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Abstract In this note, we provide a nontrivial example of a differential equation
driven by a fractional Brownian motion with Hurst parameter 1/3 < H < 1/2 whose
solution admits a smooth density with respect to Lebesgue measure. The result is
obtained through the use of an explicit representation of the solution when the vec-
tor fields of the equation are nilpotent, plus a Norris-type lemma in the rough paths
context.
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1 Introduction

Let B = (B1, . . . ,Bd) be a d-dimensional fractional Brownian motion with Hurst
parameter 1/3 < H < 1/2, defined on a complete probability space (Ω, F ,P). Recall
that this means that all the components Bi of B are independent centered Gaussian
processes with covariance

RH (t, s) := E
[
Bi

t Bi
s

] = 1

2

(
s2H + t2H − |t − s|2H

)
. (1)
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In particular, the paths of B are γ -Hölder continuous for all γ ∈ (0,H). This paper
is concerned with a class of R

m-valued stochastic differential equations driven by B ,
of the form

dyt =
d∑

i=1

Vi(yt ) dBi
t , t ∈ [0, T ], y0 = a, (2)

where T > 0 is a fixed time horizon, a ∈ R
m stands for a given initial condition, and

(V1, . . . , Vd) is a family of smooth vector fields of R
m.

Stochastic differential systems driven by fractional Brownian motion have been
the object of intensive studies during the past decade, both for their theoretical inter-
est and for the wide range of applications they open, covering, for instance, finance
[13, 30] or biophysics [20, 28] situations. The first aim in the theory has thus been
to settle some reasonable tools allowing one to solve equations of type (2). This has
been achieved, when the Hurst parameter H of the underlying fBm is >1/2, thanks
to methods of fractional integration [26, 32], or simply by means of Young-type inte-
gration (see, e.g., [14]). When one moves to more irregular cases, namely H < 1/2,
the standard method by now in order to solve equations like (2) relies on rough paths
considerations, as explained, for instance, in [12, 14, 21].

A second natural step in the study of fractional differential systems consists in es-
tablishing some properties about their probability law. Some substitute for the semi-
group property governing L(yt ) in the Markovian case (namely where H = 1/2) has
been given in [2, 23], in terms of asymptotic expansions in a neighborhood of t = 0.
Some considerable efforts have also been made in order to analyze the density of
L(yt ) with respect to Lebesgue measure. To that respect, in the regular case H > 1/2
the situation is rather clear: the existence of a density is shown in [27] under some
standard nondegeneracy conditions, the smoothness of the density is established in
[19] under elliptic conditions on the coefficients, and this result is extended to the
hypoelliptic case in [3]. In all, this set of results replicates what has been obtained for
the usual Brownian motion, at the price of huge technical complications.

In the irregular case H < 1/2, the picture is far from being so complete. Indeed,
the existence part of the density results have been thoroughly studied under elliptic
and Hörmander conditions (see [6, 12] for a complete review). However, when one
wishes to establish the smoothness of the density, some strong moment assumptions
on the inverse of the Malliavin derivative of yt are usually required. These moment
estimates are still an important open question in the field, as well as the smoothness
of density for random variables like yt .

The current paper proposes to make a step in this direction, and we wish to prove
that L(yt ) can be decomposed as pt (z) dz for a smooth function pt in some special
nontrivial examples of (2). Namely, we will handle in the sequel the case of nilpotent
vector fields V1, . . . , Vd (see Hypothesis 4.1 for a precise description), and in this
context we shall derive the following density result:

Theorem 1.1 Suppose that the vector fields Vi , 1 = 1,2, . . . , d , are smooth with all
derivatives bounded and that they are n-nilpotent in the sense that their Lie brackets
of order n vanish for some positive integer n. We also assume that V1, . . . , Vd satisfy
Hörmander’s hypoelliptic condition (their Lie brackets generate R

m at any point
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x ∈ R
m) and that all the Lie brackets of order greater than or equal to 2 are constant.

Then for all t > 0, the probability law of the random variable yt defined by (2) admits
a smooth density with respect to Lebesgue measure.

Notice that the hypoelliptic assumption is quite natural in our context. Indeed,
it would certainly be too restrictive to consider a family of vector fields V1, . . . , Vd

being nilpotent and elliptic at the same time. Moreover, some interesting examples
of equations satisfying our standing assumptions will be given below. It should be
stressed however that the basic aim of this article is to prove that smoothness of
density results can be obtained for rough differential equations driven by a fractional
Brownian motion in some specific situations, even if the general hypoelliptic case
is still an important open problem. We refer to [4] for another case, based on skew-
symmetric properties, where a similar theorem holds.

In order to prove Theorem 1.1, two main ingredients have to be highlighted:

(i) Working under the nilpotent assumptions described above enables us to use a
Strichartz-type representation for the solution to our equation, given in terms of
a finite chaos expansion. This allows us to derive some bounds for the moments
of both yt and its Malliavin derivative, which is the main missing tool on the way
to smoothness-of-density results for rough differential equations in the general
case.

(ii) With the integrability of Malliavin derivative in hand, we shall follow the stan-
dard probabilistic way to prove the smoothness of density under Hörmander’s
conditions, for which we refer to [16, 22, 24]. To this purpose, the second main
ingredient is a Norris-type lemma, which has to be extended (in the rough path
context) to controlled processes. It should be mentioned at this point that a simi-
lar result has been proven recently (and independently) in [17].

These two ingredients will be developed in the remainder of the article.
Here is how our article is structured: Some preliminaries on rough differential

equations and fractional Brownian motion are given in Sect. 2. Section 3 is devoted
to the proof of our Norris-type lemma for controlled processes in the sense of [14]. Fi-
nally, Malliavin calculus tools and their application to density results for the random
variable yt are presented at Sect. 4.

Notation In the remainder of the article, c, c1, c2 will stand for generic positive con-
stants which may change from line to line. We also write a � b (resp. a � b) when
a ≤ cb (resp. a = cb) for a universal constant c.

2 Rough Differential Equations and Fractional Brownian Motion

Generalized integrals will be needed in the sequel in order to define and solve equa-
tions of the form (2) and also to get an equivalent of Norris lemma in our context.
Though all those elements might be obtained within the landmark of usual rough
paths setting [12, 21], we have chosen here to work with the algebraic integration
framework, which (from our point of view) is more amenable to handy calculations.
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In this section, we recall thus the main concepts of algebraic integration. Namely,
we state the definition of the spaces of increments of the operator δ and its inverse
called Λ (or sewing map). We also recall some elementary but useful algebraic rela-
tions on the spaces of increments. The interested reader is sent to [14] for a complete
account on the topic or to [8, 15] for a more detailed summary.

2.1 Increments

The extended integral we deal with is based on the notion of increments, together
with an elementary operator δ acting on them.

The notion of increment can be introduced in the following way: for two arbitrary
real numbers �2 > �1 ≥ 0, a vector space V , and an integer k ≥ 1, we denote by
Ck([�1, �2];V ) the set of continuous functions g : [�1, �2]k → V such that gt1···tk = 0
whenever ti = ti+1 for some i ∈ {0, . . . , k − 1}. Such a function will be called a
(k − 1)-increment, and we will set C∗([�1, �2];V ) = ⋃

k≥1 Ck([�1, �2];V ). To sim-
plify the notation, we will write Ck(V ) if there is no ambiguity about [�1, �2].

The operator δ is an operator acting on k-increments and is defined as follows on
Ck(V ):

δ : Ck(V ) → Ck+1(V ), (δg)t1···tk+1 =
k+1∑

i=1

(−1)igt1···t̂i ···tk+1
, (3)

where t̂i means that this particular argument is omitted. Then a fundamental property
of δ, which is easily verified, is that δδ = 0, where δδ is considered as an operator
from Ck(V ) to Ck+2(V ). We will denote Z Ck(V ) = Ck(V ) ∩ Ker δ and B Ck(V ) =
Ck(V ) ∩ Im δ.

Some simple examples of actions of δ, which will be the ones we will really use
throughout the article, are obtained by letting g ∈ C1(V ) and h ∈ C2(V ). Then, for
any t, u, s ∈ [�1, �2], we have

(δg)st = gt − gs and (δh)sut = hst − hsu − hut . (4)

Our future discussions will mainly rely on k-increments with k = 2 or k = 3, for
which we will use some analytical assumptions. Namely, we measure the size of these
increments by Hölder norms defined in the following way: for f ∈ C2(V ), let

‖f ‖μ = sup
s,t∈[�1,�2]

|fst |
|t − s|μ and Cμ

2 (V ) = {
f ∈ C2(V ); ‖f ‖μ < ∞}

. (5)

Using this notation, we define in a natural way Cμ
1 (V ) = {f ∈ C1(V ); ‖δf ‖μ < ∞}.

In the sequel, we also handle norms, including supremums, of the form

‖f ‖μ,∞ = ‖f ‖μ + ‖f ‖∞, and Cμ,0
1 (V ) = {

f ∈ C1(V ); ‖f ‖μ,∞ < ∞}
. (6)
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In the same way, for h ∈ C3(V ), we set

‖h‖γ,ρ = sup
s,u,t∈[�1,�2]

|hsut|
|u − s|γ |t − u|ρ ,

‖h‖μ = inf

{∑

i

‖hi‖ρi ,μ−ρi
;h =

∑

i

hi,0 < ρi < μ

}
,

(7)

where the last infimum is taken over all sequences {hi, i ∈ N} ⊂ C3(V ) such that
h = ∑

i hi and over all choices of the numbers ρi ∈ (0,μ). Then ‖ · ‖μ is easily seen
to be a norm on C3(V ), and we define

Cμ
3 (V ) := {

h ∈ C3(V ); ‖h‖μ < ∞}
.

Eventually, let C 1+
3 (V ) = ⋃

μ>1 Cμ
3 (V ), and note that the same kind of norms can be

considered on the spaces Z C3(V ), leading to the definition of the spaces Z Cμ
3 (V )

and Z C 1+
3 (V ). In order to avoid ambiguities, we sometimes denote in the following

by N [·; Cκ
j ] the κ-Hölder norm on the space Cj for j = 1,2,3. For ζ ∈ Cj (V ), we

also set N [ζ ; C 0
j (V )] = sups∈[�1;�2]j ‖ζs‖V .

The invertibility of δ under Hölder regularity conditions is an essential tool for the
construction of our generalized integrals and can be summarized as follows:

Theorem 2.1 (The sewing map) Let μ > 1. For any h ∈ Z Cμ
3 (V ), there exists a

unique Λh ∈ Cμ
2 (V ) such that δ(Λh) = h. Furthermore,

‖Λh‖μ ≤ 1

2 − 2μ
N

[
h; Cμ

3 (V )
]
. (8)

This gives rise to a continuous linear map Λ : Z Cμ
3 (V ) → Cμ

2 (V ) such that δΛ =
idZ Cμ

3 (V ).

Proof The original proof of this result can be found in [14]. We refer to [8, 15] for
two simplified versions. �

The sewing map creates a first link between the structures we just introduced and
the problem of integration of irregular functions:

Corollary 2.2 (Integration of small increments) For any 1-increment g ∈ C2(V ) such
that δg ∈ C 1+

3 , set h = (id−Λδ)g. Then, there exists f ∈ C1(V ) such that h = δf and

δfst = lim|Πst |→0

n∑

i=0

gti ti+1,

where the limit is over any partition Πst = {t0 = s, . . . , tn = t} of [s, t] whose mesh
tends to zero. The 1-increment δf is the indefinite integral of the 1-increment g.
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We also need some product rules for the operator δ. For this, recall the follow-
ing convention: for g ∈ Cn([�1, �2];R

l,d ) and h ∈ Cm([�1, �2];R
d,p), let gh be the

element of Cn+m−1([�1, �2];R
l,p) defined by

(gh)t1,...,tm+n−1 = gt1,...,tnhtn,...,tm+n−1 (9)

for t1, . . . , tm+n−1 ∈ [�1, �2]. With this notation, the following elementary rule holds:

Proposition 2.3 Let g ∈ C2([�1, �2];R
l,d ) and h ∈ C1([�1, �2];R

d). Then gh is an
element of C2([�1, �2];R

l) and δ(gh) = δgh − gδh.

2.2 Random Differential Equations

One of the main appeals of the algebraic integration theory is that differential equa-
tions driven by a γ -Hölder signal x can be defined and solved rather quickly in this
setting. In the case of an Hölder exponent γ > 1/3, the required structures are just
the notion of controlled processes and the Lévy area based on x.

Indeed, recall that we wish to consider an equation of the form

dyt =
d∑

i=1

Vi(yt ) dxi
t , t ∈ [0, T ] , y0 = a, (10)

where a is a given initial condition in R
m, x is an element of Cγ

1 ([0, T ];R
d), and

(V1, . . . , Vd) is a family of smooth vector fields of R
m. Then it is natural that the

increments of a candidate for a solution to (10) should be controlled by the increments
of x in the following way:

Definition 2.4 Let z be a path in Cκ
1 (Rm) with 1/3 < κ ≤ γ , and set δx := x1. We

say that z is a weakly controlled path based on x if z0 = a with a ∈ R
m and if δz ∈

Cκ
2 (Rm) has a decomposition δz = ζx1 + r , that is, for any s, t ∈ [0, T ],

δzst = ζ
j
s x1,j

st + rst , (11)

where we have used the summation over repeated indices convention, and with
ζ 1, . . . , ζ d ∈ Cκ

1 (Rm), as well as r ∈ C 2κ
2 (Rm).

The space of weakly controlled paths will be denoted by Qx
κ,a(R

m), and a process
z ∈ Qx

κ,a(R
m) can be considered in fact as a couple (z, ζ ). The space Qx

κ,a(R
m) is

endowed with a natural seminorm given by

N
[
z; Qx

κ,a

(
R

m
)] = N

[
z; Cκ

1

(
R

m
)] +

d∑

j=1

N
[
ζ j ; Cκ,0

1

(
R

m
)] + N

[
r; C 2κ

2

(
R

m
)]

,

(12)
where the quantities N [g; Cκ

j ] have been defined in Sect. 2.1. For the Lévy area as-
sociated to x, we assume the following structure:
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Hypothesis 2.5 The path x : [0, T ] → R
d is γ -Hölder continuous with 1

3 < γ ≤ 1

and admits a so-called Lévy area, that is, a process x2 ∈ C 2γ

2 (Rd,d), which satisfies
δx2 = x1 ⊗ x1, namely

δx2,ij
sut = [

x1,i
]
su

[
x1,j

]
ut

for any s, u, t ∈ [0, T ] and i, j ∈ {1, . . . , d}.

To illustrate the idea behind the construction of the generalized integral, assume
that the paths x and z are smooth and also for simplicity that d = m = 1. Then the
Riemann–Stieltjes integral of z with respect to x is well defined, and we have

∫ t

s

zu dxu = zs(xt − xs) +
∫ t

s

(zu − zs) dxu = zsx1
st +

∫ t

s

(δz)su dxu

for �1 ≤ s ≤ t ≤ �2. If z admits the decomposition (11), we obtain

∫ t

s

(δz)su dxu =
∫ t

s

(
ζsx1

su + ρsu

)
dxu = ζs

∫ t

s

x1
su dxu +

∫ t

s

ρsu dxu. (13)

Moreover, if we set

x2
st :=

∫ t

s

x1
su dxu, �1 ≤ s ≤ t ≤ �2,

then it is quickly verified that x2 is the Lévy area associated to x. Hence we can write

∫ t

s

zu dxu = zsx1
sz + ζs x2

st +
∫ t

s

ρsu dxu.

Now recast this equation as

∫ t

s

ρsu dxu =
∫ t

s

zu dxu − zsx1
st − ζs x2

st (14)

and apply the increment operator δ to both sides of this equation. For smooth paths z

and x, we have

δ

(∫
z dx

)
= 0, δ

(
zx1) = −δzx1,

by Proposition 2.3 (recall also our convention (9) on products of increments). Hence,
applying these relations to the right-hand side of (14) and using decomposition (11),
the properties of the Lévy area, and again Proposition 2.3, we obtain

[
δ

(∫
ρ dx

)]

sut
= δzsux1

ut + δζsu x2
ut − ζs δx2

sut

= ζsx1
su x1

ut + ρsu x1
ut + δζsux2

ut − ζsx1
su x1

ut

= ρsux1
ut + δζsu x2

ut .
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Summarizing, we have derived the representation
[
δ

(∫
ρ dx

)]

sut
= ρsux1

ut + δζsu x2
ut .

As we are dealing with smooth paths, we have that δ(
∫

ρ dx) lies in the space Z C 1+
3

and thus belongs to the domain of Λ due to Proposition 2.1. (Recall that δδ = 0.)
Hence, it follows that

∫ t

s

ρsu dxu = Λst

(
ρ x1 + δζ x2),

and inserting this identity into (13), we end up with
∫ t

s

zu dxu = zs x1
st + ζs x2

st + Λst

(
ρ x1 + δζ x2).

Since in addition

ρ x1 + δζ x2 = −δ
(
zx1 + ζx2),

we can also write this as
∫

zu dxu = (id − Λδ)
(
zx1 + ζ x2).

Thus we have expressed the Riemann–Stieltjes integral of z with respect to x in terms
of the sewing map Λ, the couple (x1,x2), and of increments of z. This can now be
generalized to the nonsmooth case. Note that Corollary 2.2 justifies the use of the
notion of integral.

Proposition 2.6 For fixed 1
3 < κ ≤ γ , let x be a path satisfying Hypothesis 2.5 on

an arbitrary interval [0, T ]. Furthermore, let z ∈ Qx
κ,α([�1, �2];R

d) be such that the
increments of z are given by (11). Define ẑ by ẑ�1 = α̂ with α̂ ∈ R and

δẑst = [
(id−Λδ)

(
zix1,i + ζ jix2,ij

)]
st

(15)

for �1 ≤ s ≤ t ≤ �2. Then J (z∗ dx) := ẑ is a well-defined element of Qx
κ,α̂

([�1, �2];R)

and coincides with the usual Riemann integral whenever z and x are smooth func-
tions.

Moreover, the Hölder norm of J (z∗ dx) can be estimated in terms of the Hölder
norm of the integrator z. (For this and also for a proof of the above proposition, see,
e.g., [14].) This allows us to use a fixed-point argument to obtain the existence of a
unique solution for rough differential equations.

Theorem 2.7 For fixed 1
3 < κ < γ , let x be a path satisfying Hypothesis 2.5 on

an arbitrary interval [0, T ]. Consider a given initial condition a in R
m and a fam-

ily (V1, . . . , Vd) of C3 vector fields of R
m, bounded with bounded derivatives. Let

‖f ‖μ,∞ = ‖f ‖∞ + ‖δf ‖μ be the usual Hölder norm of a path f ∈ C1([0, T ];R
l).

Then we have:
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(1) Equation (10) admits a unique solution y in Qx
κ,a([0, T ];R

m) for any T > 0, and
there exists a polynomial PT : R

2 → R
+ such that

N
[
y; Qx

κ,a

([0, T ];R
m
)] ≤ PT

(∥∥x1∥∥
γ
,
∥∥x2∥∥

2γ

)
. (16)

(2) Let F : R
m × Cγ

1 ([0, T ];R
d)× C 2γ

2 ([0, T ];R
m,m) → Cγ

1 ([0, T ];R
m) be the map-

ping defined by

F
(
a,x1,x2) = y,

where y is the unique solution of (10). This mapping is locally Lipschitz continu-
ous in the following sense: Let x̃ be another driving rough path with correspond-
ing Lévy area x̃2, and ã be another initial condition. Moreover denote by ỹ the
unique solution of the corresponding differential equation. Then, there exists an
increasing function KT : R

4 → R
+ such that

‖y − ỹ‖γ,∞,T ≤KT

(∥∥x1∥∥
γ
,
∥∥x̃1∥∥

γ
,
∥∥x2∥∥

2γ
,
∥∥x̃2∥∥

2γ

)

× (|a − ã| + ∥∥x1 − x̃1∥∥
γ

+ ∥∥x2 − x̃2∥∥
2γ

)
. (17)

The theorem above is borrowed from [12, 14, 21], and we send the reader to these
references for more details on the topic.

2.3 Fractional Brownian Motion

We shall recall here how the abstract Theorem 2.7 applies to fractional Brownian
motion. We will also give some basic notions on stochastic analysis with respect to
fBm, mainly borrowed from [25], which will turn out to be useful in the sequel.

As already mentioned in the introduction, on a finite interval [0, T ] and for some
fixed H ∈ (1/3,1/2), we consider the canonical probability space (Ω, F ,P) as-
sociated with fractional Brownian motion with Hurst parameter H . That is, Ω =
C0([0, T ];R

d) is the Banach space of continuous functions vanishing at 0 equipped
with the supremum norm, F is the Borel sigma-algebra, and P is the unique prob-
ability measure on Ω such that the canonical process B = {Bt , t ∈ [0, T ]} is a d-
dimensional fractional Brownian motion with Hurst parameter H . Specifically, B

has d independent coordinates, each one being a centered Gaussian process with co-
variance given by (1).

2.3.1 Functional Spaces

Let E be the set of the space of d-dimensional elementary functions on [0, T ]:

E =
{

f = (f1, . . . , fd);fj =
nj −1∑

i=0

a
j
i 1[tji ,t

j
i+1)

,

0 = t0 < t
j

1 < · · · < t
j

nj −1 < t
j
nj

= T , for j = 1, . . . , d

}

. (18)
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We call H the completion of E with respect to the semiinner product

〈f,g〉H =
d∑

i=1

〈fi, gi〉Hi
, where 〈1[0,t],1[0,s]〉Hi

:= R(s, t), s, t ∈ [0, T ].

Then, one constructs an isometry K∗
H : H → L2([0,1];R

d) such that

K∗
H (1[0,t1], . . . ,1[0,td ]) = (

1[0,t1]KH (t1, ·), . . . ,1[0,td ]KH (td, ·)),
where the kernel KH is given by

KH (t, u) = cH

[(
u

t

) 1
2 −H

(t − u)H− 1
2

+
(

1

2
− H

)
u

1
2 −H

∫ t

u

vH− 3
2 (v − u)H− 1

2 dv

]
1{0<u<t}, (19)

with a strictly positive constant cH , whose exact value is irrelevant for our purpose.
Notice that this kernel verifies RH (t, s) = ∫ s∧t

0 KH (t, r)KH (s, r) dr . Moreover, ob-
serve that K∗

H can be represented in the following form: for ϕ = (ϕ1, . . . , ϕd) ∈ H,
we have

K∗
H ϕ = (

K∗
H ϕ1, . . . ,K∗

H ϕd
)
,

where
[
K∗

H ϕi
]
t
= dH t1/2−H

[
D

1/2−H

T −
(
u−(1/2−H)ϕi

)]
t

for a strictly positive constant dH . In particular, each Hi is a fractional integral space
of the form I 1/2−H

T − (L2([0, T ])) and C 1/2−H

1 ([0, T ]) ⊂ Hi .

2.3.2 Malliavin Derivatives

Let us start by defining the Wiener integral with respect to B: for any element f in E
whose expression is given as in (18), we define the Wiener integral of f with respect
to B as

B(f ) :=
d∑

j=1

nj −1∑

i=0

a
j
i

(
B

j

t
j
i+1

− B
j

t
j
i

)
.

We also denote this integral as
∫ T

0 f (t) dBt , since it coincides with a pathwise integral
with respect to B .

For θ : R → R and j ∈ {1, . . . , d}, denote by θ [j ] the function with values in R
d

having all the coordinates equal to zero except the j th coordinate that equals to θ . It
is readily seen that

E
[
B

(
1[j ]
[0,s)

)
B

(
1[k]
[0,t)

)] = δj,kRs,t .

This definition can be extended by linearity and closure to elements of H, and we
obtain the relation

E
[
B(f )B(g)

] = 〈f,g〉H,
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valid for any couple (f, g) ∈ H2. In particular, B(·) defines an isometric map from H
into a subspace of L2(Ω). It should be pointed out that (Ω, H,P) defines an abstract
Wiener space, on which chaos decompositions can be settled. We do not develop this
aspect of the theory for sake of conciseness, but we will use later the fact that all Lp

norms are equivalent on finite chaos.
We can now proceed to the definition of Malliavin derivatives, for which we need

an additional notation:

Notation 2.8 For n,p ≥ 1, a function f ∈ Cp(Rn;R) and any tuple (i1, . . . ip) ∈
{1, . . . , d}p , we set ∂i1...ipf for ∂pf

∂xi ...∂xp
.

With this notation in hand, let S be the family of smooth functionals F of the form

F = f
(
B(h1), . . . ,B(hn)

)
, (20)

where h1, . . . , hn ∈ H, n ≥ 1, and f is a smooth function with polynomial growth,
together with all its derivatives. Then, the Malliavin derivative of such a functional F

is the H-valued random variable defined by

DF =
n∑

i=1

∂if
(
B(h1), . . . ,B(hn)

)
hi.

For all p > 1, it is known that the operator D is closable from Lp(Ω) into Lp(Ω; H)

(see, e.g., [25, Chap. 1]). We will still denote by D the closure of this operator, whose
domain is usually denoted by D

1,p and is defined as the completion of S with respect
to the norm

‖F‖1,p := (
E

(|F |p) + E
(‖DF‖p

H
)) 1

p .

It should also be noticed that partial Malliavin derivatives with respect to each com-
ponent Bj of B will be invoked: they are defined, for a functional F of the form (20)
and j = 1, . . . , d , as

DjF =
n∑

i=1

∂if
(
B(h1), . . . ,B(hn)

)
h

[j ]
i

and then extended by closure arguments again. We refer to [25, Chap. 1] again for
the definition of higher derivatives and Sobolev spaces D

k,p for k > 1.

2.3.3 Levy Area of fBm

There are many ways to define the Levy area B2 associated to fBm, and the reader
is referred to [12, Chap. 15] for a complete review of these. The recent paper [11] is
however of special interest for us, since it enables a direct definition of B2 by Wiener
chaos techniques. It can be summarized in the following way:
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Proposition 2.9 Let 1/3 < H < 1/2 be a fixed Hurst parameter. Then the fBm B

belongs almost surely to any space Cγ

1 for γ < H , and it gives raise to an increment

B2 ∈ C 2γ

2 which satisfies Hypothesis 2.5. Furthermore, for any 0 ≤ s < t ≤ T , B2
st is

an element of the second chaos associated to B , and

E
[∣∣B2

st

∣∣p] ≤ cp (t − s)2Hp, p ≥ 1.

Moreover, the iterated integrals of B can be obtained as limits of Riemann-type
integrals. Indeed, for k ≥ 1 and 0 ≤ s < t ≤ T , consider the simplex

Sk

([s, t]) = {
(u1, . . . , uk); s ≤ u1 < · · · < uk ≤ t

}
. (21)

For a given partition Π of [0, T ], we also denote by BΠ the linearization of B based
on Π . Combining the results of [11, 12], the following proposition holds:

Proposition 2.10 Let k ≥ 1, and for a sequence of partitions (Πn)n≥1, set Bn :=
BΠn . For 0 ≤ s < t ≤ T and (i1, . . . , ik) ∈ {1, . . . , d}k , we consider then

Bk,n,i1,...,ik
st =

∫

Sk([s,t])
dBn,i1

u1
· · ·dBn,ik

uk
,

understood in the Riemann sense. Then there exists a sequence of partitions (Πn)n≥1

such that Bk,n,i1,...,ik converges almost surely and in L2, as an element of Ckγ

2 for any
γ < H , to an element called Bk,i1,...,ik . When k = 1, we obtain the increment δB of
our fBm. When k = 2, the limit corresponds to the increment B2 of Proposition 2.9.

As a corollary of the previous considerations, we have the following:

Proposition 2.11 Assume that 1/3 < H < 1/2. Then Theorem 2.7 applies almost
surely to the fBm paths, enhanced with the Levy area B2. We are thus able to solve
the equation

dyt =
d∑

i=1

Vi(yt ) dBi
t , t ∈ [0, T ] , y0 = a, (22)

under the conditions of Theorem 2.7.

3 A Norris-Type Lemma

Norris’ lemma [24] is one of the basic ingredients in order to obtain the smoothness
of densities for solutions to stochastic differential equations under hypoelliptic con-
ditions and was already extended to fBm with Hurst parameter H > 1/2 in [3]. We
shall extend in the current section this lemma to the rough paths context. A prelimi-
nary step along this direction consists of proving the following elementary lemma:
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Lemma 3.1 Let 0 < α < ρ < 1, and consider b ∈ C([0, T ]). Then for any 0 < η < 1,
we have

‖b‖α,∞ ≤ Cα,ρ

[
η ‖b‖ρ,∞ + η−1/(ρ−α)‖b‖L1

]
, (23)

where we recall that ‖b‖α,∞ has been defined by (6).

Proof Recall that ‖b‖α has been defined by (5). Thus, for 0 < α < ρ < 1, we have

‖b‖α = sup
s,t

[( |δbst |
|t − s|ρ

) α
ρ |δbst |1− α

ρ

]

≤ 21− α
ρ ‖b‖1− α

ρ∞ ‖b‖
α
ρ
ρ .

Thus, for an arbitrary constant η > 0, we have

‖b‖α ≤ Cα,ρ

(
η‖b‖ρ + η

− α
ρ−α ‖b‖∞

)
,

thanks to Young’s inequality. Invoke now the interpolation inequality [3, formula
(3.17)] in order to get

‖b‖α ≤ Cα,ρ

(
η‖b‖ρ + η

− α
ρ−α

[
γ ‖b‖ρ + γ − 1

1+α ‖b‖L1

])

= Cα,ρ

[
η‖b‖ρ + η−1/(ρ−α)‖b‖L1

]
,

where we have chosen γ = η
α

ρ−α . Invoking again [3, formula (3.17)] in order to go
from ‖ · ‖α to ‖ · ‖α,∞ norms, and this finishes our proof. �

We can now turn to the announced Norris-type lemma, whose proof is an adapta-
tion of [3] to the case of controlled processes.

Proposition 3.2 Assume that B is a fractional Brownian motion with H > 1/3. Let
z be a controlled path in QB

γ (Rm), with decomposition

δzi
st = ζ

i,j
s B1,j

st + ri
st . (24)

We assume that 1/3 < α < γ < H and that the quantity E[N p[z; QB
γ (Rm)]] is finite

for all p ≥ 1. Set δyst = J (z∗dB) according to Proposition 2.6. Then there exists
q > 0 such that, for every p > 0, we can find a strictly positive constant cp such that

P
(‖y‖γ,∞ < ε, and ‖z‖α,∞ > εq

)
< cp εp.

Proof In order to avoid cumbersome indices, we shall prove our result in the case of
one-dimensional processes. Generalization to the multidimensional setting is a matter
of trivial considerations. We also work on the interval [0,1] instead of [0, T ] for the
sake of notational simplicity. As a last preliminary observation, note that if z admits
the decomposition (24), then according to (15), we have

δy = zB1 + ζ B2 + y�, where y� = Λ
(
r B1 + δζ B2).
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Similarly to what is done in [3], we consider two time scales δ � Δ � 1. We
assume moreover that Δ/δ = r with r ∈ N. We use a partition {tn;n ≤ 1/δ} of [0,1]
with tn = nδ, so that tNr = NΔ. Some increments below will then be frozen on
the time scale Δ, in order to take advantage of some averaging properties of the
process B .

Step 1: Coarse Graining on Increments Consider then n such that (N − 1)r ≤ n ≤
Nr − 1, so that (N − 1)Δ ≤ tn ≤ NΔ − δ. According to (15), we have

δytntn+1 = ztn B1
tntn+1

+ ζtn B2
tntn+1

+ y
�
tntn+1

= zNΔ B1
tntn+1

− δztn,NΔ B1
tntn+1

+ ζtn B2
tntn+1

+ y
�
tntn+1

,

where y� is an increment in C 3γ

2 . Thus,

zNΔ B1
tntn+1

= δytntn+1 + δztn,NΔ B1
tntn+1

− ζtn B2
tntn+1

− y
�
tntn+1

. (25)

Set now XN = ∑Nr−1
n=(N−1)r ‖B1

tntn+1
‖4 and YN = X

1/4
N . Then

|zNΔ|4|XN | =
Nr−1∑

n=(N−1)r

∣∣zNΔ B1
tntn+1

∣∣4
.

Furthermore, invoking relation (25), we get
∣∣zNΔ B1

tntn+1

∣∣ ≤ ‖y‖γ δγ + ‖z‖γ ‖B‖γ δγ Δγ + ‖ζ‖∞
∥∥B2∥∥

2γ
δ2γ + ‖y�‖3γ δ3γ .

Raising this inequality to power 4 and summing over (N − 1)r ≤ n ≤ Nr − 1, we
obtain

∣∣z4
NΔ XN

∣∣ ≤ δ4γ−1Δ
(‖y‖γ + ‖z‖γ ‖B‖γ Δγ + ‖ζ‖∞

∥∥B2∥∥
2γ

δγ + ‖y�‖3γ δ2γ
)4

,

and therefore

|zNΔ|YN ≤ δγ−1/4Δ1/4(‖y‖γ + ‖z‖γ ‖B‖γ Δγ + ‖ζ‖∞
∥∥B2∥∥

2γ
δγ + ‖y�‖3γ δ2γ

)
.

Sum now over N (recall that 1 ≤ N ≤ 1/Δ) in order to get

1/Δ∑

N=1

|zNΔ|YN

≤ δγ−1/4Δ−3/4(‖y‖γ + ‖z‖γ ‖B‖γ Δγ + ‖ζ‖∞
∥∥B2∥∥

2γ
δγ + ‖y�‖3γ δ2γ

)
. (26)

Step 2: Behavior of a 4th-Order Variation Throughout the proof, we shall use the
notations �, � given in the introduction. For K ≥ 1, set X̃K = ∑K

n=1 |B1
tntn+1

|4. We
shall prove that

E
[
X̃K

] � Kδ4H , and Var
(
X̃K

)
� Kδ8H . (27)
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Indeed, a simple scaling argument shows that X̃K
(L)= δ4H X̂K with X̂K =∑K

n=1 |B1
n,n+1|4. Introduce now the kth Hermite polynomial Hk (see [25] for a def-

inition and properties of these objects) and notice in particular that H2(x) = x2 − 1
and H4(x) = x4 − 6x2 + 3. This enables to decompose X̂K as

X̂K =
K∑

n=1

[
H4

(
B1

n,n+1

) + 6H2
(
B1

n,n+1

)] + 3K. (28)

Recall now that for a centered Gaussian vector (U,V ) in R
2 such that E[U2] =

E[V 2] = 1, we have

E
[
Hk(U)

] = 0, and E
[
Hk(U)Hl(V )

] = k!(E[U V ])k1(k=l). (29)

Plugging this identity into (28), this immediately yields E[X̂K ] = 3K , which is our
first assertion in (27). In addition, the second part of (29) entails

Var
(
X̂K

) = 2
K∑

n1,n2=1

(
12α4

n1,n2
+ α2

n1,n2

) := 2SK,

where we have set

αn1,n2 = E
[
B1

n1,n1+1 B1
n2,n2+1

]

= 1

2

[|n2 − n1 + 1|2H + |n2 − n1 − 1|2H − 2|n2 − n1|2H
]
.

Summarizing, we have obtained that

Var
(
X̃K

) = δ8H Var
(
X̂K

) = 2 δ8H SK. (30)

We will now prove that SK � K . Indeed, write first

SK =
∑

1≤n1≤K

(
12α4

n1,n1
+ α2

n1,n1

) + 2
∑

1≤n1<n2≤K

(
12α4

n1,n2
+ α2

n1,n2

) := S1
K + 2S2

K.

Then, since αn1,n1 = 1, it is readily checked that S1
K � K . Moreover, the term S2

K can
be decomposed into

S2
K =

∑

1≤n1≤K−1

(
12α4

n1,n1+1 + α2
n1,n1+1

)

+
∑

1≤n1,n2≤K,n2−n1≥2

(
12α4

n1,n2
+ α2

n1,n2

) := S21
K + S22

K .

Notice now that αn1,n1+1 = −[1 − 2−2(H−1/2)], which easily yields S21
K ≤ cH K .

As far as S22
K is concerned, write, for n2 − n1 ≥ 2,

αn1,n2 = H(2H − 1)

∫ 1

0
dr

∫ r

−r

∣∣(n2 − n1) + u
∣∣2H−2

du,
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which immediately yields αn1,n2 � |(n2 − n1) − 1|2H−2. Thus,

S22
K �

K−2∑

n1=1

K∑

n2=n1+2

∣∣(n2 − n1) − 1
∣∣8H−8 + 3

∣∣(n2 − n1) − 1
∣∣4H−4

�
K−2∑

n1=1

K−n1+1∑

m=1

m4H−4 ≤ K

∞∑

m=1

m4H−4 � K,

since
∑∞

m=1 m4H−4 is finite whenever H < 3/4.
Gathering our bounds on S1

K , S21
K , and S22

K , we obtain SK � K , and plugging this
bound into (30), we end up with Var(X̃K) � K δ8H , which is our claim. This finishes
the proof of (27).

Step 3: Concentration Inequalities for YN Let us recall that XN is in the 4th chaos
of the fBm B . Hence, a result by Borell [5] entails

P
( |XN − E[XN ]|

[Var(XN)]1/2
≥ u

)
≤ c1e

−c2u
1/2

, u ≥ 0,

for two universal constant c1, c2 > 0. With (27) in hand, this yields

P
(∣∣XN − 3Δδ4H−1

∣∣ ≥ Δ1/2δ4H−1/2u
) ≤ c1e

−c2u
1/2

, u ≥ 0. (31)

We now wish to produce a concentration inequality for YN = X
1/4
N . Since XN is a

small random quantity of order Δδ4H−1, let us use the inequality
∣∣b1/4 − a1/4

∣∣ � ξ−3/4|b − a|, where ξ ∈ (a ∧ b, a ∨ b).

Apply this with ξ = 3
2Δδ4H−1 in order to get

P
(∣∣YN − 31/4Δ1/4δH−1/4

∣∣ ≥ cΔ−3/4δ−3(4H−1)/4Δ1/2δ4H−1/2u
) ≤ A1 + A2 (32)

with

A1 = P
(∣∣XN − 3Δδ4H−1

∣∣ ≥ cΔ1/2δ4H−1/2u,XN ≥ 3

2
Δδ4H−1

)
,

A2 = P
(

XN ≤ 3

2
Δδ4H−1

)
.

Furthermore, a straightforward application of (31) gives

A1 ≤ c1e
−c2u

1/2
and A2 ≤ c1e

−c2(Δ/δ)1/4
.

Plugging these inequalities into (32), we end up with the following concentration
inequality for YN :

P
(∣∣YN − 31/4Δ1/4δH−1/4

∣∣ ≥ cΔ−1/4δH+1/4u
) ≤ c1e

−c2u
1/2 + c1e

−c2(Δ/δ)1/4
. (33)
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We shall thus retain the fact that YN is a random quantity of order 31/4Δ1/4δH−1/4,
with fluctuations of order Δ−1/4δH+1/4:

∣∣YN − 31/4Δ1/4δH−1/4
∣∣ ≈ δH+1/4Δ−1/4. (34)

Step 4: Use of the Interpolation Inequality Start again from (26). One would like
to have an approximation of the L1 norm of z appearing on the left-hand side of this
inequality, that is, one would like to replace YN by Δ. To this purpose, replace first
YN by its approximation Δ1/4δH−1/4 from the last step. This yields an inequality of
the form

Δ1/4δH−1/4
1/Δ∑

N=1

|zNΔ| ≤ ‖z‖∞
1/Δ∑

N=1

∣∣YN − 31/4Δ1/4δH−1/4
∣∣

+ δγ−1/4Δ−3/4(‖y‖γ + ‖z‖γ ‖B‖γ Δγ

+ ‖ζ‖∞
∥∥B2∥∥

2γ
δγ + ‖y�‖3γ δ2γ

)
.

Rescale this inequality in order to get Δ multiplying on the left-hand side, which
gives:

Δ

1/Δ∑

N=1

|zNΔ| ≤ ‖z‖∞ Rδ,Δ + δ−(H−γ )
(‖y‖γ + ‖z‖γ ‖B‖γ Δγ

+ ‖ζ‖∞
∥∥B2∥∥

2γ
δγ + ‖y�‖3γ δ2γ

)
, (35)

where

Rδ,Δ := δ−(H−1/4)Δ3/4
1/Δ∑

N=1

∣∣YN − 31/4Δ1/4δH−1/4
∣∣. (36)

Furthermore, it is well known that |Δ∑1/Δ

N=1 |zNΔ| − ‖z‖L1 | ≤ ‖z‖γ Δγ , so that we
can recast (35) into

‖z‖L1 ≤ ‖z‖γ Δγ + ‖z‖∞ Rδ,Δ

+ δ−(H−γ )
(‖y‖γ + ‖z‖γ ‖B‖γ Δγ + ‖ζ‖∞

∥∥B2∥∥
2γ

δγ + ‖y�‖3γ δ2γ
)
.

(37)

Recall that we take 0 < α < γ < H and set νH := 1/(γ − α). According to (23),
we have

‖z‖α,∞ � η‖z‖γ,∞ + η−νH ‖z‖L1

for any (small enough) constant η, and plugging (37) into this last relation, we obtain

‖z‖α,∞ � η−νH Δγ ‖z‖γ,∞ + η−νH ‖z‖∞ Rδ,Δ + η‖z‖γ,∞

+ η−νH
(‖y‖γ,∞δ−(H−γ ) + ‖z‖γ,∞‖B‖γ δ−(H−γ )Δγ
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+ ‖ζ‖∞
∥∥B2∥∥

2γ
δ2γ−H + ‖y�‖3γ δ3γ−H

)
.

Defining ε̂ as ε̂ = H − γ , we get

‖z‖α,∞ � η−νH Δγ ‖z‖γ,∞ + η−νH ‖z‖∞ Rδ,Δ + η‖z‖γ,∞

+ η−νH
(‖y‖γ,∞δ−ε̂ + ‖z‖γ,∞‖B‖γ δ−ε̂Δγ

+ ‖ζ‖∞
∥∥B2∥∥

2γ
δγ−ε̂ + ‖y�‖3γ δ2γ−ε̂

)
. (38)

Step 5: Tuning the Parameters Recall that we have chosen 0 � δ � Δ � 1. We
express this fact in terms of powers of ε by taking δ = εμ and Δ = ελ with μ > λ > 0.
We also choose η of the form η = ετ/νH . We shall now see how to choose λ,μ, τ

conveniently: write (38) as

‖z‖α,∞ � ε−τ+λγ ‖z‖γ,∞ + ε−τ‖z‖∞ Rδ,Δ + ετ/νH ‖z‖γ,∞

+ ‖y‖γ,∞ε−τ−ε̂μ + ‖z‖γ,∞‖B‖γ ε−τ−ε̂μ+λγ

+ ‖ζ‖∞
∥∥B2∥∥

2γ
ε−τ+μ(γ−ε̂) + ‖y�‖3γ ε−τ+μ(2γ−ε̂). (39)

In order to be able to bound z when y is assumed to satisfy ‖y‖γ,∞ ≤ ε, the coeffi-
cients in the right-hand side of (39) should fulfill the following conditions:

• The coefficient in front of ‖y‖γ,∞ should be smaller than ε−1.
• The other coefficients should be � 1.

Looking at the exponents in (39), assuming that ε̂ is arbitrarily small, and letting for
the moment Rδ,Δ apart, this imposes the following relations:

λγ > τ and 0 < τ < 1. (40)

Let us go back now to the evaluation of Rδ,Δ, given by expression (36), with the
order of magnitude of |YN − Δ1/4δH−1/4| given by (34). Therefore,

Rδ,Δ ≈ δ−(H−1/4)Δ3/4Δ−1δH+1/8Δ−1/4 = δ1/2Δ−1/2.

Expressing this in terms of powers of ε, we end up with

η−νH Rδ,Δ ≈ εκ with κ = μ − λ

2
− τ.

If we wish this remainder term to be small, this adds the condition

μ − λ > 2τ, (41)

which can be fulfilled easily. From now on, we shall assume that both (40) and (41)
are satisfied.
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Step 6: Conclusion Recall that we wish to study the probability P(‖y‖γ,∞ < ε, and
‖z‖α,∞ > εq). This quantity is obviously bounded by B1 + B2, where

B1 = P
(‖y‖γ,∞ < ε,‖z‖α,∞ > εq, |Rδ,Δ| ≤ cΔ−1/4δH+1/4(Δ/δ)ε̃

)
,

B2 = P
(|Rδ,Δ| ≥ cΔ−1/4δH+1/4(Δ/δ)ε̃

)
,

where ε̃ is an arbitrary small positive constant. Furthermore, inequalities (33) and
(36) yield, for any p ≥ 1,

B2 ≤ c1e
−c2(Δ/δ)ε̃/2 + c1e

−c2(Δ/δ)1/4 ≤ cp,λ,μ,ε̃ εp,

where we have used the fact that δ/Δ = εμ−λ.
We can now bound B1: notice that according to (39), if we are working on

(|Rδ,Δ| ≤ cΔ−1/4δH+1/4(Δ/δ)ε̃
) ∩ (‖y‖γ,∞ < ε

)
,

then there exists a ρ > 0 such that

‖z‖α,∞ � ερ
[
1 + N 2[z; QB

γ

(
R

m
)] + ‖B‖2

γ + ∥
∥B2∥∥2

2γ

]
.

Moreover, recall that N [z; QB
γ (Rm)] is assumed to be an Lr random variable for all

r ≥ 1, while ‖B‖γ and ‖B2‖2γ are also elements of Lr , since they can be bounded by
a finite chaos random variable. Thus, the Chebyshev inequality can be applied here,
which entails

B1 �
(
1 + E

[
N 2l

[
z; QB

γ

(
R

m
)] + ‖B‖2l

γ + ∥∥B2∥∥2l

2γ

])
εl(ρ−q)

for an arbitrary l ≥ 1. It is now sufficient to choose q < ρ and l large enough so that
l(ρ − q) = p to conclude the proof by putting together our bounds on B1 and B2.

�

4 Malliavin Calculus for Solutions to Fractional SDEs

This section is the core of our paper, where we derive the smoothness of density
for the solution to (22). We first recall some classical notions on representations of
solutions to SDEs and then move to Malliavin calculus considerations.

4.1 Representation of Solutions to SDEs

The first representation results for solutions to SDEs in terms of the driving vector
fields can be traced back to the seminal work of Chen [7]. They have then been
deeply analyzed in [18, 29] and also lie at the basis of the rough path theory [21]. We
have chosen here to present these formulas according to [1], which is a recent and
didactically useful account on the topic.

Recall that we are considering a d-dimensional fBm B with 1/3 < H < 1/2. Ac-
cording to Sect. 2.3, this allows us to construct some increments Bk out of B which
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can be seen as limits of Riemann iterated integrals over the simplex Sk([s, t]), as re-
called in Proposition 2.10. Furthermore, one can solve (22) under the conditions of
Theorem 2.7.

Let us introduce some additional notation: let V be the space of smooth bounded
vector fields over R

m. Given V ∈ V , we use exp(V ) to denote the exponential map,
which maps a vector to another vector and is defined by the relation [exp(V )](ξ) =
Ψ1(ξ), where {Ψt(ξ); t ≥ 0} is a solution to the ordinary differential equation

∂tΨt (ξ) = V
(
Ψt(ξ)

)
, Ψ0(ξ) = ξ. (42)

The aim of the Chen–Strichartz formula is to express the solution yt to (22), for an
arbitrary t ∈ [0, T ], as yt = [exp(Zt )](a) for a certain Zt ∈ V .

To this purpose, let us give some more classical notations on vector fields: if
V,W ∈ V , then the vector field [V,W ] ∈ V (called Lie bracket of V and W ) is defined
by

[V,W ]i = V l∂xl
W i − Wl∂xl

V i .

Notice that this notion is usually introduced through the interpretation of V as a set
of first-order differential operators. A Lie bracket of order k can also be defined in-
ductively for k ≥ 2 by setting

[U1 · · ·Uk] = [[U1 · · ·Uk−1],Uk

]

for U1 . . .Uk ∈ V . With this notation in hand, our main assumption on the vector
fields V1, . . . , Vd governing (22) is the following:

Hypothesis 4.1 The vector fields V1, . . . , Vd are n-nilpotent for some given positive
integer n. Namely, for any (i1, . . . , in) ∈ {1, . . . , d}n, we have [Vi1 · · ·Vin] = 0.

We are now ready to state our formulation of Strichartz’ identity, for which we
need two last notations: for k ≥ 1, we call Sk the set of permutations of {1, . . . , k}.
Moreover, for σ ∈ Sk , write e(σ ) for the quantity Card({j ∈ {1, . . . , k − 1};σ(j) >

σ(j + 1)}). Then the following formula is proven, e.g., in [1, 18, 29]:

Proposition 4.2 Under the hypothesis of Theorem 2.7, let y be the solution to (22).
Assume Hypothesis 4.1 holds true, and consider t ∈ [0, T ]. Then yt = [exp(Zt )](a),
where Zt can be expressed as follows:

Zt =
n−1∑

k=1

d∑

i1,...,ik=1

Vi1,...,ik ψ
i1,...,ik
t , with ψ

i1,...,ik
t =

∑

σ∈Sk

(−1)e(σ )

k2
(
k−1
e(σ )

) B
k,iτ (1),...,iτ (k)

0t ,

where we have set τ = σ−1 and Vi1,...,ik = [Vi1 · · ·Vik ] in the formula above.

As a warmup to the computations below, we prove now that one can extend our in-
equality (16) thanks to the Strichartz representation, covering the case of unbounded
vector fields with bounded derivatives:
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Proposition 4.3 Suppose that Hypothesis 4.1 holds and that the smooth vector fields
Vi , i = 1,2, . . . , d , have bounded derivative. Assume moreover that all the Lie brack-
ets of order greater than or equal to 2 are bounded vector fields. Then the solution y

of (22) admits moments of any order. Namely, for any m > 1 and any T ∈ (0,∞),

E
[

sup
0≤t≤T

|yt |m
]
< ∞. (43)

Proof One can restate Proposition 4.2 as follows: for any t ≤ T , the random variable
yt can be expressed as yt = φt

1, where φt
s := φs : R

d → R
d satisfies (for t fixed)

∂sφs =
n−1∑

k=1

d∑

i1,...,ik=1

ψ
i1,...,ik
t Vi1,...,ik (φs), 0 ≤ s ≤ 1, φ0 = a.

Let us separate the first-order integrals in this equation, in order to get

∂sφs =
d∑

i=1

Vi(φs)B
i
t +

n−1∑

k=2

d∑

i1,...,ik=1

ψ
i1,...,ik
t Vi1,...,ik (φs), φ0 = a. (44)

Since Vi , i = 1,2, . . . , d , have bounded derivatives and since all the Lie brackets of
order greater than or equal to 2 are bounded, we see that

|∂sφs | ≤
d∑

i=1

∣∣Vi(φs)
∣∣∣∣Bi

t

∣∣ +
n−1∑

k=2

d∑

i1,...,ik=1

∣∣ψi1,...,ik
t

∣∣∣∣Vi1,...,ik (φs)
∣∣

≤ c1|φs |
d∑

i=1

sup
0≤t≤T

∣∣Bi
t

∣∣ + c2

n−1∑

k=1

d∑

i1,...,ik=1

sup
0≤t≤T

∣∣ψi1,...,ik
t

∣∣.

Thus by Gronwall’s lemma, we have

|φs | ≤ c2

(
n−1∑

k=1

d∑

i1,...,ik=1

sup
0≤t≤T

∣∣ψi1,...,ik
t

∣∣
)

exp

{

c1

d∑

i=1

sup
0≤t≤T

∣∣Bi
t

∣∣
}

.

This inequality holds for all 0 ≤ s ≤ 1. Thus,

sup
0≤t≤T

|yt | ≤ c2

(
n−1∑

k=1

d∑

i1,...,ik=1

sup
0≤t≤T

∣∣ψi1,...,ik
t

∣∣
)

exp

{

c1

d∑

i=1

sup
0≤t≤T

∣∣Bi
t

∣∣
}

,

which implies (43) by the theorem of Fernique [10]. �

4.2 Malliavin Derivative

This subsection is devoted to enhancing our Proposition 4.3, and proving that the
Malliavin derivative of yt has also bounded moments of any order in our particular
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nilpotent situation. Notice once again that the boundedness of moments of the Malli-
avin derivative is still an open problem for rough differential equations in the general
case. We refer to Sect. 2.3.2 for notations on Malliavin calculus.

Theorem 4.4 Let the vector fields Vi , 1 = 1,2, . . . , d , be smooth with all derivatives
bounded, satisfying Hypothesis 4.1. Assume that all the Lie brackets of order greater
than or equal to 2 are constants. Then the Malliavin derivative of yt has moments of
any order. More precisely, for any q > 1 and T ∈ (0,∞),

E
[

sup
0≤u≤t≤T

|Duyt |q
]
< ∞. (45)

Proof Go back to our representation (44), which can easily be differentiated in the
Malliavin calculus sense in order to obtain

∂sDuφs =
d∑

i=1

∇Vi(φs)B
i
t Du φs +

n−1∑

k=2

d∑

i1,...,ik=1

ψ
i1,...,ik
t ∇Vi1,...,ik (φs)Duφs

+
d∑

i=1

Vi(φs)1
[i]
[0,t)(u) +

n−1∑

k=2

d∑

i1,...,ik=1

Duψ
i1,...,ik
t Vi1,...,ik (φs),

where we have set ∇Vi1,...,ik for the (matrix-valued) gradient of Vi1,...,ik , and where
we recall that the notation 1[i]

[0,t) has been introduced in Sect. 2.3.2.
Since we assume that all the Lie brackets of order greater than or equal to 2 of the

vector fields Vi are constant vector fields, it is easily checked that

∂sDuφs =
d∑

i=1

∇Vi(φs)B
i
t Duφs +

d∑

i=1

Vi(φs)1
[i]
[0,t)(u)

+
n−1∑

k=2

d∑

i1,...,ik=1

Duψ
i1,...,ik
t Vi1,...,ik (φs). (46)

Therefore there exist two positive constants c1, c2 such that

|∂sDuφs | ≤ c1

d∑

i=1

∣∣Bi
t

∣∣|Duφs |

+ c2

d∑

i=1

[
1 + |φs |

]
1[i]
[0,t)(u) +

n−1∑

k=2

d∑

i1,...,ik=1

∣
∣Duψ

i1,...,ik
t

∣
∣
∣
∣Vi1,...,ik (φs)

∣
∣.

By Gronwall’s lemma we obtain

sup
0≤s≤1,0≤u≤t≤T

|Duφs |
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≤ c2 exp

{

c1

d∑

i=1

sup
0≤t≤T

∣∣Bi
t

∣∣
}

×
{

d∑

i=1

[
1 + sup

0≤s≤1
|φs |

]

×
(

1 + sup
0≤t≤T

n−1∑

k=2

d∑

i1,...,ik=1

sup
0≤s≤1,0≤u≤t≤T

∣∣Duψ
i1,...,ik
t

∣∣∣∣Vi1,...,ik (φs)
∣∣
)}

.

Thus,

sup
0≤u≤t≤T

|Duyt |

≤ c2 exp

{

c1

d∑

i=1

sup
0≤t≤T

∣∣Bi
t

∣∣
}

×
{

d∑

i=1

[
1 + sup

0≤t≤T

|yt |
]
(

1 +
n−1∑

k=2

d∑

i1,...,ik=1

sup
0≤s≤1,0≤u≤t≤T

∣∣Duψ
i1,...,ik
t

∣∣
)}

,

which ends the proof easily by the boundedness of moments for yt , Duψ
i1,...,ik
t

and Bi
t . �

Example 4.5 A classical example of nilpotent vector fields in R
3 is due to Yamato

[31]. Let us check that this example fulfils our standing assumptions. Indeed, the
example provided in [31] is the following:

A1 = 0, A2 = ∂

∂x1
+ 2x2

∂

∂x3
, and A3 = ∂

∂x2
− 2x1

∂

∂x3
.

Then

[A2,A3] = −4
∂

∂x3
,

[[A2,A3],A2
] = [[A2,A3],A3

] = 0.

It is thus readily checked that the conditions of Theorem 4.4 are met for these vector
fields. Moreover, in this particular case the solution to (22) is explicit, and we have

y1
1 = y1 + B2

t , y2
t = y2 + B3

t , y3
t = y3 + 2

(
B2,32

0t − B2,23
0t

)

if the solution starts from the initial condition (y1, y2, y3). Interestingly enough,
though the solution is explicit here, the smoothness of the density of yt is not im-
mediate, and we recover here the results of [9].

4.3 Stochastic Flows

The probabilistic proof of the smoothness of density for diffusion processes origi-
nally given by Malliavin [22] heavily relies on stochastic flows methods and their
relationship with stochastic derivatives. We now establish those relations for SDEs
driven by a fractional Brownian motion.
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To this aim, denote by ys,a the solution to (22) starting from the initial condition
ys = a at time s:

dy
s,a
t =

d∑

i=1

Vi

(
y

s,a
t

)
dBi

t , t ∈ [s, T ], ys,a
s = a. (47)

The above equation gives rise to a family of smooth nonlinear mappings Φs,t : R
m →

R
m, 0 ≤ s ≤ t ≤ T , determined by Φs,t (a) := y

s,a
t , and the family {Φs,t ;0 ≤ s ≤

t ≤ T } has the following flow property (we refer, e.g., to [12] for the properties of
flows driven by rough paths quoted below):

Φs,t = Φu,t ◦ Φs,u, 0 ≤ s ≤ u ≤ t ≤ T .

Let Js,t denote the gradient of the nonlinear mapping Φs,t with respect to the
initial condition. Then the family {Js,t ;≤ s ≤ t ≤ T } also satisfies the relation
Js,t = Ju,tJs,u for 0 ≤ s ≤ u ≤ t ≤ T . In addition, the map Js,t is invertible, and
we have Js,t = J0,t J

−1
0,s . The equation followed by J0,t is obtained by differentiating

formally (47) with respect to the initial value a, which yields

dJ0,t =
d∑

i=1

∇Vi(yt )J0,t dBi
t , J0,0 = I.

By applying the rules of differential calculus for rough paths, we also get that J−1
0,t is

solution to the following equation:

dJ−1
0,t = −

d∑

i=1

∇Vi(yt )J
−1
0,t dBi

t , J−1
0,0 = I. (48)

We have thus ended up with two linear equations for the derivatives of the flow. In
our nilpotent case, we are thus able to bound these derivatives along the same lines
as for Theorem 4.4:

Theorem 4.6 Let the vector fields Vi , 1 = 1,2, . . . , d , be smooth with all derivatives
bounded and satisfy Hypothesis 4.1. Assume that all the Lie brackets of order greater
than or equal to 2 are constant. Then the Jacobian J0,t and its inverse J−1

0,t have
moments of any order: for any q ≥ 1 and T ∈ (0,∞),

E
[

sup
0≤t≤T

|J0,t |q
]
< ∞, and E

[
sup

0≤t≤T

|J−1
0,t |q]

< ∞. (49)

Proof As mentioned in the proof of Proposition 4.3, one can write Φ0,t (a) =
exp(Zt )(a) = φ1(a), where φ1(a) satisfies (44). Thus, if we introduce J̃s = ∇φs ,
then J0,t = J̃1 where J̃s satisfies

∂s J̃s =
d∑

i=1

Bi
t ∇Vi(φs)J̃s +

n−1∑

k=2

d∑

i1,...,ik=1

ψ
i1,...,ik
t ∇Vi1,...,ik (φs)J̃s , J̃0 = I.
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The first part of (49) is thus proved following the steps of Proposition 4.3.
As far as the second part of (49) is concerned, observe that J−1

0,t = J̄1, where J̄s is

inverse of J̃s . It is clear that J̄s satisfies

∂s J̄s = −
d∑

i=1

∇Vi(φs)J̄sB
i
t −

n−1∑

k=2

d∑

i1,...,ik=1

ψ
i1,...,ik
t ∇Vi1,...,ik (φs)J̄s , J̃0 = I.

Once again, the methodology of Proposition 4.3 easily yields our claim. �

Corollary 4.7 Under the same assumptions as in Theorem 4.6, the following holds:

(i) For any 0 < γ < H and q ≥ 1, we have

E
[‖Dyt‖q

γ,∞
] + E

[‖J0,·‖q
γ,∞

] + E
[∥∥J−1

0,·
∥∥q

γ,∞
]
< cT,q (50)

for a finite constant cT ,q .
(ii) As a consequence, inequality (50) also holds when the ‖ · ‖γ,∞ norms are re-

placed by norms in H, where H has been defined in Sect. 2.3.1.
(iii) For any smooth bounded vector field U on R

m and t ∈ [0, T ], set ZU
t :=

〈J−1
0,t U(yt ), η〉. Then ZU is a controlled process and satisfies the inequality

E[N q [ZU ; Qγ (Rm)]] ≤ cT ,q for any q ≥ 1 and a finite constant cT ,q .

Proof Going back to (46), it is readily checked that all the terms u �→ Duψ
i1,...,ik
t are

Cγ

1 -Hölder continuous on [0, t] for any γ < H , since the elements ψ
i1,...,ik
t are nice

multiple integrals with respect to B . Moreover, we have

E
[∥∥Dψ

i1,...,ik
t

∥∥q

γ,∞
]
< ∞

for any m ≥ 1. This easily yields E[‖Dy
i1,...,ik
t ‖q

γ,∞] < ∞ by a standard application
of Gronwall’s lemma, as in the proof of Theorem 4.4.

Our second assertion stems from the fact that one can choose 1/2 − H < γ < H ,
since H > 1/3. For such γ , we have Cγ

1 ⊂ H, which ends the proof.
Finally, our claim (iii) derives from the fact that the equation governing ZU is of

the following form:

ZU
t = 〈

η,U(a)
〉 +

d∑

j=1

∫ t

0
Z

[U,Vj ]
s dB

j
s . (51)

The process ZU can thus be decomposed as a controlled process as in Sect. 2.2, and
since we already have estimates for J−1

0,t and yt , the bound on E[N q [ZU ; Qγ (Rm)]]
follows easily. �

4.4 Proof of Theorem 1.1

As mentioned in the introduction, once we have shown the integrability of the Malli-
avin derivative and proved a Norris-type lemma, the proof of our main theorem goes
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along classical lines. We have chosen to follow here the exposition of [16], to which
we refer for further details.

Step 1: Reduction to a Lower Bound on Hölder Norms Recall that the process ZU

has been defined for any smooth vector field U in Corollary 4.7. For any p ≥ 1, our
first goal is to reduce our problem to the existence of a constant cp such that

P
(∥∥ZVk

∥∥
α,∞ ≤ ε

) ≤ cpεp (52)

for 1 ≤ k ≤ d , a given α ∈ (1/3,1/2), and all ε ∈ (0,1), and where we observe that
all the norms below are understood as norms on [0, T ].

Indeed, according to [16, Relation (4.9)], the smoothness of density can be ob-
tained from the estimate

P
(∥∥ZVk

∥∥
H ≤ ε

) ≤ cpεp,

where we recall that H has been defined in Sect. 2.3.1. Furthermore, we have

P
(∥∥ZVk

∥
∥

H ≤ ε
) ≤ P

(∥∥ZVk
∥
∥

L2 ≤ ε
) ≤ P

(∥∥ZVk
∥
∥

L1 ≤ ε
)
.

It is thus sufficient for our purposes to check that

P
(∥∥ZVk

∥∥
L1 ≤ ε

) ≤ cpεp. (53)

In order to go from (53) to (52), let us use our interpolation bound (23) in the
following form: for any 0 < η < 1 and 0 < α < ρ < H , we have

‖b‖L1 ≥ η1/(ρ−α)
(‖b‖α,∞ − Cα,ρη ‖b‖ρ,∞

)
.

Take now δ ∈ (0,1) to be fixed later on and η1(ρ−α) = ε1−δ , that is, η = ε(ρ−α)(1−δ).
Then

P
(∥∥ZVk

∥∥
L1 ≤ ε

) ≤ P
(∥∥ZVk

∥∥
α,∞ ≤ 2εδ

)+R, where R = P
(∥∥ZVk

∥∥
ρ,∞ ≥ 1

4c εν

)
,

(54)
with ν = ρ − α − (1 + (ρ − α))δ. Choose now δ small enough, so that ν > 0.
Since ‖ZVk‖ρ,∞ admits moments of any order according to Corollary 4.7, it is easily
checked that R can be made smaller than any quantity of the form cqεq . It is thus
sufficient to prove (52) in order to get the smoothness of density for yt .

Step 2: An Iterative Procedure For l ≥ 1 and x ∈ R
m, let Vl (x) be the vector space

generated by the Lie brackets of order l of our vector fields V1, . . . , Vd at point x:

Vl(x) = Span
{[Vk1 · · ·Vkj

](x); j ≤ l,1 ≤ k1, . . . , kj ≤ d
}
.

We assume that the vector fields are �-hypoelliptic for a given � > 0, which can be
read as V�(x) = R

m for any x ∈ R
m. In order to start our induction procedure, we set

α1 = α, so that we have to prove that P(‖ZVk‖α1,∞ ≤ ε) ≤ cpεp .
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Recall that ZVk satisfies the relation

Z
Vk
t = 〈

η,Vk(a)
〉 +

d∑

j=1

∫ t

0
Z

[Vk,Vj ]
s dB

j
s .

Thus Proposition 3.2 asserts that for any 1/3 < α2 < α1 < H , there exists q2 > 0
such that

P

(
(∥∥ZVk

∥∥
α1,∞ ≤ ε

) ∩
(

d⋃

j=1

(∥∥Z[Vk1 ,Vk2 ]∥∥
α2,∞ > εq2

)
))

≤ cpεp.

Relation (52) is thus implied by

P

(
(∥∥ZVk

∥∥
α1,∞ ≤ ε

) ∩
(

d⋂

j=1

(∥∥Z[Vk1 ,Vk2 ]∥∥
α2,∞ ≤ εq2

)
))

≤ cpεp.

Iterating this procedure, we end up with the following claim to prove: B�(ε) ≤ cpεp

for all ε ∈ (0,1), with

B�(ε) = P
(∥∥ZVk

∥∥
α1,∞ ≤ ε,

∥∥Z[Vk1 ,Vk2 ]∥∥
α2,∞ ≤ εq2 , . . . ,

∥∥Z[Vk1 ···Vk�
]∥∥

α�,∞ ≤ εq�
)
,

where the intersection above extends to all possible combinations 1 ≤ k1, . . . , k� ≤ d ,
and where 1/3 < α� < · · · < α1 < H .

Going back now to the very definition of ZU as ZU
t = 〈J−1

0,t U(yt ), η〉, it is readily
checked that

B�(ε) ≤ P
(〈
η,Vk1(a)

〉 ≤ ε, . . . ,
〈
η, [Vk1 · · ·Vk�

](a)
〉 ≤ εq�

)
.

Owing to the fact that V�(a) = R
m, we thus have B�(ε) = 0 for ε small enough, which

ends the proof.
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