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Abstract

We define and solve Volterra equations driven by a non-differentiable signal, by means of a variant of the
rough paths theory which allows us to handle generalized integrals weighted by an exponential coefficient.

The results are applied to a standard rough path x = (x1, x2) ∈ Cγ
2 (Rm) × C 2γ

2 (Rm,m), with γ > 1/3,
which includes the case of fractional Brownian motion with Hurst index H > 1/3.
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1. Introduction

This paper is part of an ambitious ongoing project which aims at offering a new point of view
on multidimensional stochastic calculus, via the semi-deterministic rough path approach initiated
by Lyons [24]. We tackle the issue of the non-linear Volterra system

yi
t = ai

+

∫ t

0
σ i0(t, u, yu) du +

m−
j=1

∫ t

0
σ i j (t, u, yu) dx j

u , i = 1, . . . , d, t ∈ [0, T ], (1)

where T stands for an arbitrary horizon, x : [0, T ] → Rm a multidimensional γ -Hölder path,
a ∈ Rd an initial condition and σ i j

: [0, T ]
2
× Rd

→ R smooth enough functions.
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The (ordinary) Volterra equation providing a relevant model in many biological or physical
situations, it is not surprising that its noisy version has already given birth to a great number of
papers. A first analysis when x is a Brownian motion is contained in the pioneering works [6,7],
and this was then generalized to the case of a semimartingale in [31]. If the coefficients σ i j are
also seen as random functions, which often happens to be more appropriate, some anticipative
stochastic calculus techniques are required in order to solve the system, and we refer the reader
to [1,28,30] for the main results in this direction. It should be mentioned at this point that the
last of those references [30] is motivated by financial models of capital growth rate, which goes
beyond the classical physical or biological applications of Volterra equations. Several authors
also envisaged the possibility of a singularity for the application u < t → σ(t, u, .) as t tends to
u [10,11,37], while examples of a so-called backward stochastic Volterra equations have recently
appeared in the literature [38,40], stimulated (here again) by new financial applications [39].
Besides, one can find in [34,21,43] studies of infinite-dimensional versions of (1), often linked to
the context of stochastic partial differential equations. It is finally worth noticing that the behavior
of the solutions to the Itô–Volterra equation is now deeply understood, through the consideration
of numerical schemes [35,42] or the existence of large deviations [17,33,27,42] and Strassen’s
law [29] results.

In this background, it seems quite natural to wonder whether the interpretation and resolution
of (1) can be extended to a non-semimartingale driving process x . The existence of a theoretical
solution would for instance allow us to study the influence of a more general gaussian noise in
the asymptotic equilibria observed in [4,2,3,5]. The interest in a generalization of the system
has also been recently reinforced by the emergence, in the field of nanophysics, of a model
involving a Volterra system perturbed by a fractional Brownian motion (fBm in the sequel) with
Hurst index H different from 1/2 [22,23]. In the latter references, the fractional process only
intervenes through an additive noise: the resolution of the system (1) in its general form would
here open the way to a sophistication of the model.

The particular case where x stands for a fBm with Hurst index H > 1/2 has been thoroughly
treated in [16]: the integral is therein understood in the Young sense. Notice that in this
situation, [8] provides a slightly different approach to the equation, based on fractional calculus
techniques. If one wishes to go one step further in the procedure and consider a γ -Hölder path
with γ ≤ 1/2, the rough paths methods must come into the picture. However, the classical rough
path theory introduced by Lyons and Qian [25] (see also the recent formulation in [18]) is mostly
designed to handle the case of diffusion type equations, and there has been an intensive activity
during the last couple of years in order to extend these semi-pathwise techniques to other systems,
such as delay equations [26] or PDEs [9,20]. The current article fits into this global project, and
we shall see how to modify the original rough path setting in order to handle systems like (1).
The method then leads to what appears to us as the first result on the existence and uniqueness
of a global solution ever shown for the rough Volterra equation (1), in the case where γ < 1

2 .

Our result more exactly applies to the convolutional Volterra equation

yi
t = ai

+

m−
j=1

∫ t

0
φ(t − u)σ i j (yu) dx j

u , i = 1, . . . , d, t ∈ [0, T ], (2)

where φ : R → R and σ i j
: Rd

→ R are smooth enough applications. Notice that we have
included the drift term in the sum, by assuming that the first component of x coincides with the
identity function. In spite of its specificity, the formulation (2) covers most of the aforementioned
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model (it is in particular the model under consideration in [22,23]). The main result of this paper
can be stated in the following way:

Theorem 1.1. Assume that the path x : [0, T ] → Rm allows the construction of a geometric
2-rough path x = (x1, x2) ∈ Cγ

2 (Rm) × C 2γ

2 (Rm,m) for some coefficient γ > 1/3. If φ ∈

C 3(R; R) and σ i j
∈ C 3,b(Rd

; R) for all i = 1, . . . , d, j = 1, . . . , m, then the system (2),
interpreted thanks to Propositions 5.5 and 6.2, admits a unique global solution y in the space of
controlled paths introduced in [19] (see Definition 2.5). Moreover, the Itô map associated with
the system is locally Lipschitz continuous: if y (resp. ŷ) stands for the solution of the system
driven by x (resp. x̂) with initial condition a (resp. â), then

N [y − ŷ; Cγ

1 (Rd)]

≤ cx,x̃

a − â
 + N [x − x̂; Cγ

1 (Rm)] + N [x2
− x̂2

; C 2γ

2 (Rm,m)]


, (3)

where

cx,x̃ = C


N [x; Cγ

1 (Rm)], N [x̂; Cγ

1 (Rm)], N [x2
; C 2γ

2 (Rm,m)], N [x̂2
; C 2γ

2 (Rm,m)]


,

for some function C : (R+)∗ → R+ growing with its four arguments.

Beyond the interpretation and resolution of the fractional Volterra system, the continuity
result (3) is likely to offer simplified proofs of the classical results (large deviations, support
theorem) obtained in the (standard) Brownian case. For the sake of conciseness, we shall leave
this procedure in abeyance, though (this should follow the lines of Chapter 19 in [18]).

A first attempt to solve the deterministic system (2) has been initiated in [16] by resorting to
the standard rough paths formalism. As evoked earlier, the method turns out to be successful in
the Young case (γ > 1/2) with the existence of a unique global solution. Unfortunately, it gives
an incomplete answer for the problem in the rough case (γ ≤ 1/2), allowing a local resolution
only. The difficulties raised by the extension of the path have been extensively commented on
in [16]. They are essentially due to the dependence of the system with respect to the past of
the trajectory. To figure out this phenomenon, remember that the usual resolution framework in
rough paths theory is a (well-chosen) space of Hölder paths (or paths with bounded p-variations).
Here, the variations of the (potential) solution y between two times s < t are given by

yi
t − yi

s =

∫ t

s
φ(t − u) σ i j (yu) dx j

u +

∫ s

0
[φ(t − u) − φ(s − u)] σ i j (yu) dx j

u , (4)

and through the latter integral, the problem in question pops out: the variations of y between
a time s (present) and a time t (future) are linked to the past ([0, s]) of the path. In the Young
case, the right-hand side of (4) can be estimated by an affine function of y, which allows one to
overcome the dependence on the past and settle a global fixed-point argument. The reasoning no
longer holds true when γ ≤ 1/2, the estimate this time giving rise to an (at least) quadratic term
in y.

Let us say a few words about the strategy that we have adopted in this paper in order to exhibit
a global solution when γ ∈ (1/3, 1/2]:

(i) First, we will reformulate (2) (when x is differentiable) by writing φ as the Fourier transform
of a function φ̃ ∈ L1(R), that is to say using the representation

φ(v) =

∫
R

dξ Sv(ξ)φ̃(ξ), Sv(ξ) ≡ e−2iπξv, v ∈ [0, T ]. (5)
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Thanks to the Fubini theorem, the system (2) can now be equivalently presented as: for all
i = 1, . . . , d ,

yi
t = ai

+

∫
R

dξ φ̃(ξ)ỹi
t (ξ), ỹi

t (ξ) =

∫ t

0
St−u(ξ) dx j

u σ i j (yu), t ∈ [0, T ]. (6)

Owing to the additivity property St+t ′(ξ) = St (ξ)St ′(ξ), it is easily seen that for any fixed
ξ ∈ R,

ỹi
t (ξ) − ỹi

s(ξ) =

∫ t

s
St−u(ξ) dx i

u σ i j (yu) + Ats(ξ)ỹi
s(ξ), (7)

with Ats(ξ) ≡ St−s(ξ) − 1, and the dependence w.r.t. the past ([0, s]) is here reduced to
a dependence w.r.t. the present (s) only, which makes it easier to control on successive
patching intervals I1, I2, . . .. Therefore, the system will first be solved under the form (7),
before we go back to the original setting (2).

(ii) The transition from y to ỹ is however not cost free: we leave the Euclidean context of (2) to
enter the framework of functional-valued paths. For instance, the definition of a Hölder path
will then be relative to a norm of functions to be made precise (see (26)). Besides, observe
that the expression

ỹi
t (ξ) =

∫ t

0
St−u(ξ) dx j

u σ i j (yu), ỹi
0 = 0, (8)

is quite close to the mild formulation of an evolution equation: in order to analyze this
system, we have drown our inspiration from the method and formalism developed in [20]
for a class of rough partial differential equations. In particular, the interpretation of the rough
integral will involve an adaptation of the notion of 2-rough paths to the background under
consideration here: the standard path (x1, x2) will be replaced (in a first phase at least) by
a convolutional path (X̃ x , X̃ax , X̃ xx ), given, when x is differentiable, by the three formulas
(i, j = 1, . . . , m)

X̃ x,i
ts (ξ) ≡

∫ t

s
St−u(ξ) dx i

u, X̃ Ax,i
ts (ξ) ≡

∫ t

s
Atu(ξ) dx i

u, (9)

X̃ xx,i j
ts (ξ) ≡

∫ t

s
St−u(ξ) dx i

u (x j
u − x i

s). (10)

If x is a Hölder path, those three definitions are a priori only formal, but once we have
admitted the existence of those integrals (see for instance Hypothesis 5 for a more precise
statement), we can resort to an extension procedure for the integral

 t
s St−u(ξ) dx j

u σ i j (yu)

similar to the one used in the analysis of ordinary systems, and based on the intervention of
an inverse operator Λ̃ (Proposition 3.8). The extension of the three expressions in (9) and
(10) will be analyzed at the end of the paper (Section 6): for the sake of conciseness, the
question will actually be reduced to a loose integration by parts argument.

(iii) In the case 1/3 < γ ≤ 1/2, the reasoning that leads us to the existence of a global solution
consists in a technical patching argument (Section 5) based on the following observation:
in spite of the simplification suggested by (7), the system keeps some dependence w.r.t. the
past through the present. Consequently, if one wants to patch together local solutions ỹ(k)

on successive time intervals Ik = [lk, lk+1], one must control the Hölder norm of ỹ(k), and
also the “initial condition” ỹ(k)

lk
. The general principle of the reasoning is contained in the

proof of Theorem 5.10, but it actually leans on the controls obtained in Propositions 5.7–5.9.
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It is worth noticing that the general scheme of the proof in question, as well as the scheme
of the proof of Theorem 4.3, are referred to in [14,13] in relation to the study of rough PDE
models.

Here is how our article is organized. We recall some basic definitions of algebraic integration
in Section 2, and we adapt those notions to the convolutional context in Section 3.2. Section 4 is
devoted to the simpler case of Young equations, which allows us to explain our method with less
technical apparatus. Then at Section 5 we move to the rough case of our Volterra equation, and
explain all the details of the method that we have chosen in order to solve it. Finally, we apply
our theory to (standard) rough paths in Section 6.

2. Algebraic integration

This section is devoted to recalling the very basic elements of the algebraic integration theory
introduced in [19], in order to fix notation for the remainder of the paper.

2.1. Increments

As explained in [19], the extension of the integral stemming from the standard differential
system dyi

t = dx j
t σ i j (yt ) is based on the notion of increments, together with an elementary

operator δ acting on them. The notion of increments can be introduced in the following way: for
two arbitrary real numbers ℓ2 > ℓ1 ≥ 0, a vector space V , and an integer k ≥ 1, we denote
by Ck(V ) the set of continuous functions g : [ℓ1, ℓ2]

k
→ V such that gt1···tk = 0 whenever

ti = ti+1 for some i ≤ k − 1. Such a function will be called a (k − 1)-increment, and we will
set C∗(V ) = ∪k≥1 Ck(V ). The operator δ alluded to above can be seen as an operator acting on
k-increments, and is defined as follows on Ck(V ):

δ : Ck(V ) → Ck+1(V ) (δg)t1···tk+1 =

k+1−
i=1

(−1)i+1gt1···t̂i ···tk+1
, (11)

where t̂i means that this particular argument is omitted. Then a fundamental property of δ, which
is easily verified, is that δδ = 0, where δδ is considered as an operator from Ck(V ) to Ck+2(V ).
We will use the notation Z Ck(V ) = Ck(V ) ∩ Ker δ and B Ck(V ) = Ck(V ) ∩ Im δ.

Some simple examples of actions of δ, which will be the ones that we will really use
throughout the paper, are obtained by letting g ∈ C1 and h ∈ C2. Then, for any t, u, s ∈ [ℓ1, ℓ2],
we have

(δg)ts = gt − gs, and (δh)tus = hts − htu − hus . (12)

The above-mentioned ordinary system is then of course equivalent to

y0 = a, (δyi )ts =

∫ t

s
dx j

u σ i j (yu). (13)

Furthermore, it is readily checked that the complex (C∗, δ) is acyclic, i.e. Z Ck+1(V ) = B Ck(V )

for any k ≥ 1. In particular, the following basic property, which we label for further use, holds
true:

Lemma 2.1. Suppose that k ≥ 1 and h ∈ Z Ck+1(V ). Then there exists a (non-unique)
f ∈ Ck(V ) such that h = δ f .
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Observe that Lemma 2.1 implies that all the elements h ∈ C2(V ) such that δh = 0 can be written
as h = δ f for some (non-unique) f ∈ C1(V ). Thus we get a heuristic interpretation of δ|C2(V ): it
measures how much a given 1-increment is far from being an exact increment of a function (i.e.
a finite difference).

Let us now introduce a convenient notation for the product of increments:

Definition 2.2. Let V and W be two normed spaces and I a subinterval of [0, T ]. If g ∈

Ck(I ; L(V, W )) and h ∈ Cl(I ; W ), for some k, l ∈ N∗, we define the product gh as the (k+l−2)-
increment (with values in W ) given by the following formula: for all t1 ≤ t2 ≤ . . . ≤ tk+l−1,

(gh)t1...tk+l−1 ≡ gt1...tk htk tk+1...tk+l−1 . (14)

Notice again that our future discussions will mainly rely on k-increments with k ≤ 2, for
which we will use some analytical assumptions. Namely, we measure the size of these increments
using Hölder norms defined in the following way: for f ∈ C2(V ) set

‖ f ‖µ ≡ sup
s,t∈[ℓ1,ℓ2]

‖ fts‖V

|t − s|µ
, and Cµ

1 (V ) ≡


f ∈ C2(V ); ‖ f ‖µ < ∞

.

In the same way, for h ∈ C3(V ), set

‖h‖γ,ρ ≡ sup
s,u,t∈[ℓ1,ℓ2]

‖htus‖V

|u − s|γ |t − u|ρ
(15)

‖h‖µ ≡ inf

−
i

‖hi‖ρi ,µ−ρi ; h =

−
i

hi , 0 < ρi < µ


,

where the last infimum is taken over all sequences {hi ∈ C3(V )} such that h =
∑

i hi and for
all choices of the numbers ρi ∈ (0, z). Then ‖ · ‖µ is easily seen to be a norm on C3(V ), and we
define

Cµ
3 (V ) ≡


h ∈ C3(V ); ‖h‖µ < ∞


.

Finally, let us set C 1+

3 (V ) ≡ ∪µ>1 Cµ
3 (V ), and remark that the same kinds of norms can

be considered on the spaces Z C3(V ), leading to the definition of some spaces Z Cµ
3 (V ) and

Z C 1+

3 (V ). In order to avoid ambiguities, we shall denote by N [ f ; Cκ
j ] the κ-Hölder norm on the

space C j , for j = 1, 2, 3. For ζ ∈ C j (V ), we also set N [ζ ; C 0
j (V )] = sups∈[ℓ1;ℓ2]

j ‖ζs‖V .
With this notation in mind, the following proposition is a basic result which is at the core of

our approach to pathwise integration (see [19] for the original proof of the result, based on the
Stokes theorem, and [20] for a simplified version):

Theorem 2.3 (The Sewing Map). Suppose that µ > 1. For any h ∈ Z Cµ
3 ([0, 1]; V ), there exists

a unique Λh ∈ Cµ
2 ([0, 1]; V ) such that δ(Λh) = h. Furthermore,

‖Λh‖µ ≤ cµ N [h; Cµ
3 (V )], (16)

with cµ = 2 + 2µ
∑

∞

k=1 k−µ. This gives rise to a linear continuous map Λ : Z Cµ
3 ([0, 1]; V ) →

Cµ
2 ([0, 1]; V ) such that δΛ = IdZ Cµ

3 ([0,1];V ).

The following corollary gives a first relation between the structures that we have just
introduced and generalized integrals, in the sense that it connects the operators δ and Λ with
Riemann sums.
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Corollary 2.4 (Integration of Small Increments). For any 1-increment g ∈ C2(V ), such that
δg ∈ C 1+

3 , set δ f = (Id − Λδ)g. Then

(δ f )ts = lim
|Πts |→0

n−
i=0

gti+1 ti ,

where the limit is over any partition Πts = {t0 = t, . . . , tn = s} of [t, s] whose mesh tends to
zero. The 1-increment δ f is the indefinite integral of the 1-increment g.

Proof. For any partition Πt = {s = t0 < t1 < · · · < tn = t} of [s, t], write

(δ f )ts =

n−
i=0

(δ f )ti+1ti =

n−
i=0

gti+1ti −

n−
i=0

Λti+1ti (δg).

Observe now that for some µ > 1 such that δg ∈ Cµ
3 , n−

i=0

Λti+1ti (δg)


V
≤

n−
i=0

‖Λti+1ti (δg)‖V ≤ N [Λ(δg); Cµ
2 (V )] |Πts |

µ−1
|t − s| ,

and as a consequence, lim|Πts |→0
∑n

i=0 Λti+1ti (δg) = 0. �

2.2. Dissection of a standard rough integral

Let us say a few words about the way in which the tools introduced in the previous subsection
interact with each other to lead to an interpretation of the rough integral

 t
s dx i

u zi
u .

In a first phase, those tools enable a real dissection of the ordinary version of the integral (when
x and possibly z are differentiable). For instance, by combining the elementary decomposition t

s dx i
u zi

u = (δx i )ts zi
s +

 t
s dx i

u (δzi )us with the relation δ


dx i (δzi )


= (δx i )(δzi ), one
deduces from Theorem 2.3 the expression∫ t

s
dx i

u zi
u = (δx i )ts zi

s + Λts


(δx i )(δzi )


.

It is now readily checked that if x, z ∈ Cγ

1 , with γ > 1/2 (the Young case), the right-hand side of
the latter equality still makes sense: the development is then legitimately chosen as a definition
for the rough integral.

When γ ≤ 1/2, a deeper analysis of the ordinary integral is required. In order to bring
the procedure to a successful result, the class of potential integrands z has to be restricted to
a particular set of pre-integrated paths, that will be met again in Section 5:

Definition 2.5. Suppose that I is a subinterval of [0, T ] and x ∈ Cγ

1 (I ; Rm) with γ > 1/3.
For any l ∈ N∗, a path y ∈ C1(I ; Rl) is said to be γ -controlled on I , with values in Rl , if its
increments δy can be decomposed in the following way: for all s < t ∈ I ,

(δyi )ts = (δx j )ts yx, j i
s + y♯,i

ts , avec yx
∈ Cγ

1 (I ; Rl,m) et y♯
∈ C 2γ

2 (I ; Rl). (17)

The set of γ -controlled paths will be denoted by Qγ
x (I ; Rl) and provided with the seminorm

N [y; Qγ
x (I ; Rl)] ≡ N [y; Cγ

1 (I ; Rl)] + N [yx
; C 0,γ

1 (I ; Rl,m)] + N [y♯
; C 2γ

2 (I ; Rl)], (18)
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Then we define Qγ
x (I ; Rk,l) (k ∈ N∗) as the set of paths y ∈ C1(I ; Rk,l) such that yi

= yi.
∈

Qγ
x (I ; Rl) for all i = 1, . . . , k, and we associate with the elements of this set the quantity

N [y; Qγ
x (I ; Rk,l)] ≡

∑k
i=1 N [yi

; Qγ
x (I ; Rl)].

If x is differentiable and z ∈ Qγ
x , a quick algebraic computation shows that, by setting x2,i j

ts ≡ t
s dx i

u (δx j )us , we get
 t

s dx i
u zi

u = (δx i )ts zi
s +x2,i j

ts zx, j i
s +rts , with δr = (δx i ) z♯,i

+x2,i j δzx, j i ,
and so∫ t

s
dx i

u zi
u = (δx i )ts zi

s + x2,i j
ts zx, j i

s + Λts


(δx i ) z♯,i

+ x2,i j δzx, j i


. (19)

The right-hand side of the latter equality can now be extended to any 2-rough path x = (δx, x2) ∈

Cγ

2 × C 2γ

2 with γ > 1/3, that is to say to any γ -Hölder path x allowing the construction of a

Lévy area x2,i j
ts ≡

 t
s dx i

u (δx j )us (see [25] for a thorough definition), a hypothesis which is for
instance known to be satisfied by a fractional Brownian motion with Hurst index H > 1/3 (see
[12] or [36]).

In fact, if one is permitted to restrict the class of integrands to Qγ
x , it is because the latter space

is large and stable enough to make possible the interpretation and resolution of the ordinary rough
system (δyi )ts =

 t
s dx j

u σ i j (yu) therein, for a sufficiently smooth vector field σ . It is indeed not
difficult to see that if y ∈ Qγ

x and σ ∈ C 2,b, then z ≡ σ(y) ∈ Qγ
x , while (19) immediately shows

that


dx z ∈ Qγ
x .

All of those considerations will be kept in mind when analyzing the system (2).

3. Algebraic convolutional integration

We already announced this in the introduction: in order to reduce the dependence of equation
(2) with respect to the past, we will appeal to a preliminary rewriting of the system, based on the
representation of φ as the Fourier transform of a function φ̃. The resulting formulation will be
close to the model studied in [20]: just as in the latter reference, it suggests a natural adaptation
of the standard algebraic formalism presented in the previous section.

3.1. Transformation of the ordinary system

Assume in this subsection that x is differentiable. Let us go back for a short while to the
transformation sketched out in the introduction, and which started from the assumption that φ

could be written as in (5). Note here and now that this hypothesis is actually not very restrictive.
Indeed, insofar as we are working with a finite fixed horizon T , only the behavior of φ on [0, T ]

matters, and it is possible to replace, in (2), φ with a compactly supported function φT such that
φ|[0,T ] = φT |[0,T ]. If φ is assumed to be continuous on R, then φT can be picked in L2(R), and
in this case

φT = F φ̃, with φ̃ = φ̃T = F −1φT ∈ L2(R),

where F stands for the Fourier transform. In fact, under the hypotheses of Theorem 1.1
(φ ∈ C 3(R)), it is easy to show that φ̃ is integrable (see Proposition 6.6). Nevertheless, for
the time being, we record this condition in the following hypothesis:

Hypothesis 1. We assume, in this section and the two following, that the function φ admits the
representation (5), for some function φ̃ ∈ L1(R).
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We are then allowed to apply the Fubini theorem and assert that the system (2) is equivalent
to 

yi
t = ai

+

∫
R

ỹi
t (ξ) φ̃(ξ) dξ

ỹi
t (ξ) =

∫ t

0
St−v(ξ)dx j

v σ i j (yv).

(20)

Besides, as we also evoked in the introduction, the increments (δ ỹi )ts(ξ) ≡ ỹi
t (ξ) − ỹi

s(ξ) are
governed by the equation

(δ ỹi (ξ))ts =

∫ t

s
St−v(ξ)dx j

v σ i j (yv) + Ats(ξ)

∫ s

0
St−v(ξ)dx j

v σ i j (yv)

=

∫ t

s
St−v(ξ)dx j

v σ i j (yv) + Ats(ξ)ỹ j
s (ξ),

where we have set

Ats(ξ) ≡ St−s(ξ) − 1. (21)

Notice now that the first term
 t

s St−v(ξ)dx j
v σ i j (yv) above is really similar to what one obtains

in the diffusion case, namely an integral of the form
 t

s (see (13))). However, the second term
Ats(ξ)ỹs(ξ) is a little clumsy for further expansions. Hence, a straightforward idea is to make it
disappear by just setting

(δ̃ ỹi )ts(ξ) ≡ (δ ỹi )ts(ξ) − Ats(ξ)ỹi
s(ξ). (22)

Then the last equation can be read as (δ̃ ỹi )ts(ξ) =
 t

s St−v(ξ)dx j
v σ i j (yv), and the system (20)

becomes
yi

t = ai
+

∫
R

ỹi
t (ξ) φ̃(ξ) dξ

(δ̃ ỹi )ts(ξ) =

∫ t

s
St−v(ξ)dx j

v σ i j (yv),

(23)

with the initial condition ỹ0 ≡ 0. In the sequel, we shall essentially focus on the path ỹ, by
merging the two equations of the last system into a single one:

ỹ0 = 0, (δ̃ ỹi )ts(ξ) =

∫ t

s
St−v(ξ) dx j

v


σ i j

◦ Ta,φ̃


(ỹv), (24)

where the operator Ta,φ is defined by

Ta,φ̃(ϕ) ≡ a +

∫
R

dη φ̃(η)ϕ(η). (25)

The original solution path y can then be recovered in an obvious way, so it will be sufficient to
solve the Volterra equation under the more suitable form (24), with a right-hand side written as
an integral from s to t with respect to x (compare with (13)).

Actually, if we take the liberty of focusing on δ̃ rather than on the standard increment δ, it is
because the former operator also makes possible the building of an integration theory, by means
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of an inversion mapping similar to Λ, and that will be denoted by Λ̃ (see Proposition 3.8). This
is what we mean to elaborate on in the following subsections.

3.2. Convolutional increments

Notice that, due to the fact that St1−t2(ξ) is studied only for t1 > t2, our integration domains
will be of the form Sn = Sn([ℓ1, ℓ2]), where Sn stands for the n-simplex

Sn = {(t1, . . . , tn) : ℓ2 ≥ t1 ≥ t2 ≥ · · · ≥ tn ≥ ℓ1}.

For any Banach space E , the notation Cn([ℓ1, ℓ2]; E) will henceforth refer to the set of paths h
which are continuous on Sn , with values in E , and such that ht1...tk = 0 if there exist i ≠ j for
which ti = t j .

According to the (first) definition (22), δ̃ is supposed to act on functional-valued paths. Let us
anticipate here the next sections by introducing the spaces of functions that will spontaneously
arise during the study of (24) (see for instance Proposition 4.2). Those are the L1-type spaces
induced by the norm

N [g̃; Lβ(V )] = N [g̃; Lβ,φ̃(V )] ≡

∫
R

dξ |φ̃(ξ)|(1 + |ξ |
β)‖g̃(ξ)‖V , (26)

where β > 0 is a fixed parameter and V a Euclidean space. Then we define

C̃k,β(I ; V ) ≡ Ck(I ; Lβ(V )). (27)

The standard incremental operator δ acts on those spaces through the obvious formula:

If h̃ ∈ C̃k,β(I ; V ), (δh̃)t1...tk+1(ξ) ≡ δ(h̃(ξ))t1...tk+1 , ξ ∈ R. (28)

As for δ̃, it can be naturally extended to any C̃k,β(I ; V ) (k ∈ N∗):

Definition 3.1. Let I be an interval of R+ and V a Euclidean space. For any β > 0, we define
the sequence of operators δ̃k : C̃k,β(I ; V ) → C̃k+1,β(I ; V ) by the formula: if h̃ ∈ C̃k,β(I ; V ),
then for all ξ ∈ R,

(δ̃k h̃)t1...tk+1(ξ) ≡ (δk h̃)t1...tk+1(ξ) − At1t2(ξ) h̃t2...tk+1(ξ), (t1, . . . tk+1) ∈ Sk+1(I ). (29)

In particular, if s < u < t ∈ I ,

(δ̃1h̃)ts(ξ) = h̃t (ξ) − St−s(ξ) h̃s(ξ),

(δ̃2h̃)tus(ξ) = h̃ts(ξ) − h̃tu(ξ) − St−u(ξ) h̃us(ξ).

For the sake of clarity, we shall use the same notation δ̃ for the operators δ̃k, k ∈ N∗.

Remark 3.2. In the rest of the paper, we will explicitly write down the “space” variable ξ only
when there might be confusion. Thus, we will for instance simply write δ̃h̃ = δh̃ − ah̃.

The convention given by (14) for products of increments can be translated in this context as
follows:

Lemma 3.3. If M̃ ∈ C̃n,β(I ; Rk,l) and L ∈ Cm(I ; Rl), then the product M̃ L, defined by the
relation

(M̃ L)t1...tm+n−1(ξ) ≡ M̃t1...tn (ξ) L tn ...tm+n−1 ,
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belongs to C̃m+n−1,β(I ; Rk). Moreover, when n = 2, the following algebraic relations are
satisfied:

δ(M̃ L) = δM̃ L − M̃ δL , et δ̃(M̃ L) = δ̃M̃ L − M̃ δL . (30)

Proof. The first part of the assertion is obvious. As for the algebraic relations when n = 2, the
first one is immediate, while for the second one, it suffices to notice that

δ̃(M̃ L)t1...tm+2 = δ(M̃ L)t1...tm+2 − At1t2 M̃t2t3 L t3...tm+2

= (δM̃)t1t2t3 L t3...tm+2 − M̃t1t2(δL)t2...tm+2 − At1t2 M̃t2t3 L t3...tm+2

= [(δM̃)t1t2t3 − At1t2 M̃t2t3 ]L t3...tm+2 − (M̃ δL)t1...tm+2 . �

With this notation and these preliminary results in hand, we are in a position to prove that
the starting property of standard algebraic integration (summed up in Section 2), namely the
cohomological relation δδ = 0, remains true for δ̃:

Proposition 3.4. δ̃δ̃ = 0. More precisely, for any β > 0 and any k ∈ N∗, Im δ̃
|C̃k,β (I ;V )

=

Ker δ̃
|C̃k+1,β (I ;V )

.

Proof. If F̃ ∈ C̃k,β(I ; V ), then using the relation δδ = 0 and the result of Lemma 3.3, we deduce
that

δ̃δ̃ F̃ = (δ − A) [(δ − A) F̃] = δδ F̃ − δ(A F̃) − A δ F̃ + A A F̃

= −δA F̃ + A δ F̃ − A δ F̃ + A A F̃ = A A F̃ − δA F̃ .

It is then readily checked, owing to the additivity St · St ′ = St+t ′ , that

(δA)tus = Atu Aus, (t, u, s) ∈ S3(I ),

which gives δ̃δ̃ F̃ = 0.
Now, if C̃ ∈ C̃k+1,β(I ; V ) is such that δ̃C̃ = 0, we set B̃t1...tn ≡ C̃t1...tns , for some arbitrary

time s ∈ I . Then

[δ̃ B̃]t1...tn+1 = [δC̃]t1...tn+1s + (−1)n+1C̃t1...tn+1 − At1t2C̃t2...tns

= [δ̃C̃]t1...tn+1s + (−1)n+1C̃t1...tn+1 = (−1)n+1C̃t1...tn+1 .

Therefore, by setting D̃ ≡ (−1)n+1 B̃, we get δ̃ D̃ = C̃ . �

Remark 3.5. A straightforward iteration of the relation δ̃δ̃ = 0 leads to the following formula:
for any partition {s = t0 < t1 < . . . < tn = t} of [s, t], for any f̃ ∈ C̃1,β([s, t]; V ),

(δ̃ f̃ )ts =

n−1−
i=0

St−ti+1 · (δ̃ f̃ )ti+1ti . (31)

This kind of decomposition will be appealed to several times in the sequel, especially in the
proofs of Lemma 3.7 and Corollary 3.9. In some way, this is the convolutional analog of the
usual telescopic sum (δ f )ts =

∑n−1
i=0 (δ f )ti+1ti .

The cochain complex (C̃k,β(I ; V ), δ̃) will stand for the structure at the core of all the
constructions in this paper. Let us try to give an idea of the relevance of this structure in the
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context of equation (24). To this end, we set, for two smooth paths f : [0, T ] → W , g : [0, T ] →

L(W, V ),

Jts(d̃g f )(ξ) ≡

∫ t

s
St−u(ξ) dgu fu, ξ ∈ A, (32)

and for any smooth path h : [0, T ]
2

→ W ,

Jts(d̃g h)(ξ) ≡

∫ t

s
St−u(ξ) dgu hus . (33)

The usual Chasles relation δ


dg f


= 0 becomes here:

Proposition 3.6. With the notation of (32) and (33), one has, if f : [0, T ] → W and
g : [0, T ] → L(W, V ) stand for two differentiable paths,

δ̃


J (d̃g f )


= 0, δ̃


J (d̃g δ f )


= J (d̃g) δ f. (34)

Proof. This is a matter of straightforward computations: if s < u < t ,

δ̃


J (d̃g f )


tus
= Jts(d̃g f ) − Jtu(d̃g f ) − St−u · Jus(d̃g f ),

and St−u · Jus(d̃g f ) =
 u

s St−v dgv fv , which easily yields δ̃


J (d̃g f )


= 0. In the same way,

δ̃


J (d̃g δ f )


=

∫ t

u
St−v dgv (δ f )vs −

∫ t

u
St−v dgv (δ f )vu =

∫ t

u
St−v dgv


(δ f )us . �

3.3. Convolutional Hölder spaces and the Λ̃ map

In order to cope with (24), the definition of a (generalized) Hölder path presented in the
previous section has to be adapted to the convolutional formalism that we have just introduced.
We first define, for all (fixed) parameters µ, β, γ > 0, any interval I of R+ and any Euclidean
space V ,

C̃µ
2,β(I ; V ) ≡


ỹ ∈ C̃2,β(I ; V ) : N [ỹ; C̃µ

2,β(I ; V )] ≡ sup
s<t∈I

N [ỹts; Lβ(V )]

|t − s|µ
< ∞


,

C̃µ
1,β(I ; V ) ≡ {ỹ ∈ C̃1,β(I ; V ) : δ̃ ỹ ∈ C̃µ

2,β(I ; V )}. (35)

As for paths with three variables, we define, as in the standard case, the intermediate space
C̃(γ,β)

3,β (I ; V ) induced by the norm

N [h̃; C̃(γ,ρ)

3,β (I ; V )] ≡ sup
s<u<t∈I

N [h̃tus; Lβ(V )]

|t − u|
γ

|u − s|ρ
,

and then set C̃µ
3,β(I ; V ) ≡ ⊕0≤α≤µ C̃α,µ−α

3,β (I ; V ). We also provide the latter space with the norm

N [h̃; C̃µ
3,β(I ; V )] ≡ inf

−
i

N [hi ; C̃(ρi ,µ−ρi )
3,β (I ; V )]; h =

−
i

hi , 0 < ρi < µ


.
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It is worth noticing that the elementary result asserting that Im δ1 ∩ Cµ
2 (V ) = {0} if µ > 1

admits a direct analog:

Lemma 3.7. Fix β > 0. If µ > 1, then Im δ̃
|C̃1,β (I ;V )

∩ C̃µ
2,β(V ) = {0}.

Proof. Suppose that M̃ = δ̃ f̃ ∈ Im δ̃
|C̃1,β (I ;V )

∩ C̃µ
2,β(V ). According to (31), we can write, for

all s < t , M̃ts =
∑n−1

i=0 St−ti+1 · M̃ti+1ti , for any partition Πts = {s = t0 < t1 < · · · < tn = t} of
[s, t]. Since |St (ξ)| = 1, this entails

N [M̃ts; Lβ(V )] ≤

n−1−
i=0

N [M̃ti+1ti ; Lβ(V )] ≤ N [M̃; C̃µ
2,β(V )] |t − s| |Πts |

µ−1 ,

and the latter estimate tends to 0 as mesh |Πts | tends to 0. �

With all of those results in hand, it is now easy to follow the same lines as in the proof of
Theorem 2.3 in order to establish the existence of an inverse operator for δ̃ (see [20] for a similar
adaptation):

Proposition 3.8. Suppose that µ > 1, β > 0, I is an interval of R+ and V is a Euclidean space.
For all h̃ ∈ Ker δ

|C̃3,β (I ;V )
∩ C̃µ

3,β(I ; V ), there exists a unique path Λ̃h̃ ∈ C̃µ
2,β(I ; V ) such that

δ̃(Λ̃h̃) = h̃. Moreover, the following contraction property holds true:

N [Λ̃h̃; C̃µ
2,β(I ; V )] ≤ cµ N [h̃; C̃µ

3,β(I ; V )], (36)

with cµ a constant that only depends on µ. This statement gives birth to a continuous linear
mapping

Λ̃ : Ker δ
|C̃3,β (I ;V )

∩ C̃µ
3,β(I ; V ) → C̃µ

2,β(I ; V )

such that

δ̃Λ̃ = IdKer δ
|C̃3,β (I ;V )

∩C̃µ
3,β

(I ;V )
and Λ̃δ̃ = IdC̃µ

2,β
(I ;V )

. (37)

We also have the following equivalent of Corollary 2.4 at our disposal:

Corollary 3.9. Let g̃ ∈ C̃2,β(I ; V ) be such that δ̃g̃ ∈ C̃µ
3,β(I ; V ), for some coefficient µ > 1. If

δ̃ f̃ ≡ (Id − Λ̃δ̃)g̃, then

(δ̃ f̃ )ts = lim
|Πts |→0

n−
i=0

St−ti+1 · g̃ti+1ti in Lβ ,

where the limit is over any partition Πts = {t0 = t, . . . , tn = s} of [t, s] whose mesh tends to
zero.

Proof. Here again, it suffices to use the same arguments as in the standard case (Corollary 2.4),
starting from the decomposition (31). �
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4. The Young case

Remember that we first wish to solve the system in the form (24), which can also be written,
with the notation (32), as

ỹ0 ≡ 0, δ̃ ỹi
= J


d̃x j σ i j (y)


, yu = Ta,φ̃(ỹu) = a +

∫
R

dξ φ̃(ξ)ỹu(ξ). (38)

For the time being, the right-hand side of the latter equality only makes sense for a differentiable
path x . The aim of this section is to extend the definition of the equation to a γ -Hölder path x
with γ > 1/2, and then solve it with the resulting interpretation. To this end, we will follow the
same general strategy as in the standard case (Section 2.2), which begins with a dissection of the
ordinary integral.

4.1. Heuristic considerations and interpretation of the system

Let us assume for the moment that x and ỹ are differentiable (in time) and let us successively
set y ≡ Ta,φ̃(ỹ), zi j

≡ σ i j (y), so the integral under consideration here is given by J (d̃x j zi j ).
Before we turn to the dissection procedure for this integral, it is important to ponder about

the regularity that one can expect for z, or equivalently for y (we will suppose that σ is
smooth enough), when x and ỹ become non-differentiable. To answer the question, observe the
decomposition

(δyi )ts =

∫
R

dξ φ̃(ξ) (δ ỹ)ts(ξ) =

∫
R

dξ φ̃(ξ) (δ̃ ỹi )ts(ξ) +

∫
R

dξ φ̃(ξ) Ats(ξ) ỹi
s(ξ). (39)

As ỹ stands for the (potential) solution of (38)) and |St (ξ)| = 1, δ̃ ỹ is expected to inherit the
regularity of x , or otherwise stated, |(δ̃ ỹ)ts(ξ)| ≤ cx |t − s|γ (uniformly in ξ ), which would
lead, as we have assumed that


R dξ |φ̃(ξ)| < ∞ (Hypothesis 1), to an estimate such that

|

R dξ φ̃(ξ) (δ̃ ỹi )ts(ξ)| ≤ cx |t − s|γ .

To retrieve |t − s|-increments from the term

R dξ φ̃(ξ) Ats(ξ) ỹi

s(ξ), we shall lean on the
elementary estimate

|Ats(ξ)| = |St−s(ξ) − 1| ≤ cγ |t − s|γ |ξ |
γ . (40)

This is where the spaces Lβ(V ) defined by (26) occur. Indeed, from (40), one has∫
R

dξ φ̃(ξ) Ats(ξ)ỹs(ξ)

 ≤ cγ |t − s|γ N [ỹs; Lγ (Rd)]. (41)

Going back to decomposition (39), we see that, by starting with a path ỹ that takes values in
Lγ (Rd), we should retrieve a path y, and then a path z, both Hölder continuous in the classical
sense.

Those considerations (that will be made precise through Proposition 4.2) will help us in the
dissection procedure of the integral J (d̃x j zi j ). Indeed, we will no longer hesitate to let the
standard increment δz come (back) into the picture, and we will thus start, just as in the diffusion
case, with the decomposition (x is still assumed to be differentiable)

Jts(d̃x j zi j ) = J (d̃x j ) zi j
s + Jts(d̃x j δzi j ), (42)
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where Jts(d̃x j ) ≡ Jts(d̃x j 1) =
 t

s St−u dx j
u . When x becomes rough (that is to say γ -Hölder

with 0 < γ < 1), the integral
 t

s St−u dx j
u can still be understood as a Young integral ([41]). In

the spirit of the rough paths methodology and by anticipating the computations of Proposition 4.1
and Theorem 4.3 below, we will make the following more precise hypothesis:

Hypothesis 2. Suppose that x ∈ Cγ

1 ([0, T ]; Rm), with γ > 1/2. We assume the existence of a
sequence xε of differentiable paths that satisfies

N [xε
− x; Cγ

1 ([0, T ]; Rm)]
ε→0
−→ 0,

and such that the associated sequence of paths

X̃ xε,i
ts (ξ) ≡

∫ t

s
St−u(ξ) dxε,i

u

converges to X̃ x,i
ts (ξ) ≡

 t
s St−u(ξ) dx i

u (understood as a Young integral) w.r.t. the topology of
the space C̃γ

2,γ ([0, T ]; Rm). In particular,

X̃ x
∈ Cγ

2,γ ([0, T ]; Rm) and δ̃ X̃ x
= 0.

If x is differentiable, we assume that this result holds true for xε
≡ x .

Proposition 4.1. Let x : [0, T ] → Rm be a path that satisfies Hypothesis 2, and I be a
subinterval of [0, T ]. For any z ∈ Cγ

1 (I ; Rd,m) and ξ ∈ R, set

J (d̃x j zi j )(ξ) ≡ X̃ x, j (ξ) zi j
+ Λ̃(X̃ x, j δzi j )(ξ) = (Id − Λ̃δ̃)(X̃ x, j zi j )(ξ). (43)

Then:

(1) J (d̃x j zi j ) is well-defined as an element of C̃γ

2,γ (I ; Rd), and it coincides with the usual

Riemann integral
 t

s St−v(ξ) dxv zv when x is differentiable.
(2) The following estimate holds true (remember that we have set N [z; C 0

1(I ; Rd,m)] ≡

sups∈I |zs |):

N [J (d̃x z); C̃γ

2,γ (I ; Rd)] ≤ cx


N [z; C 0

1(I ; Rd,m)] + |I |γ N [z; Cγ

1 (I ; Rd,m)]


. (44)

(3) For all s < t ∈ I ,

Jts(d̃x j zi j ) = lim
|Πts |→0

n−1−
k=0

St−tk+1 · X̃ x, j
tk+1,tk zi j

tk in Lγ , (45)

where the limit is taken over any partition Πts = {t0 = t, . . . , tn = s} of [s, t] whose mesh
tends to 0.

Proof. To show that the increment defined by (43) coincides with the Riemann integral t
s St−u(ξ) dx j

u zi j
u in the case where x is differentiable, let us go back to the decomposition

(42), that can also be written as

Jts(d̃x j δzi j ) = Jts(d̃x j zi j ) − X̃ x, j
ts zi j

s .

By applying δ̃ to the two sides of the relation, and then using (34) and (30), we get

δ̃


J (d̃x j zi j )


= −δ̃ X̃ x, j zi j
+ X̃ x, jδzi j

= X̃ x, j δzi j ,
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and so, via (37),

J (d̃x j δzi j ) = Λ̃


X̃ x, j δzi j


,

which enables us to recover (43). The fact that formula (43) is well-defined in C̃γ

2,γ is a
straightforward consequence of Hypothesis 2. Indeed, owing to the latter hypothesis, we know
that X̃ x δz ∈ C 2γ

3,γ (I ; Rd) ∩ Ker δ|C2,γ (I ;Rd ), and we are thus in a position to apply Λ̃. The
estimate (44) is then due to the contraction property (36). As for the expression (45), it stems
from Corollary 3.9. �

In order to give sense to the system (38) through the definition (43), we will rely on the
following proposition, which actually summarizes the above considerations:

Proposition 4.2. Suppose that I = [l1, l2] is a subinterval of [0, T ] and σ ∈ C 2,b(Rd
; Rd,m).

For any ỹ ∈ C̃γ

1,γ (I ; Rd), we set y ≡ Ta,φ̃(ỹ) and define

N [ỹ; C̃ 0,γ

1,γ (I ; Rd)] ≡ N [ỹ; C̃ 0
1,γ (I ; Rd)] + N [ỹ; C̃γ

1,γ (I ; Rd)],

with N [ỹ; C̃ 0
1,γ (I ; Rd)] ≡ sups∈I N [ỹs; Lγ (Rd)]. Then σ(y) ∈ Cγ

1 (I ; Rd,m) and

N [σ(y); Cγ

1 (I ; Rd,m)] ≤ cσ N [ỹ; C̃ 0,γ

1,γ (I ; Rd)]. (46)

Moreover, if ỹ(1), ỹ(2)
∈ C̃γ

1,γ (I ; Rd) are such that ỹ(1)
l1

= ỹ(2)
l1

, then

N [σ(y(1)) − σ(y(2)); C 0
1(I ; Rd,m)] ≤ cσ |I |γ N [ỹ(1)

− ỹ(2)
; C̃ 0,γ

1,γ (I ; Rd)], (47)

N [σ(y(1)) − σ(y(2)); Cγ

1 (I ; Rd,m)]

≤ cσ


1 + N [ỹ(2)

; C̃ 0,γ

1,γ (I ; Rd)]


N [ỹ(1)
− ỹ(2)

; C̃ 0,γ

1,γ (I ; Rd)]. (48)

Proof. By using (40), we get

|δ(σ (y))ts | ≤ ‖Dσ‖∞

∫
R

dξ |φ̃(ξ)| |(δ ỹ)ts(ξ)|

≤ ‖Dσ‖∞

∫
R

dξ |φ̃(ξ)||(δ̃ ỹ)ts(ξ)| +

∫
R

dξ |φ̃(ξ)| |Ats(ξ)| |ỹs(ξ)|


≤ cγ ‖Dσ‖∞ |t − s|γ


N [ỹ; C̃γ

1,γ ] + N [ỹ; C̃ 0
1,γ ]


,

which corresponds to (46). The inequality (47) can be obtained in the same way, after noticing
that, for any s ∈ I ,

|σ(y(1)
s ) − σ(y(2)

s )| ≤ ‖Dσ‖∞

∫
R

dξ |φ̃(ξ)||δ(ỹ(1)
− ỹ(2))sℓ1(ξ)|.

As for (48), this is a consequence of the classical estimate

|δ(σ (y(1)) − σ(y(2)))ts | ≤ ‖Dσ‖∞|δ(y(1)
− y(2))ts |

+ ‖D2σ‖∞|δ(y(2))ts |


|y(1)

t − y(2)
t | + |y(1)

s − y(2)
s |


. �
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4.2. Solving the equation

Proposition 4.1, together with Proposition 4.2, provides a reasonable interpretation of (38).
We can now state the main result of this section:

Theorem 4.3. Let x be a path that satisfies Hypothesis 2. If σ ∈ C 2,b(Rd
; Rd,m), then the

Eq. (38), interpreted with Propositions 4.1 and 4.2, admits a unique solution in the space
C̃γ

1,γ ([0, T ]; Rd) defined by (35).

Proof. Consider a constant ε > 0, l ∈ N, and assume that we have already constructed a solution
ỹ(l)

∈ C̃γ

1,γ ([0, lε]). If l = 0, then ỹ(0)
= ỹ(0)

0 = 0. The proof will consist in showing that one

can extend ỹ(l) into a solution ỹ(l+1)
∈ C̃γ

1,γ ([0, (l + 1)ε]), by means of a fixed-point argument.

Step 1: The existence of invariant balls. Let ỹ ∈ C̃γ

1,γ ([0, (l + 1)ε]) be such that ỹ|[0,lε] = ỹ(l),

and denote by z̃ = Γ (ỹ) the element of C̃1,γ ([0, (l + 1)ε]) characterized by z̃|[0,lε] = ỹ(l) and

for all s, t ∈ [0, (l + 1)ε], (δ̃z̃)ts = Jts


d̃x σ(y)


, where, as in Proposition 4.2, y ≡ Ta,φ̃(ỹ)

(remember the notation of (25)).
First, the estimate (44) provides

N [z̃; C̃γ

1,γ ([lε, (l + 1)ε])]

≤ cx


N [σ(y); C 0

1([0, (l + 1)ε])] + εγ N [σ(y); Cγ

1 ([0, (l + 1)ε])]


,

which, together with (46), gives

N [z̃; C̃γ

1,γ ([lε, (l + 1)ε])] ≤ c1
x,σ


1 + εγ N [ỹ; C̃ 0,γ

1,γ ([0, (l + 1)ε])]


.

If 0 ≤ s ≤ lε ≤ t ≤ (l + 1)ε, we use (31) to deduce

N [(δ̃z̃)ts; Lγ ] ≤ N [(δ̃z̃)t,lε; Lγ ] + N [(δ̃z̃)lε,s; Lγ ]

≤ 2 max


N [z̃; C̃γ

1,γ ([lε, (l + 1)ε])], N [ỹ(l)
; C̃γ

1,γ ([0, lε])]


|t − s|γ . (49)

Besides, for any s ∈ [0, (l + 1)ε], z̃s = (δ̃z̃)s0, and so

N [z̃; C̃ 0
1,γ ([0, (l + 1)ε])] ≤ N [z̃; C̃ 0,γ

1,γ ([0, (l + 1)ε])]T γ . (50)

We are thus led to set

ε ≡


4c1

x,σ (1 + T γ )
−1/γ

Nl+1 ≡ max


2(1 + T γ )N [ỹ(l)
; C̃γ

1,γ ([0, lε])], 4c1
x,σ (1 + T γ )


.

Indeed, for such values, it is readily checked from (49) and (50) that if N [ỹ; C̃ 0,γ

1,γ ([0, (l+1)ε])] ≤

Nl+1, then N [z̃; C̃γ

1,γ ([0, (l+1)ε])] ≤
Nl+1

1+T γ and N [z̃; C̃ 0
1,γ ([0, (l+1)ε])] ≤

Nl+1
1+T γ T γ , and hence

N [z̃; C̃ 0,γ

1,γ ([0, (l + 1)ε])] ≤ Nl+1. In other words, the ball

B Nl+1

ỹ(l),(l+1)ε
= {ỹ ∈ C̃ 0,γ

1,γ ([0, (l + 1)ε]) : ỹ|[0,lε] = ỹ(l), N [ỹ; C̃ 0,γ

1,γ ([0, (l + 1)ε])] ≤ Nl+1}

is invariant under Γ .
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The independence of ε with respect to ỹ(l) will allow us to repeat the procedure (with the
same ε) and thus to get a sequence of radii (Nk)k≥1 such that the sets B Nk

ỹ(k),kε
are invariant under

Γ . Of course, the definition of the latter application has to be adapted to each of those sets.
Step 2: The contraction property. We are now going to look for a splitting of [lε, (l +1)ε] into

subintervals [lε, lε + η], [lε + η, lε + 2η], . . . of the same length η (that could depend on ε and
l), on which Γ is a contraction mapping.

Let ỹa, ỹb
∈ C̃γ

1,γ ([0, lε+η]) be such that ỹa
|[0,lε] = ỹb

|[0,lε] = ỹ(l), N [ỹa
; C̃ 0,γ

1,γ ([0, lε+η])] ≤

Nl+1, N [ỹb
; C̃ 0,γ

1,γ ([0, lε + η])] ≤ Nl+1, and set z̃a
≡ Γ (ỹa), z̃b

≡ Γ (ỹb), where Γ is defined

just as in Step 1, but restricted to C̃γ

1,γ ([0, lε + η]). By using (44) again, we deduce

N [z̃a
− z̃b

; C̃γ

1,γ ([lε, lε + η])] ≤ cγ,x


N [σ(ya) − σ(yb); C 0
1([lε, lε + η])]

+ ηγ N [σ(ya) − σ(yb); Cγ

1 ([lε, lε + η])]

,

and then, according to (47) and (48),

N [z̃a
− z̃b

; C̃γ

1,γ ([lε, lε + η])] ≤ c2
x,σ {1 + Nl+1} ηγ N [ỹa

− ỹb
; C̃ 0,γ

1,γ ([lε, lε + η])].

Since the paths ỹa
− ỹb, z̃a

− z̃b vanish on [0, lε], the latter estimate implies

N [z̃a
− z̃b

; C̃γ

1,γ ([0, lε + η])] ≤ c2
x,σ {1 + Nl+1} ηγ N [ỹa

− ỹb
; C̃γ

1,γ ([0, lε + η])].

Besides, (z̃a
− z̃b)s = δ̃(z̃a

− z̃b)s,lε, so N [z̃a
− z̃b

; C̃ 0
1,γ ([0, lε+η])] ≤ N [z̃a

− z̃b
; C̃ 0,γ

1,γ ([0, lε+

η])]ηγ . Therefore,

N [z̃a
− z̃b

; C̃ 0,γ

1,γ ([0, lε + η])]

≤ c2
x,σ {1 + Nl+1} (1 + T γ )ηγ N [ỹa

− ỹb
; C̃ 0,γ

1,γ ([0, lε + η])]. (51)

Fix η ≡ inf

ε, (2c2

x,σ {1 + Nl+1} (1 + T γ ))−1/γ


so as to make Γ a strict contraction of the set

{ỹ ∈ C̃ 0,γ

1,γ ([0, lε + η]) : ỹ|[0,lε] = ỹ(l), N [ỹ; C̃ 0,γ

1,γ ([0, lε + η])] ≤ Nl+1}.

Using the invariance of B Nl+1

ỹ(l),(l+1)ε
, it is easily seen that the latter set is invariant under Γ too (see

Lemma 4.4 below). Consequently, there exists a unique fixed point in this set, that we denote by
ỹ(l),η. Insofar as η does not depend on ỹ(l), the reasoning remains true on the (invariant) set

{ỹ ∈ C̃ 0,γ

1,γ ([0, lε + 2η]) : ỹ|[0,lε+η] = ỹ(l),η, N [ỹ; C̃ 0,γ

1,γ ([0, lε + 2η])] ≤ Nl+1}.

Thus, ỹ(l),η can be extended into a solution ỹ(l),2η defined on [0, lε + 2η] and by iterating the
procedure until the interval [lε, (l + 1)ε] is covered, we get the expected extension ỹ(l+1).

The uniqueness of the solution can be easily shown with the arguments of Step 2 (replace
z̃a, z̃b with ỹa, ỹb in (51)). The details are left to the reader. �

Lemma 4.4. With the notation of the previous proof, the set

{ỹ ∈ C̃ 0,γ

1,γ ([0, lε + η]) : ỹ|[0,lε] = ỹ(l), N [ỹ; C̃ 0,γ

1,γ ([0, lε + η])] ≤ Nl+1}

is invariant under Γ .
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Proof. Consider an element ỹ in the set in question and define z̃ ≡ Γ (ỹ). Then define

ŷt =


ỹt if t ≤ lε + η

St−(lε+η) · ỹlε+η if t ∈ [lε + η, (l + 1)ε].

The path ŷ is clearly continuous and accordingly belongs to C̃1,γ ([0, (l + 1)ε]). Moreover, if
s, t ∈ [lε + η, (l + 1)ε], (δ̃ ỹ)ts = 0, while if s ≤ lε + η ≤ t , (δ̃ ŷ)ts = St−(lε+η) · (δ̃ ỹ)lε+η,s ,
so N [ŷ; C̃γ

1,γ ([0, (l + 1)ε])] ≤ N [ỹ; C̃γ

1,γ ([0, lε + η])]. Since N [ŷ; C̃ 0
1,γ ([0, (l + 1)ε])] ≤

N [ỹ; C̃ 0
1,γ ([0, lε +η])], we deduce N [ŷ; C̃ 0,γ

1,γ ([0, (l +1)ε])] ≤ N [ỹ; C̃ 0,γ

1,γ ([0, lε +η])] ≤ Nl+1,

which means that ŷ ∈ B Nl+1

ỹl ,(l+1)ε
. According to Step 1 of the previous proof, B Nl+1

ỹl ,(l+1)ε
is invariant

under Γ , and so, if ẑ ≡ Γ (ŷ), then N [ẑ; C̃ 0,γ

1,γ ([0, (l + 1)ε])] ≤ Nl+1. It is now obvious that

z̃ = ẑ|[0,lε+η], which finally leads to N [z̃; C̃ 0,γ

1,γ ([0, lε + η])] ≤ N [ẑ; C̃ 0,γ

1,γ ([0, (l + 1)ε])] ≤

Nl+1. �

To conclude with this section, let us go back to the original setting of the equation:

Corollary 4.5. Under Hypothesis 2, and assuming that σ ∈ C 2,b(Rd
; Rd,m), the system (2),

interpreted with Proposition 4.1, admits a unique solution y in Cγ

1 ([0, T ]; Rd).

Proof. If ỹ stands for the solution of (38) given by Theorem 4.3, it suffices to set, for any
t ∈ [0, T ], yt ≡ Ta,φ̃(ỹt ). The details are left to the reader. �

5. The rough case

Our aim still consists in studying the system (38), but we will suppose in this section that the
Hölder coefficient γ of x belongs to (1/3, 1/2]. Definition (43) does not make sense any longer,
and some developments at order 2 are required. To this end, we will resort to the same strategy
as in the diffusion case (see Section 2.2), divided into two steps:

(1) Identifying the algebraic structure of the potential solution ỹ, which will lead to the
introduction of a space Q̃ of controlled paths.

(2) Extending the integral of the system above x ∈ Cγ

1 when ỹ ∈ Q̃.

5.1. Convolutional controlled paths

Let us start with some heuristic considerations. As in the Young case, the system will be
analyzed in the form (remember the notation (32))

ỹ0 ≡ 0, δ̃ ỹi
= J


d̃x j σ i j (y)


, yu = Ta,φ̃(ỹu) := a +

∫
R

dξ φ̃(ξ)ỹu(ξ). (52)

Assume for the moment that x is a differentiable path. Eq. (52) admits in this case a unique
solution ỹ, whose (convolutional) increments can be expanded into

(δ̃ ỹi )ts(ξ) =

∫ t

s
St−u(ξ) dx j

u σ i j (yu) = X̃ x, j
ts (ξ)σ i j (ys) + r̃ i

ts(ξ), (53)

with

X̃ x, j
ts (ξ) =

∫ t

s
St−u(ξ) dx j

u , r̃ i
ts(ξ) =

∫ t

s
St−u(ξ) dx j

u (δσ i j (y))us . (54)
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This elementary decomposition already lets emerge the structure likely to replace Qγ
x

(Definition 2.5) emerge in the convolutional setting. Let us go a little bit deeper into the analysis
of (53): if x and y are γ -Hölder (γ ∈ (1/3, 1/2]), it is natural to expect that, on the one hand, X̃ x

belongs to a space such that C̃γ

2,β([0, T ]; Rm), for some coefficient β > 0, and on the other hand,

r̃ ∈ C̃ 2γ

2,β([0, T ]; Rd). For some technical reasons that will pop out in the proof of Theorem 5.10,
we shall actually be prompted to take β = 1 in order to exhibit a global solution for (52).

Notation: For sake of clarity, we henceforth use the short form

C̃γ

k (I ; V ) ≡ C̃γ

k,1(I ; V ), k ∈ {1, 2, 3}. (55)

As in the previous section, let us label the appropriate regularity assumptions relative to the
path X̃ x :

Hypothesis 3. Suppose that x ∈ Cγ

1 ([0, T ]; Rm), with γ ∈ (1/3, 1/2]. We assume that there
exists a sequence xε of differentiable paths that satisfies

N [xε
− x; Cγ

1 ([0, T ]; Rm)]
ε→0
−→ 0,

and such that the sequence of paths defined by

X̃ xε,i
ts (ξ) ≡

∫ t

s
St−u(ξ) dxε,i

u

converges to X̃ x,i
ts (ξ) ≡

 t
s St−u(ξ) dx i

v (understood as a Young integral) w.r.t. the topology of
C̃γ

2 ([0, T ]; Rm). In particular,

X̃ x
∈ C̃γ

2 ([0, T ]; Rm) and δ̃ X̃ x
= 0.

If x is a differentiable path, we assume that this result holds true for xε
≡ x .

With the decomposition (53) in mind, the most natural and consistent framework in which to
study the system (52) is the following:

Definition 5.1. Assume that Hypothesis 3 is satisfied. For any interval I of [0, T ], we describe
as a convolutional controlled path on I , with values in Rd , any element ỹ in C̃γ

1 (I ; Rd) whose
convolutional increments can be written as

(δ̃ ỹi )ts = X̃ x, j
ts ỹx,i j

s + ỹ♯,i
ts , with ỹx

∈ Cγ

1 (I ; Rd,m) and ỹ♯
∈ C̃ 2γ

2 (I ; Rd). (56)

The set of convolutional controlled paths on I will be denoted by Q̃γ
x (I ; Rd) and we provide the

latter space with the seminorm

N [ỹ; Q̃γ
x (I ; Rd)] ≡ N [ỹ; C̃γ

1 (I ; Rd)] + N [ỹx
; C 0

1(I ; Rd,m)] + N [ỹx
; Cγ

1 (I ; Rd,m)]

+ N [ỹ♯
; C̃ 2κ

2 (I ; Rd)]. (57)

Remark 5.2. It may be worth noticing that in spite of its notation, the path ỹx defined through
(56) takes values in a Euclidean space, and not in a functional space.

In order to give sense to the system (52) when ỹ ∈ Q̃γ
x (I ; Rk), it is now important to identify

the algebraic structure of the integrand σ(yu), where yu ≡ Ta,φ̃(ỹu). To begin with, observe that
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if δ̃ ỹ admits the decomposition (56), then the increments of y can be written as

(δyi )ts =

∫
R

dξ φ̃(ξ)(δ ỹi )ts(ξ)

=

∫
R

dξ φ̃(ξ)(δ̃ ỹi )ts(ξ) +

∫
R

dξ φ̃(ξ)Ats(ξ)ỹi
s(ξ)

=

∫
R

dξ φ̃(ξ)X̃ x, j
ts (ξ)ỹx,i j

s +

∫
R

dξ φ̃(ξ)ỹ♯,i
ts (ξ) +

∫
R

dξ φ̃(ξ)Ats(ξ)ỹi
s(ξ)

= X x, j
ts ỹx,i j

s +

∫
R

dξ φ̃(ξ)ỹ♯,i
ts (ξ) +

∫
R

dξ φ̃(ξ)Ats(ξ)ỹi
s(ξ), (58)

where X x, j
ts ≡


R dξ φ̃(ξ)X̃ x, j

ts (ξ) is well-defined as an element of Cγ

2 ([0, T ]; Rm), thanks to
Hypothesis 3. Let us analyze (58) as far as Hölder continuity is concerned. For the last term of
the composition, remember the obvious estimate |Ats(ξ)| ≤ c |ξ | |t − s|, which entails here∫

R
dξ φ̃(ξ)Ats(ξ)ỹi

s(ξ)

 ≤ |t − s| N [ỹs; L1],

and consequently suggests that the path under consideration is quite smooth. Besides, the
regularity assumption on ỹ♯,i immediately gives∫

R
dξ φ̃(ξ)ỹ♯,i

ts (ξ)

 ≤ |t − s|2γ N [ỹ; Q̃γ
x ].

With those two controls in hand, it would be tempting to envisage an algebraic structure such
that

{y : (δyi )ts = X x, j
ts yx,i j

s + y♯,i
ts , with yx

∈ Cγ

1 (Rm,l) and y♯
∈ C 2γ

2 (Rk)}.

It is indeed possible to show that the latter set is invariant when composing the path with a smooth
enough mapping, which would ensure the transition between y and σ(y).

Nevertheless, a little bit more subtle analysis of (58) leads to more convenient algebraic
handling. It actually suffices to observe that the path X̃ x can be decomposed as

X̃ x
ts(ξ) =

∫ t

s
St−u(ξ) dxu = (δx)ts +

∫ t

s
Atu(ξ) dxu .

When x ∈ Cγ

1 (Rm), the latter transformation is at this point purely formal. Let us record this
through the following theoretical hypothesis, that will be examined in detail in Section 6:

Hypothesis 4. Under Hypothesis 3, we assume that the sequence of paths defined by

X̃ Axε,i
ts (ξ) ≡

∫ t

s
Atu(ξ) dxε,i

u ,

converges w.r.t. to the topology of the space C̃ 1+γ

2,0 (Rm) (we recall that this space has been defined
in Section 3.3). In particular,

X̃ Ax
∈ C̃ 1+γ

2,0 (Rm) and X̃ x
ts(ξ) = x1

ts + X̃ Ax
ts (ξ), (59)

where we have defined, according to [25], x1
≡ δx .

If x is a differentiable path, we assume that this result holds true for xε
≡ x .
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Remark 5.3. The regularity assumption contained in (59) is of course suggested by the estimate
|Ats(ξ)| ≤ c|ξ | |t − s|, having also in mind the fact that we are working with the underlying
functional space L1 (with the notation of (55)).

Going back to (58), the increments of y can now be expanded into

(δyi )ts = x1, j
ts (L φ̃ ỹx,i j

s )

+

[
X Ax, j

ts ỹx,i j
s +

∫
R

dξ φ̃(ξ)ỹ♯,i
ts (ξ) +

∫
R

dξ φ̃(ξ)Ats(ξ)ỹi
s(ξ)

]
, (60)

where we have set

L φ̃ ≡

∫
R

dξ φ̃(ξ) and X Ax
ts ≡

∫
R

dξ φ̃(ξ)X̃ Ax
ts (ξ). (61)

Therefore, owing to the regularity assumption (59), we recover here the same structure
of controlled paths as in the analysis of standard systems (see Definition 2.5), and we have
established the following transition:

Proposition 5.4. Under Hypotheses 3 and 4, if ỹ ∈ Q̃γ
x (I ; Rd) admits the decomposition

δ̃ ỹi
= X̃ x, j ỹx,i j

+ ỹ♯,i , then the path y ≡ Ta,φ̃(ỹ) belongs to Qγ
x (I ; Rd) and admits the

decomposition δyi
= x1, j yx,i j

+ y♯,i , with

yx,i j
t = L φ̃ ỹx,i j

t ,

y♯,i
ts = X Ax, j

ts ỹx,i
s +

∫
R

dξ φ̃(ξ)ỹ♯,i
ts (ξ) +

∫
R

dξ φ̃(ξ)Ats(ξ)ỹi
s(ξ).

(62)

The expected structure for the integrand σ(y) immediately arises from this result. Indeed,
we have already recalled the invariance property: if y ∈ Qγ

x (I ; Rd) and σ ∈ C 2,b(Rd
; Rd,m),

then z ≡ σ(y) ∈ Qγ
x (I ; Rd,m), where the space Qγ

x (I ; Rd,m) has also been introduced in
Definition 2.5.

5.2. Convolutional integration of controlled paths

Taking the above considerations into account, the interpretation of the system (52) is now
reduced to the problem of extending the integral J (d̃x j zi j ) to the case where x is γ -Hölder
(γ ∈ (1/3, 1/2]) and z ∈ Qγ

x (I ; Rd,m). Observe that with a view to settling a fixed-point
argument, it also matters that the extension gives birth to an element in Q̃γ

x (I ; Rd).
In order to construct the integral in question, we will rely, as in the standard case, on the a

priori existence of a convolutional Levy area adapted to the context:

Hypothesis 5. Under Hypothesis 3, we assume that the sequence of paths defined by

X̃ xεxε,i j
ts (ξ) ≡

∫ t

s
St−u(ξ) dxε,i

u (δxε, j )us

converges to a path X̃ xx w.r.t. the topology of C̃ 2γ

2 (Rm,m). In particular,

X̃ xx
∈ C̃ 2γ

2 (I ; Rm,m) and (δ̃ X̃ xx )tus = X̃ x
tu ⊗ (δx)us . (63)

If x is a differentiable path, we assume that this result holds true for xε
≡ x .
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Once endowed with this second-order path, here is the natural way to integrate a controlled
path:

Proposition 5.5. We assume that Hypotheses 3 and 5 are both satisfied, and let I = [l1, l2] be a
fixed subinterval of [0, T ]. For any path z ∈ Qγ

x (I ; Rd,m) with decomposition

δzi j
= x1,k zx,i jk

+ z♯,i j , (64)

we set, for any s < t ∈ I ,

Jts(d̃x j zi j ) ≡ X̃ x, j
ts zi j

s + X̃ xx, jk
ts zx,i jk

s + Λ̃ts


X̃ x, j z♯,i j

+ X̃ xx, jk δzx,i jk


. (65)

Then:

(1) J (d̃x j zi j ) is well-defined as an element of C̃γ

2 (I ; Rd) and for any ξ ∈ R, Jts(d̃x j zi j )(ξ)

coincides with the usual Riemann integral
 t

s St−u(ξ) dx j
u zi j

u when x is a differentiable path.

(2) For any h̃ ∈ L1, there exists a unique path z̃ ∈ Q̃γ
x (I ; Rd) such that z̃l1 = h̃ and

δ̃z̃i
= J (d̃x j zi j ).

(3) For any s < t ∈ I , Jts(d̃x j zi j ) can be described by the formula

Jts(d̃x j zi j ) = lim
|Πts |→0

n−
l=0


X̃ x, j

tl+1,tl zi j
tl + X̃ xx, jk

tl+1,tl zx,i jk
tl


in L1, (66)

where the limit is taken over any partition Πts = {t0 = t, . . . , tn = s} of [s, t] whose mesh
tends to 0.

Proof. (1) If x is a differentiable path, then, as in the Young case, we first write

Jts(d̃x j zi j )(ξ) =

∫ t

s
St−v(ξ) dx j

v zi j
v = X̃ x, j

ts (ξ) zi j
s +

∫ t

s
St−v(ξ) dx j

v (δzi j )vs .

By injecting the decomposition (64) of (δzi j )vs into the latter relation, we get

Jts(d̃x j zi j )(ξ) = X̃ x, j
ts (ξ) zi j

s +

∫ t

s
St−v(ξ) dx j

v


x1,k
vs zx,i jk

s + z♯,i j
vs


= X̃ x, j

ts (ξ) zi j
s + X̃ xx, jk

ts (ξ) zx,i jk
s +

∫ t

s
St−v(ξ)dx j

v z♯,i j
vs ,

and so, with the notation (33),

Jts(d̃x j z♯,i j ) = Jts(d̃x j zi j ) − X̃ x, j
ts zi j

s − X̃ xx, jk
ts zx,i jk

s . (67)

Let us now apply the operator δ̃ to the two sides of this equality: thanks to (34), (30), (64) and
(63), we successively deduce

δ̃


J (d̃x j z♯,i j )


= X̃ x, j δzi j
− δ̃ X̃ xx, jk zx,i jk

+ X̃ xx, jk δzx,i jk

= X̃ x, j (x1,k zx,i jk) + X̃ x, j z♯,i j
− (X̃ x, j x1,k) zx,i jk

+ X̃ xx, jk δzx,i jk

= X̃ x, j z♯,i j
+ X̃ xx, jk δzx,i jk,

and we are therefore allowed to write, via (37),

J (d̃x j z♯,i j ) = Λ̃


X̃ x, j z♯,i j
+ X̃ xx, jk δzx,i jk


.
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Going back to (67), we recover (65). The validity of the latter formula for a Hölder path x
is then a straightforward consequence of the algebraic and analytic assumptions contained in
Hypotheses 3 and 5, which also accounts for (2). As for (3), it stems from Corollary 3.9, upon
noticing that

δ̃z̃i
= (Id − Λ̃δ̃)(X̃ x, j zi j

+ X̃ xx, jk zx,i jk). �

5.3. Localized controlled paths

At this point, we are able to interpret the system (52) under Hypotheses 3–5, as the following
loop summarizes it:

Q̃γ
x

Proposition 5.4
−→ Qγ

x −→ Qγ
x

Proposition 5.5
−→ Q̃γ

x

ỹi
−→ y = Ta,φ̃(ỹ) −→ σ i j (y) −→ (δ̃z̃i ) = J (d̃x j σ i j (y)).

The proof of existence (and uniqueness) of a global solution to the system will stem from
successive fixed-point arguments in the spaces Q̃γ

x (In), for a particular sequence In of intervals
that covers [0, T ]. Patching those local solutions together will require a simultaneous control of
both the norms of ỹ and the initial condition h̃n

= ỹln on each interval In = [ln, ln+1], when
applying the three-step procedure described by the above loop.

To this end, the most natural idea consists in splitting up the reasoning into three successive
estimates, each of them corresponding to a particular step, when the intermediate space Qγ

x (I )
is provided with its usual norm N [.; Qγ

x (I )], defined by (18).
Unfortunately, the use of the latter norm turns out not to be sufficient for getting a sharp

enough final estimate expressed in terms of N [ỹ; Q̃γ
x (In)] and N [ỹln ; L1], and an additional

technical argument has to be settled here. It involves the introduction of a specific (affine)
subspace of Qγ

x (In), intended to isolate the terms that depend only on the initial condition ỹln .
We assume in this subsection that x satisfies Hypotheses 3–5, and we fix an arbitrary

subinterval I = [l1, l2] of [0, T ].

Definition 5.6. Suppose that k ∈ N∗ and f ∈ C 1
2(I ; Rk). A path y ∈ Cγ

1 (I ; Rk) will be said
to be γ -controlled around f on I if its increments admit the following decomposition: for all
s < t ∈ I ,

(δyi )ts − f i
ts = x1, j

ts yx,i j
s + y♭,i

ts with yx
∈ Cγ

1 (I ; Rm,k) and y♭
∈ C 2γ

2 (I ; Rk). (68)

The set of such paths will be denoted by Aγ

x, f (I ; Rk), and with any y ∈ Aγ

x, f (I ; Rk), we
associate the quantity

M[y; Aγ

x, f (I ; Rk)] ≡ N [yx
; C 0

1(I ; Rk,m)] + N [yx
; Cγ

1 (I ; Rk,m)]

+ N [y♭
; C 2γ

2 (I ; Rk,m)] + N [y; Cγ

1 (I ; Rk)].

As with the controlled paths, we then define, for any f ∈ C 1
2(I ; Rk,l), Aγ

x, f (I ; Rk,l) as the set

of paths y ∈ Cγ

1 (I ; Rk,l) such that, for any j = 1, . . . , l, y. j
∈ Aγ

x, f (I ; Rk), and we associate
with those elements the quantity

M[y; Aγ

x, f (I ; Rk,l)] ≡

l−
j=1

N [y. j
; Aγ

x, f (I ; Rk)].
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Obviously, Aγ

x,0(I ) = Qγ
x (I ) and more generally: for any f ∈ C 1

2(I ; Rk), Aγ

x, f (I ) ⊂ Qγ
x (I ).

The crucial point in our localization around f is precisely that this latter increment does not
(directly) intervene in the computation of M[y; Aγ

x, f (I ; Rk)].

Let us now see how the sets Aγ

x, f (I ) pop out naturally when one integrates a convolutional
controlled path with respect to ξ .

Proposition 5.7. We assume that Hypotheses 3 and 4 are both satisfied. Let ỹ ∈ Q̃γ
x (I ; Rk) be

such that ỹl1 = h̃ ∈ L1 and δ̃ ỹ = X̃ x, j ỹx,i j
+ ỹ♯,i , and set y ≡ Ta,φ̃(ỹ). Then y ∈ Aγ

x, f (I ; Rk),

with fts ≡

R dξ φ̃(ξ) Ats(ξ)Ss−l1(ξ)h̃(ξ). Moreover,

M[y; Aγ

x, f (I ; Rd)] ≤ cx


N [ỹ; Q̃γ

x (I ; Rd)] + |I |1−γ N [h̃; L1]


. (69)

Proof. From (60), we can write, for all s < t ∈ I ,

(δyi )ts = x1, j
ts (L φ̃ ỹx,i j

s ) + X̃ Ax, j
ts ỹx,i j

s +

∫
R

dξ φ̃(ξ) ỹ♯,i
ts (ξ) +

∫
R

dξ φ̃(ξ)Ats(ξ)ỹi
s(ξ)

= x1, j
ts (L φ̃ ỹx,i j

s ) + X̃ Ax, j
ts ỹx,i j

s +

∫
R

dξ φ̃(ξ) ỹ♯,i
ts (ξ)

+

∫
R

dξ φ̃(ξ)Ats(ξ)(δ̃ ỹi )sl1(ξ) + f i
ts .

Now set yx,i j
s ≡ L φ̃ ỹx,i j

s , y♭,i
ts ≡ X̃ Ax, j

ts ỹx,i j
s +


R dξ φ̃(ξ)


ỹ♯,i

ts (ξ) + Ats(ξ)(δ̃ ỹi )sl1(ξ)


.

Clearly,

N [y♭
; C 2γ

2 ] ≤ cx


N [ỹx

; C 0
1 ] + N [ỹ♯

; C̃ 2γ

2 ] + N [ỹ; C̃γ

1 ]


≤ cx N [ỹ; Q̃γ

x ],

and |(δy)ts | ≤ | fts | + |t − s|γ N [X x
; Cγ

2 ]N [ỹx
; C 0

1 ] + |t − s|2γ N [y♭
; C 2γ

2 ]. As | fts | ≤

|t − s| N [h̃; L1], we get N [y; Cγ

1 ] ≤ |I |1−γ N [h̃; L1] + cx N [ỹ; Q̃γ
x ], and (69) is thus

proved. �

The following result is the analog of [19, Proposition 4] in the context of localized controlled
paths:

Proposition 5.8. Suppose that y ∈ Aγ

x, f (I ; Rd) with yl1 = h and δyi
− f i

= x1, j yx,i j
+ y♭,i ,

and consider a mapping σ ∈ C 3,b(Rd
; Rd,m). Then σ(y) ∈ Aγ

x,Dσ(h) f (I ; Rd,m) and the
following estimate holds true:

M[σ(y); Aγ

x,Dσ(h) f (I )] ≤ cx,σ


1 + M[y; Aγ

x, f (I )]2

+ |I |1−γ M[y; Aγ

x, f (I )]N [ f ; C 1
2(I )] + |I |1−γ N [ f ; C 1

2(I )]

. (70)

Moreover, if y(1), y(2)
∈ Aγ

x, f (I ; Rd,m) are such that y(1)
l1

= y(2)
l1

, then

N [σ(y(1)) − σ(y(2)); Qγ
x (I )]

≤ cx,σ N [y(1)
− y(2)

; Qγ
x (I )]


1 + M[y(1)

; Aγ

x, f (I )]2
+ M[y(2)

; Aγ

x, f (I )]2

+ |I |1−γ N [ f ; C 1
2(I )](1 + N [y(1)

; Cγ

1 (I )] + N [y(2)
; Cγ

1 (I )])

. (71)
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Proof. This is a matter of standard differential calculus, which mostly appeals to the same
arguments as in the proofs of [19, Proposition 4] and [32, Lemma 3.1]. For the sake of
conciseness, we refer the reader to the latter articles for further details. �

Let us again point out the fact that Aγ

x, f is a subset of Qγ
x . This means in particular that for

any element z ∈ Aγ

x, f (I ; Rd,m), the integral J (d̃x j zi j ) can be defined using Proposition 5.5.
For those particular paths, we have the following control at our disposal:

Proposition 5.9. Assume that Hypotheses 3 and 5 are both satisfied. If z ∈ Aγ

x, f (I ; Rd,m), then

the seminorm of the path z̃ ∈ Q̃γ (I ; Rd) defined by z̃l1 = h̃ ∈ L1 and δ̃z̃i
= J (d̃x j zi j ) can be

estimated by

N [z̃; Q̃γ
x (I ; Rd)] ≤ cx


N [z; C 0

1(I ; Rd,m)] + |zx
l1 | + |I |γ M[z; Aγ

x, f (I ; Rd,m)]

+ |I |1−γ N [ f ; C 1
2(I ; Rd,m)]


. (72)

Proof. According to Proposition 5.5, the decomposition of z̃ as a convolutional controlled path
is given by δ̃z̃i

= X̃ x, j z̃x,i j
+ z̃♯,i , with z̃x

= z and z̃♯
= z̃♯,1

+ z̃♯,2, where

z̃♯,1,i
≡ X̃ xx, jk zx,i jk and z̃♯,2,i

≡ Λ̃(X̃ x, j (z♭,i j
+ f i j ) + X̃ xx, jk δzx,i jk).

Since (δzi j )ts = f i j
ts + x1,k

ts zx,i jk
s + z♭,i j

ts = f i j
ts + x1,k

ts zx,i jk
l1

+ x1,k
ts (δzx,i jk)sl1 + z♭,i j

ts ,

N [ζ z̃
; Cγ

1 (I )] = N [z; Cγ

1 (I )] ≤ cx


|I |1−γ N [ f ; C 1

2(I )] + |zx
l1 | + |I |γ M[z; Aγ

f,h(I )]


.

As for the residual term, we first have, by writing z̃♯,1,i
ts = X̃ xx, jk

ts zx,i jk
l1

+ X̃ xx, jk
ts (δzx,i jk)sl1 ,

N [z̃♯,1
; C̃ 2γ

2 ] ≤ cx


|zx

l1
| + |I |γ M[z; Aγ

x, f (I )]


, while, due to the contraction property (16),

N [z̃♯,2
; C̃ 2γ

2 (I )] ≤ cx


|I |γ M[z; Aγ

x, f (I )] + |I |1−γ N [ f ; C 1
2(I )]


.

Finally, as δ̃z̃i
= X̃ x, j z̃x,i j

+ z̃♯,i ,

N [z̃; C̃γ

1 (I )] ≤ cx


N [z; C 0

1(I )] + |zx
l1 | + |I |γ M[z; Aγ

x, f (I )] + |I |1−γ N [ f ; C 1
2(I )]


,

which achieves the proof of (72). �

5.4. Solving the equation

We are now in position to solve the system:

Theorem 5.10. Assume that Hypotheses 3–5 are all satisfied. If σ ∈ C 3,b(Rd
; Rd,m), then the

system (52), interpreted with Proposition 5.5, admits a unique solution ỹ in Q̃γ
x ([0, T ]; Rd).

Moreover, there exists a function C : (R+)3
→ R+ growing with each of its three arguments,

such that

N [ỹ; Q̃γ
x ([0, T ]; Rd)] ≤ C(N [X x

; C̃γ

2 ], N [X̃ Ax
; C̃ 1+γ

2,0 ], N [X̃ xx
; C̃ 2γ

2 ]). (73)
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Proof. As we announced in the introduction, the proof will consist in successive fixed-point
arguments on a sequence of intervals (In)n that covers [0, T ]. We shall more precisely consider
the sequence given by

I N
n = [l N

n , l N
n+1] with l N

0 = 0 and εn = εN
n = l N

n+1 − l N
n =

1
N + n

, (74)

where N is a positive integer that will be determined in the course of the proof.
On each of those intervals, the procedure will (as usual) be divided into two steps: we first

establish the existence of invariant subsets for the mapping Γ associated with the system, and
then show that the restriction of Γ to some of those subsets is a strict contraction.

The results of Section 5.3 show that in order to control the image z̃ ≡ Γ (ỹ) of a path
ỹ ∈ Q̃γ

x (I N
n ), it is important to have an estimate of the norm of ỹ in Q̃γ

x (I N
n ), and also of

the norm of the initial condition h̃n ≡ ỹl N
n

. This general observation will be at the core of our
reasoning.

Step 1: The invariance of balls. Let us temporarily fix the parameter N in (74), and introduce
two additional parameters α1, α2 > 0, the value of which will also be determined during the
proof. We consider the sets

B h̃n
n ≡ {ỹ ∈ Q̃γ

x (I N
n ) : ỹl N

n
= h̃n, ỹx

l N
n

= σ(hn), N [ỹ; Q̃γ
x (I N

n )] ≤ (N + n)α2},

where h̃n ∈ L1 is such that N [h̃n; L1] ≤ (N + n)α1 . As in the proof of Theorem 4.3, if ỹ ∈ B h̃n
n ,

z̃ ≡ Γ (ỹ) stands for the path in Q̃γ
x (I N

n ) defined by two conditions: z̃l N
n

= h̃n and for all

s, t ∈ I N
n , (δ̃z̃)ts = Jts(d̃x j σ i j (y)), where y ≡ Ta,φ̃(ỹ).

With this notation, we are going to prove that α1 and α2 can be picked in such a way that, on

the one hand, the sets B h̃n
n are invariant under Γ , and, on the other hand, the following property

holds true:

(H) If ỹ ∈ B h̃n
n , then N [ỹl N

n+1
; L1] ≤ (N + n + 1)α1 .

The latter condition will allow us to patch successive fixed points together at Step 3.

Suppose that ỹ ∈ B h̃n
n , z̃ ≡ Γ (ỹ). In order to apply the results of Section 5.3, define, for all

s < t ∈ I N
n ,

yt ≡ Ta,φ̃(ỹt ), f n
ts ≡

∫
R

dξ φ̃(ξ)Ats(ξ)Ss−l N
n
(ξ)h̃n(ξ), gn

ts ≡ Dσ(yl N
n
) f n

ts . (75)

Estimate (72) first gives

N [z̃; Q̃γ
x (I N

n )] ≤ cx


N [σ(y); C 0

1(I N
n )] + |σ(y)x

l N
n
| + ε

γ
n M[σ(y); Aγ

x,gn (I N
n )]

+ ε
1−γ
n N [gn

; C 1
2(I N

n )]


. (76)

According to Propositions 5.8 and 5.7, we know that

σ(y)
x,i jk
l N
n

= ∂pσ
i j (yl N

n
) yx,pk

l N
n

= ∂pσ
i j (yl N

n
) (L φ̃ ỹx,pk

l N
n

) = L φ̃ ∂pσ
i j (yl N

n
) σ pk(h̃n),

so |σ(y)x
l N
n
| ≤ cσ . Besides, we obviously have

N [gn
; C 1

2(I N
n )] ≤ ‖Dσ‖∞ N [ f n

; C 1
2(I N

n )] ≤ cσ N [h̃n; L1].
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Going back to (76), we deduce

N [z̃; Q̃γ
x (I N

n )] ≤ cx,σ


1 + ε

γ
n M[σ(y); Aγ

x,gn (I N
n )] + ε

1−γ
n N [h̃n; L1]


.

The association of estimates (70) and (69) then entails

N [z̃; Q̃γ
x (I N

n )] ≤ c1
x,σ


1 + ε

1−γ
n N [h̃n; L1] + ε

γ
n N [ỹ; Q̃γ

x (I N
n )]2

+ εn N [ỹ; Q̃γ
x (I N

n )] N [h̃n; L1] + ε
2−γ
n N [h̃n; L1]

2


. (77)

In order to establish the invariance of B h̃n
n , or in other words to prove that N [z̃; Q̃γ

x (I N
n )] ≤

(N + n)α2 (for N large enough), a first series of conditions naturally arises from (77):
α1 − (1 − γ ) < α2
2α2 − γ < α2
α1 + α2 − 1 < α2
2α1 − 2 + γ < α2,

(78)

and it is easily seen that this system reduces to
α2 < γ

α1 < 1 − γ + α2.
(79)

If α1, α2 > 0 are assumed to satisfy those two conditions, then we can pick N large enough
that the expected stability property is checked. Indeed, from (77), we get N [z̃; Q̃γ

x (I N
n )] ≤

6c1
x,σ (N + n)α3 , where α3 stands for the largest left-hand side of system (78). As α3 < α2, we

can pick N such that for any n ≥ 0, (N + n)α2−α3 ≥ 6c1
x,σ , and so N [z̃; Q̃γ

x (I N
n )] ≤ (N + n)α2 .

It now remains to analyze condition (H). To this end, write

ỹi
l N
n+1

= Sεn ỹi
l N
n

+ (δ̃ ỹi )l N
n+1l N

n
= Sεn h̃i

n + X̃ x, j
l N
n+1l N

n
σ i j (h̃n) + ỹ♯,i

l N
n+1l N

n
,

which leads to

|ỹl N
n+1

| ≤ |h̃n| + cx,σ ε
γ
n + ε

2γ
n N [ỹ; Q̃γ

x (I N
n )]

≤ (N + n)α1 + cx,σ (N + n)−γ
+ (N + n)α2−2γ . (80)

Then observe the asymptotic equivalent cx,σ m−γ
+mα2−2γ

(m+1)α1−mα1 ∼m→∞
cx,σ m−γ

+mα2−2γ

α1 mα1−1 : thus, by adding
to (79) the (compatible) condition

α1 > 1 − γ, (81)

we deduce that there exists an integer N large enough that, for any n ∈ N∗,

(N + n)α1 + cx,σ (N + n)−γ
+ (N + n)α2−γ

≤ (N + n + 1)α1 .

We pick N in this way to retrieve, from (80), property (H).

Step 2: The contraction property. Suppose that ỹ(1), ỹ(2)
∈ B h̃n

n , z̃(1)
≡ Γ (ỹ(1)), z̃(2)

≡ Γ (ỹ(2)),
and set y(1)

≡ Ta,φ̃(ỹ(1)), y(2)
≡ Ta,φ̃(ỹ(2)). Here again, the expected property will stem

from the estimates of Section 5.3. It is first worth noticing that if y(1), y(2)
∈ Aγ

x, f (I ), then
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y(1)
−y(2)

∈ Aγ

x,0(I ) and N [y(1)
−y(2)

; Aγ

x,0(I )] = N [y(1)
−y(2)

; Qγ
x (I )]. Therefore, according

to (72),

N [z̃(1)
− z̃(2)

; Q̃γ
x (I N

n )] ≤ c


N [σ(y(1)) − σ(y(2)); C 0
1(I N

n )]

+ |σ(y(1))x
l N
n

− σ(y(2))x
l N
n
| + ε

γ
n N [σ(y(1)) − σ(y(2)); Qγ

x (I N
n )]


.

Of course, σ(y(1))x
l N
n

= σ(y(2))x
l N
n

and

N [σ(y(1)) − σ(y(2)); C 0
1(I N

n )] ≤ ε
γ
n N [σ(y(1)) − σ(y(2)); Qγ

x (I N
n )],

which, together with estimates (71) and (69), easily gives

N [z̃(1)
− z̃(2)

; Q̃γ
x (I N

n )] ≤ cx,σ JN+n N [ỹ(1)
− ỹ(2)

; Q̃γ
x (I N

n )],

with

Jn = n−γ
+ n−γ+2α2 + n2α1−(2−γ )

+ nα1−1
+ nα1+α2−1.

In order to ensure that limN→∞ JN = 0, we are this time led to the system
2α2 − γ < 0
2α1 − 2 + γ < 0
α1 − 1 < 0
α1 + α2 − 1 < 0,

(82)

which, intersected with both conditions (79) and (81), provides the final assumption
0 < α2 <

γ

2
1 − γ < α1 < 1 − γ + α2.

Once such coefficients are fixed, we can choose N large enough that both the contraction property

and the property (H) are satisfied on the invariant balls B h̃n
n , n ≥ 0.

Step 3: Patching the solutions. The construction of the expected global solution ỹ ∈ Q̃γ
x ([0, T ])

is now reduced to a patching argument.
First, we define the sequence (ỹ(n), ỹ(n),x )n≥0 according to the following iterative procedure:

(ỹ(0)), ỹ((0),x)
∈ Q̃γ

x (I N
0 ) is the fixed point of Γ in B0

0 and for any n ≥ 1, (ỹ(n), ỹ(n),x ) ∈ Q̃γ
x (I N

n )

is the fixed point of Γ in B
ỹ(n−1)

l N
n

n . The latter construction is made possible by the two previous
steps. Then we define, for any t ∈ [0, T ],

ỹt ≡

NT−
n=0

ỹ(n)
t 1I N

n
(t), ỹx

t ≡

NT−
n=0

ỹ(n),x
t 1I N

n
(t),

where NT stands for the smallest integer such that
∑NT

n=0 |I N
n | ≥ T .

If l N
k−1 < s ≤ l N

k < · · · < l N
k′ ≤ t < l N

k′+1, one can appeal to the decomposition

(δ̃ ỹ)ts = St−l N
k

· (δ̃ ỹ)l N
k s + (δ̃ ỹ)tl N

k′
+

k′
−1−

i=k

St−l N
i+1

· (δ̃ ỹ)l N
i+1l N

i
, (83)

together with the relation δ̃ X̃ x
= 0, to deduce

(δ̃ ỹi )ts = X̃ x, j
ts ỹx,i j

s + ỹ♯,i
ts , (84)
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with ỹ♯,i
ts = ỹ♯,1,i

ts + ỹ♯,2,i
ts ,

ỹ♯,1,i
ts ≡ X̃ x, j

tl N
k

[
ỹ(k),x,i j

l N
k

− ỹ(k−1),x,i j
s

]
+

k′−
p=k+1

X̃ x, j
tl N

p

[
ỹ(p),x,i j

l N
p

− ỹ(p−1),x,i j
l N
p−1

]
,

ỹ♯,2
ts ≡ St−l N

k
· ỹ(k−1),♯,i

l N
k s

+ ỹ(k′),♯,i
tl N

k′

+

k′
−1−

p=k

St−l N
p+1

· ỹ(p),♯,i
ln
p+1l N

p
.

From those expressions, and owing to the regularity of each ỹ(k),x , it is easily seen that (ỹ, ỹx )

defines an element of Q̃γ
x ([0, T ]).

Let us finally go back to (83), which can also be written as

(δ̃ ỹi )ts = St−l N
k

· Jl N
k s(d̃x j σ i j (y)) + Jtl N

k′
(d̃x j σ i j (y))

+

k′
−1−

p=k

St−l N
p+1

· Jl N
p+1l N

p
(d̃x j σ i j (y)).

By invoking the relation δ̃


J (d̃x j zi j )


= 0, we get

Jtl N
k′−1

(d̃x j σ i j (y)) = Jtl N
k′
(d̃x j σ i j (y)) + St−l N

k′
· Jl N

k′ l
N
k′−1

(d̃x j σ i j (y)),

and hence

(δ̃ ỹi )ts = St−l N
k

· Jl N
k s(d̃x j σ i j (y)) + Jtl N

k′−1
(d̃x j σ i j (y))

+

k′
−2−

p=k

St−l N
p+1

· Jl N
p+1l N

p
(d̃x j σ i j (y)).

The iteration of this simplification procedure leads to (δ̃ ỹi )ts = Jts(d̃x j σ i j (y)) for all s, t ∈

[0, T ].
The uniqueness of the solution is easy to establish with the estimates of Step 2, just as in

the diffusion case (see for instance the proof of [15, Theorem 2.6]). As for the control result
(73), it is a consequence of decomposition (84), having in mind the local controls induced by the

balls B h̃n
n . �

Once endowed with the control result (73), the continuity of the Itô map associated with (38)
can be proved along the same lines as in the case of ordinary systems. The reader is (here again)
referred to the proof of [15, Theorem 2.6] for a detailed analysis of the method. For the statement
of this result, we call the constant a that appears in (52) the ‘initial condition’ of the system. This
actually corresponds to the initial condition of the original equation (2).

Corollary 5.11. Assume that Hypotheses 3–5 are all satisfied for two distinct paths x (1) and
x (2), and suppose that σ ∈ C 3,b(Rd

; Rd,m). If ỹ(1) (resp. ỹ(2)) denotes the solution of the
system (52) driven by x (1) (resp. x (2)) in the sense of Proposition 5.5, with ‘initial condition’
a(1) (resp. a(2)), then

N [ỹ(1)
− ỹ(2)

; C̃γ

1 ([0, T ]; Rm)] ≤ cx (1),x (2)


|a(1)

− a(2)
| + N [X̃ x (1)

− X̃ x (2)

; C̃γ

2 ]

+ N [X̃ Ax (1)

− X̃ Ax (2)

; C̃ 1+γ

2,0 ] + N [X̃ x (1)x (1)

− X̃ x (2)x (2)

; C̃ 2γ

2 ]


, (85)
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with

cx (1),x (2) ≡ C


X̃ x (1)

, X̃ x (2)

, X̃ Ax (1)

, X̃ Ax (2)

, X̃ x (1)x (1)

, X̃ x (2)x (2)


,

where C is a function that grows with its arguments.

Let us conclude with a transposition of this result into the original setting of (2):

Corollary 5.12. Under Hypotheses 3–5, and assuming that σ ∈ C 3,b(Rd
; Rd,m), the system (2),

interpreted with Propositions 5.5 and 5.7, admits a unique solution y in Qγ
x ([0, T ]; Rd).

Moreover, the continuity result (85) remains true for y, w.r.t. the (classical) Hölder norm
N [.; Cγ

1 ] in the left-hand side.

Proof. As in the Young case, it suffices to set, for any t ∈ [0, T ], yt ≡ Ta,φ̃(ỹt ), where ỹ is the
path given by Theorem 5.10. �

6. Application to rough paths

The aim now consists in proving that the hypotheses that we have raised throughout the
previous two sections can actually be checked for a large class of Hölder paths x . If we put
those different hypotheses (Hypotheses 2–5) together, we have to show the existence of three
paths (X̃ x , X̃ Ax , X̃ xx ) that would extend the three definitions (valid when x is differentiable)

X̃ x
ts(ξ) =

∫ t

s
St−u(ξ) dxu, X̃ Ax

ts (ξ) =

∫ t

s
At−u(ξ) dxu, (86)

X̃ xx
ts (ξ) =

∫ t

s
St−u(ξ) dxu ⊗ x1

us, (87)

above a γ -Hölder x , with γ > 1/3 (remember that x1
≡ δx).

6.1. An integration by parts argument

We propose here to extend (86) and (87) via elementary integrations by parts, following the
general scheme∫ t

s
St−u(ξ) dxu =

∫ t

s
St−u(ξ) d(xu − xs) = x1

ts −

∫ t

s

d

du
(St−u(ξ))x1

us du. (88)

Let us first evoke the Young case (γ > 1/2), for which only X̃ x comes into the picture:

Proposition 6.1. Suppose that x ∈ Cγ

1 ([0, T ]; Rm), with γ > 1/2. If

R dξ |φ̃(ξ)|(1+|ξ |

1+γ ) <

∞, then any sequence of differentiable paths xε such that

N [xε
− x; Cγ

1 ([0, T ]; Rm)]
ε→0
−→ 0,

satisfies Hypothesis 2.

Proof. For any differentiable path x̃ , one has, thanks to (88),

|X̃ x̃
ts(ξ)| ≤ |x̃1

ts | + |ξ |

∫ t

s
|x̃1

us | du ≤ c N [x̃; Cγ

1 ] |t − s|γ {1 + |ξ |} . (89)
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Since

R dξ |φ̃(ξ)|(1 + |ξ |

1+γ ) < ∞, it is then easily seen that (X̃ xε
)ε>0 is a Cauchy sequence

in Cγ

2,γ (Rm). �

The extension of the two paths X̃ Ax et X̃ xx , which is needed in order to apply the results
of Section 5, that is to say when γ ∈ (1/3, 1/2], will stem from the same kind of argument.
It suffices to notice that, if x is a differentiable path,

X̃ Ax
ts (ξ) =

∫ t

s

d

du
(St−u(ξ))x1

us du, (90)

and if we denote by x2 the standard Lévy area of x (x2
ts ≡

 t
s dxv ⊗ (δx)vs), which is at the core

of the rough paths methods, we have

X̃ xx
ts (ξ) =

∫ t

s
St−u(ξ)

d

du
(x2

us) du = x2
ts +

∫ t

s

d

du
(St−u(ξ)) x2

us du. (91)

With the same argument as in the previous proof, those transformations lead to the following
assertion:

Proposition 6.2. Let x be a path allowing the construction of a 2-rough path x = (x1, x2) ∈

Cγ

2 (Rm) × C 2γ

2 (Rm,m), for some coefficient γ > 1/3. If

R dξ |φ̃(ξ)|(1 + |ξ |

2) < ∞, then any
sequence xε of differentiable paths such that

N [xε
− x; Cγ

1 ([0, T ]; Rm)] + N [xε,2
− x2

; C 2γ

2 ([0, T ]; Rm,m)]
ε→0
−→ 0 (92)

satisfies Hypotheses 3–5.

We are thus in position to provide a more explicit formulation of Corollary 5.12:

Theorem 6.3. Let x : [0, T ] → Rm be a γ -Hölder path (γ > 1/3) allowing the construction
of a geometric 2-rough path x = (x1, x2) ∈ Cγ

2 (Rm) × C 2γ

2 (Rm,m). Assume that φ can
be represented as (5) on [0, T ], for some function φ̃ such that the integrability condition
R dξ |φ̃(ξ)|(1+|ξ |

2) < ∞ is satisfied. Then, if σ ∈ C 3,b(Rd
; Rd,m), the system (2), interpreted

with Propositions 5.5 and 6.2, admits a unique solution in the space Qγ
x ([0, T ]; Rd) of controlled

paths. Moreover, the continuity statement (3) holds true.

Remark 6.4. In retrospect, with the help of the continuity result (3), we can provide another
(equivalent) interpretation of the rough system (2). Remember first that when x is a differentiable
path, the interpretation given in Section 4 or in Section 5 coincides with the ordinary Volterra
equation, understood in the Riemann–Lebesgue sense: this is the content of points (1) in
Propositions 4.1 and 5.5, and one of the main principles of our approach. Consequently, due
to (3), our understanding of the rough Volterra equation can also be summed up as follows: for
any sequence xε of differentiable paths that converges to x in the sense of (92), the sequence yε

of ordinary solutions to (2) associated with xε converges to a path y with respect to the γ -Hölder
topology.

Remark 6.5. With the interpretation exhibited in Remark 6.4, it is easily seen that the solution y
given by Theorem 6.3 does not depend on the particular representative φ̃ in (5), provided the inte-
grability condition is satisfied. Assume indeed that φ̃1, φ̃2 are such that


R dξ |φ̃i (ξ)|(1+|ξ |

2) <

∞ and φ1
|[0,T ]

= φ2
[0,T ]

= φ[0,T ], where φi (t) ≡

R dξ St (ξ) φ̃i (ξ). If x is a differentiable
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path, the path y1 (resp. y2) associated with φ̃1 (resp. φ̃2) through Theorem 6.3 is known to be
solution of the ordinary equation

yi
t = ai

+

∫ t

0
φi (t − u)σ (yi

u) dxu = ai
+

∫ t

0
φ(t − u)σ (yi

u) dxu,

and hence, by uniqueness, y1
= y2. The result in the general rough case can then be deduced by

passing to the limit.

Keeping Remark 6.5 in mind, Theorem 1.1 is now obtained via the following elementary
result:

Proposition 6.6. If φ ∈ C 3(R; R), then there exists a function φ̃T satisfying∫
R

dξ |φ̃T (ξ)|(1 + |ξ |
2) < ∞

and such that φ admits the representation (5) on [0, T ].

Proof. As we announced in Section 3.1, it suffices to extend the restriction φ|[0,T ] into a
compactly supported function φT ∈ C 3(R; R). Then

φT = F φ̃T , with φ̃T (ξ) ≡ (F −1φT )(ξ) = c
∫
R

e2iπ tξφT (t) dt.

Since φ̃T ∈ L2(R), one has∫
R

dξ |φ̃T (ξ)|(1 + |ξ |
2) ≤ 2

∫
|ξ |≤1

dξ |φ̃T (ξ)| + c
∫

|ξ |≥1

F −1(φ′′′

T )(ξ)


|ξ |

≤ c

‖φ̃T ‖L2 + ‖F −1(φ′′′

T )‖L2


< ∞. �

6.2. The (fractional) Brownian motion case

Owing to the results of [18] or [36], we know that the existence of a geometric 2-rough
path holds true for a fractional Brownian motion with Hurst index H > 1/3. This means that
Theorem 1.1 can be applied in this situation, giving birth to the first result of existence and
uniqueness of a global solution for (2) when 1/3 < H < 1/2. In the standard Brownian case
(H = 1/2), this solution can be shown to (almost surely) coincide with the Stratonovich one (see
for instance [18, Section 17.2] for a similar statement).

The Itô interpretation of (2) in the presence of a standard Brownian motion x = B can also
be recovered from the considerations of Section 5, by defining the convolutional 2-rough path
(X̃ B, X̃ AB, X̃ B B) as Itô integrals, i.e., X̃ B,i

ts (ξ) ≡
 t

s St−u(ξ) d Bi
u , X̃ AB,i

ts (ξ) ≡
 t

s At−u(ξ) d Bi
u ,

X̃ B B,i j
ts (ξ) ≡

 t
s St−u(ξ) d Bi

u (δB j )us . Let us sketch out the two steps of this identification,
which essentially follows the lines of [14, Section 6.2].
First of all, remember that the Itô–Volterra equation

Y i
t = ai

+

∫ t

0
φ(t − u)σ i j (Yu) d B j

u , t ∈ [0, T ], (93)
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is known to have a unique solution under the assumptions of our study, namely φ, σ (at least)
differentiable (see for instance [6]). Then, assuming that φ̃ ∈ L1(R), one can see with the help
of the stochastic Fubini theorem that (93) is equivalent to

(δ̃Ỹ i )ts(ξ) =

∫ t

s
St−u(ξ) d B j

u σ i j (Yu), Y i
u = ai

+

∫
R

dξ φ̃(ξ)Ỹ i
u(ξ). (94)

The latter formulation allows to make the link with the formalism of Section 5:

Lemma 6.7. Assume that σ ∈ C 1,b(Rd
; Rd,m) and that φ̃ satisfies


R dξ |φ̃(ξ)|(1 + |ξ |) < ∞.

Then, with the notation of Section 5, the Itô solution Ỹ of (94) almost surely belongs to
Q̃γ

B([0, T ]; Rd) for any 0 < γ < 1/2.

Proof. The decomposition of Ỹ as an element of Q̃γ

B([0, T ]; Rd) is naturally given by

(δ̃Ỹ i )ts = X̃ B, j
ts σ i j (Ys) + Ỹ ♯,i

ts , with Ỹ ♯,i
ts (ξ) ≡

∫ t

s
St−u(ξ) d B j

u (δσ i j (Y ))us .

In order to see that σ(Y ) (resp. Ỹ ♯) almost surely belongs to Cγ

1 ([0, T ]; Rd,m) (resp. C̃ 2γ

2 ([0, T ];

Rd)), one can rely on a (δ̃-)adapted version of the classical Garsia–Rodemich–Rumsey
lemma, which reduces the problem to (easy) moments estimates. The reader is referred to
[20, Lemma 3.8] for the statement of such a result in a convolutional context. Some additional
details about this standard reasoning can also be found in [14, Proposition 6.8]. �

Once Ỹ has been identified as an element of Q̃γ

B([0, T ]; Rd), Proposition 5.5 provides us

with a pathwise definition of the integral J


d̃ B j σ i j (Y )


based on the Itô 2-rough paths

(X̃ B, X̃ AB, X̃ B B). The second step towards the expected identification can now be expressed
as follows:

Proposition 6.8. Assume that σ ∈ C 3,b(Rd
; Rd,m) and that φ̃ satisfies


R dξ |φ̃(ξ)|(1 + |ξ |) <

∞. Then, for any ξ ∈ R, the integral J


d̃ B j σ i j (Y )


(ξ) constructed in Proposition 5.5 almost

surely coincides with the Itô integral
 t

s St−u(ξ) d B j
u σ i j (Yu). Consequently, the solution given

by Theorem 5.10 is (a.s.) equal to the Itô solution of (93) and the following continuity property
holds: if Y (resp. Ŷ ) stands for the solution of (93) with initial condition a (resp. â), one has

N [Y − Ŷ ; Cγ

1 (Rd)] ≤ CB
a − â

 , (95)

for some (a.s.) finite random variable CB .

Proof. Like in (60), one can decompose the Itô integral as∫ t

s
St−u(ξ) d B j

u σ i j (Yu) = X̃ B, j
ts (ξ)σ i j (Ys) + X̃ B B, jl

ts (ξ) L φ̃ ∂kσ
i j (Ys)σ

kl(Ys) + R̃i
ts(ξ),

where L φ̃ ≡

R dξ φ̃(ξ) and R̃i

ts(ξ) ≡
 t

s St−v(ξ) d B j
v M i j

vs with

M i j
vs ≡


(δσ i j (Y ))us − (δY k)us∂kσ

i j (Ys)


+

∫
R

dξ φ̃(ξ)


X̃ AB,l(ξ)σ kl(Ys) + Ỹ ♯,k
us (ξ) + Aus(ξ)Ỹ k

s (ξ)


· ∂kσ
i j (Ys).
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From this expression, one can apply the (δ̃-)G–R–R lemma that we have already evoked in
the proof of Lemma 6.7 and assert that R̃ ∈ C̃µ

2 ([0, T ]; Rd) a.s., for some coefficient µ > 1
(this actually follows the lines of [14, Proposition 6.11]). Consequently, by setting (δ̃ Z̃ i )ts ≡

Jts


d̃ B j σ i j (Y )


, one gets δ̃(Ỹ − Z̃) ∈ Im δ̃ ∩ C̃µ̃

2 ([0, T ]; Rd) with µ̃ > 1, which, according to

Lemma 3.7, leads to δ̃Ỹ = δ̃ Z̃ , so the two integrals do indeed coincide.
The identification of the solutions now follows from the uniqueness property contained in
Theorem 5.10, while (95) is deduced from Corollary 5.12. �

Remark 6.9. The above integrability assumption

R dξ |φ̃(ξ)|(1+|ξ |) < ∞ (possibly translated

into φ ∈ C 2(R; R) as in Proposition 6.6) is here weaker than the hypothesis of Theorem 6.3,
namely


R dξ |φ̃(ξ)|(1 + |ξ |

2) < ∞. This is due to the relative crudeness of the integration
by parts argument used in Section 6.1, which entails a loss of “spatial” regularity through the
derivative d

du Su(ξ) = c ξ Su(ξ). The more direct definition of the convolutional Brownian rough
paths as Itô integrals allows us to avoid this issue.

Remark 6.10. Of course, the interest of our study in the Brownian case does not lie in the
exhibition of a solution for (93), which has been known for a long time. On the other hand,
the continuity property of the flow, which appears as a typical consequence of the rough paths
strategy, is new as far as we are aware. Like [13,15], it is likely to offer new perspectives as far
as the discretization of stochastic Volterra systems is concerned (to be compared with [35]). For
the sake of conciseness, we prefer to leave this task in abeyance, though.
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