y) ◦ y′ ∈ Cγ1 and N [D3σ(t,Y) ◦ y′; Cγ1 ] ≤ cσ{1 + N [y;Qγ ]2}.
As for r, if 0 ≤ u < v ≤ T ,

‖ruv‖ ≤ ‖D3σ‖∞N [ry ; C2γ
2 ] |v − u|2γ + ‖D2σ‖∞‖Yv − Yu‖N [y; Cγ1 ] |v − u|γ

+ ‖D2σ‖∞ |v − u|
≤ cσ |v − u|2γ {1 + N [y;Qγ ]2},

so that r ∈ C2γ
2 and N [r; C2γ

2 ] ≤ cσ{1 + N [y;Qγ ]2}.
To get (49), it only remains to note that N [σt(Y); Cγ1 ] ≤ cσ{1 + N [y;Qγ ]}.

Proof of Lemma 5.7. According to the proof of Proposition 5.3, if D1σ
t :=

D2σ(t, ., .) and D2σ
t := D3σ(t, ., .), one has [σti − σsi ](Y)′u = D2(σti − σsi )(Yu) ◦ y′u
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and

r
[σt

i−σs
i ](Y)

uv = D2[σti − σsi ](Yu)(ryuv)

+
∫ 1

0

dr [D2(σt − σs)(Yu + r(Yv − Yu)) −D2(σt − σs)(Yu)](δy)uv

+
∫ 1

0

dr D1(σt − σs)(Yu)(v − u).

Recall that in order to bound (σti − σsi )(Yu) in Qγ , the main steps consist in esti-
mating N [(σti − σsi )(Yu)′; Cγ1 ] and N [r; C2γ

2 ]. However,

‖[σti − σsi ](Y)′v − [σti − σsi ](Y)′u]‖
≤ ‖[D2(σti − σsi )(Yv) −D2(σti − σsi )(Yu)] ◦ y′v‖

+ ‖D2(σti − σsi )(Yu) ◦ [y′v − y′u]‖
≤ ‖D2(σti − σsi )‖∞(|v − u| + N [y; Cγ1 ] |v − u|γ)N [y′; C0

1 ]

+ ‖D2(σti − σsi )‖∞N [y′; Cγ1 ] |v − u|γ

≤ ‖D3σi‖ |t− s| (|v − u| + |v − u|γ N [y; Cγ1 ])N [y′; C0
1 ]

+ ‖D2σi‖∞ |t− s| N [y′; Cγ1 ] |v − u|γ

≤ cσ |t− s| |v − u|γ {1 + N [y;Qγ ]2},

and

‖r[σt
i−σs

i ](Y)
uv ‖ ≤ ‖D1(σti − σsi )‖∞ |v − u| + ‖D2(σti − σsi )‖∞ |v − u|2γ N [ry ; C2γ

2 ]

+ ‖D2(σti − σsi )‖∞(|v − u| + N [y; Cγ1 ] |v − u|γ)N [y; Cγ1 ] |v − u|γ

≤ cσ |t− s| |v − u|2γ {1 + N [y;Qγ ]2}.

The upper bound (51) is now easily obtained.
Inequality (52) is in fact a direct consequence of [11, Proposition 4]. Indeed, if

y ∈ Qγ([0, T ]; R1,d), then of course Y ∈ Qγ([0, T ]; R1,d+1) with decomposition

(δY)st = (0, y′s)(δx)st + (t− s, ryst).

Then, according to the aforementioned proposition,

N [σt(Y) − σt(Ỹ);Qγ ] ≤ cσ,x{1 + N [Y;Qγ ]2 + N [Ỹ ;Qγ ]2}N [Y − Ỹ;Qγ ].

It is then readily checked that N [Y;Qγ ] ≤ c{1 + N [y;Qγ ]} and N [Y − Ỹ;Qγ ] =
N [y − ỹ;Qγ ].

Let us now prove inequality (53). To this end, denote ζst := D2(σti − σsi ) and
use the fact that [(σti − σsi )(Y)]′ = ζst(Y) ◦ Y ′. This yields the decomposition



September 11, 2009 12:20 WSPC/168-SD 00273

Rough Volterra Equations 475

[(σti − σsi )(Y)]′ − [(σti − σsi )(Ỹ)]′)uv = Astuv +Bstuv + Cstuv +Dst
uv, with

Astuv = δ(ζst(Y))uv ◦ [y′v − ỹ′v], Bstuv = ζst(Yu) ◦ δ([y′ − ỹ′])uv,

Cstuv = [ζst(Yv) − ζst(Ỹv)] ◦ (δỹ′)uv, Dst
uv = δ([ζst(Y) − ζst(Ỹ)])uv ◦ ỹ′u.

Owing to the regularity of σ, we are in position to apply Lemma 3.7 with D3σi,
which gives

N [Ast, Cκγ2 ] ≤ N [D2(σti − σsi )(Y); Cγ1 ]T γ(1−κ)N [y − ỹ;Qγ ]

≤ cσ |t− s| {1 + N [y;Qγ ]}N [y − ỹ;Qγ ]

and

N [Dst; Cκγ2 ] ≤ N [D2(σti − σsi )(Y) −D2(σti − σsi )(Ỹ); Cκγ1 ]N [ỹ;Qγ ]

≤ cσ |t− s| {1 + N [y;Qγ ]κ + N [ỹ;Qγ ]κ}N [y − ỹ;Qγ ]N [ỹ;Qγ ].

Besides, it is easy to see that N [Bst; Cκγ1 ] ≤ cσ |t− s|N [y − ỹ;Qγ ], while
N [Cst; Cκγ1 ] ≤ cσ |t− s| N [ỹ;Qγ ]N [y − ỹ;Qγ ], hence

N [([σti − σsi ](Y) − [σti − σsi ](Ỹ))′; Cκγ1 ]

≤ cσ |t− s| {1 + N [y;Qγ ]1+κ + N [ỹ;Qγ ]1+κ}N [y − ỹ;Qγ ]. (59)

As for rstuv := r[σ
t
i−σs

i ](Y) − r[σ
t
i−σs

i ](Ỹ), we know from (58) that, if ϕuv(r) =
Yu + r(Yv − Yu), ϕ̃uv(r) := Ỹu + r(Ỹv − Ỹu) and σsti := σti − σsi , then rstuv =
rst,1uv + rst,2uv + rst,3uv , with

rst,1uv =
∫ 1

0

dr [D1σ
st
i (ϕuv(r)) −D1σ

st
i (ϕ̃uv(r))](v − u),

rst,2uv = D2σ
st
i (Yu)(ryuv) −D2σ

st
i (Ỹu)(rỹuv),

rst,3uv =
∫ 1

0

dr {[D2σ
st
i (ϕuv(r)) −D2σ

st
i (Yu)](δy)uv

− [D2σ
st
i (ϕ̃uv(r)) −D2σ

st
i (Ỹu)](δỹ)uv}.

Obvious arguments allow to assert that N [rst,1; Cγ+γκ
2 ] ≤ cσ |t− s| N [y − ỹ;Qγ ].

To deal with rst,2, write of course

rst,2uv = [D2σ
st
i (Yu) −D2σ

st
i (Ỹu)](ryuv) +D2σ

st
i (Ỹu)([ryuv − rỹuv]),

which leads to N [rst,2; Cγ+γκ
2 ] ≤ cσ |t− s| {1 + N [y;Qγ ]}N [y − ỹ;Qγ ]. Finally,

decompose rst,3 into rst,3 = rst,3,1 + rst,3,2, with

rst,3,1uv =
∫ 1

0

dr [D2σ
st
i (ϕuv(r)) −D2σ

st
i )(Yu)]δ(y − ỹ)uv,

rst,3,2uv =
∫ 1

0

dr [D2σ
st
i (ϕuv(r)) −D2σ

st
i (Yu) −D2σ

st
i (ϕ̃uv(r)) +D2σ

st
i (Ỹu)](δỹ)uv.
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Clearly, N [rst,3,1; Cγ+γκ
2 ] ≤ cσ |t− s| {1 + N [y;Qγ ]}N [y − ỹ;Qγ ]. To conclude,

observe that the double increment appearing into brackets in rst,3,2uv can be dealt
with just as (57) (replace [σt−σs] with D2[σti−σsi ] and Yv with ϕuv(r)). This gives

N [rst,3,2; Cγ+γκ
2 ] ≤ cσ |t− s| {1 + N [y;Qγ ]κ + N [ỹ;Qγ ]κ}N [y − ỹ;Qγ ]N [ỹ;Qγ ].

We have thus shown that

N [rst; Cγ+γκ
2 ] ≤ cσ |t− s| {1 + N [y;Qγ ]1+κ + N [ỹ;Qγ ]1+κ}N [y − ỹ;Qγ ],

which, together with (59), entails (53).
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