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1. Introduction

In this article, we are concerned with the existence of a solution to the Cauchy
problem for the stochastic heat equation

�u

�t
�t� = �u+ F�t� u�t��+ B�t� u�t��Ẇ �t�� u�0� = u0 (1)

and the stochastic wave equation

�2u

�t2
�t� = �u�t�+ R�t� u�t��+ B�t� u�t��Ẇ �t��

u�0� = u0�
�u

�t
�0� = v0�

(2)
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Stochastic Equations on a Lie Group 663

In (1) and (2), � = ∑l
i=1 �

2
i is a subelliptic operator on a Lie group G, see

Section 1.1, W is a spatially homogeneous Wiener process taking values in the space
of tempered distributions � ′�G� on G, see Section 1.2, and

F�t� u�t���x� = f�t� x� u�t� x��� �B�t� u�t�����x� = b�t� x� u�t� x����x��

R�t� u�t���t� x� = f�t� x� u�t� x��+
l∑

i=1

�i�fi�t� x� u�t� x���

are Nemytskii operators corresponding to functions f� fi� b � �0���×G×� �→ �
and vector fields ��i	 on G. In the definition of B, � belongs to the Reproducing
Hilbert Kernel Space of the Wiener process, see Section 4 for more details.

This article is part of a global attempt, initiated during the last past years,
of studying stochastic heat and wave equations on spaces of dimension greater
than 1. The existence, uniqueness and regularity problems are addressed in [8, 9, 21]
using Walsh’s martingale measure technique, while this program is taken up in
[2–4, 17, 18, 23, 24, 26, 27] considering solutions to the corresponding stochastic
evolution system. On the other hand, our work is also a continuation of [31], where
an effort was made in order find conditions that had to be imposed on the spatial
covariance of the noise to ensure the existence of a function-valued solution to the
stochastic heat equation on a compact Lie group. Since we have chosen to work
with Markovian solutions to our equations, we will be inspired by methods given in
[24, 26, 27]. The case of equations on �d driven by homogeneous Lévy processes is
treated in [28].

Although we refer the reader to [25] for bibliographical information on the
equations on �d, we recall, see [17, 18, 27], that the stochastic heat equation on
�d admits a function-valued solution provided that the coefficients f and b are
Lipschitz, and the space correlation 
 of W is a measure bounded from below and
satisfying the following condition

∫
��y�≤1	

log��y�−1�
�dy� < � if d = 2�∫
��y�≤1	

�y�−d+2
�dy� < � if d > 2�
(3)

If d = 1 then the existence of a solution follows from the fact that 
 is a
tempered measure. Furthermore, (3) is a necessary condition provided that b is non-
degenerate. It turns out, see [9, 17, 18, 21, 27] that (3) is also a sufficient, and in
a sense necessary condition for the existence of a function-valued solutions to the
stochastic wave equation.

In this article, we are concerned with Markovian solution. Thus (1), or (2)
will define a Markov family on a given function state space. We consider scales
of state spaces. Namely, let � be the Carnot–Cathéodory distance associated with
�, see Section 1.1, and let ���x� = e−���x�e�. Let Lp

� = Lp�G����x�dx�, and let �� be
the space of all continuous  � G �→ � such that ��x�����x� → 0 as ��x� e�→�.
We will deal with the heat equation in spaces Lp

� and ��, � ∈ �� p ∈ �2���.
We consider the wave equation in �� = �	p

�� H
−1
� �, where 	2

� = L2�G� ��dx� and ��
is a certain regularization of ��, see Section 2 for more details. We will assume that
the space correlation of the noise is a measure bounded from below, see (9). Then
we will show that the necessary and sufficient condition (10) for the existence of
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664 Peszat and Tindel

a solution to (1) and (2) arises from (3) by replacing the Euclidean distance by �.
However in general the characteristic d appearing in (3) is bigger than the dimension
of the space G, see (5).

Our Theorem 2 gives conditions for the space-time continuity of a solution.
Using the same method one can obtain conditions for its Hölder continuity. The
fact that we deal with general Lie groups causes the following additional difficulties:

(i) The complexity of Fourier’s analysis, which was an important tool in the works
mentioned above, on general noncompact Lie groups makes it difficult to use
in a fashionable way for our purposes. We will try to avoid most references to
this tool in the sequel, though a characterization of our main hypothesis (10)
in terms of the Fourier transform of the covariance of the noise will be given
in case of the Heisenberg group, see Section 11.

(ii) As a consequence of �i�, the reproducing Hilbert space kernel of the noise W
will not be given in an explicit way.

(iii) To our knowledge, the fact that the wave operator generates a C0-semigroup
on the weighted space ��, defined by (14), is not known. We will prove it in
Section 8.

The article is organized as follows. In the next two subsections we recall the
definitions of a subelliptic operator on a Lie group G and the corresponding
Carnot–Carathéodory distance, and we introduce the definition of a spatially
homogeneous Wiener process on G. In Section 2 we formulate the main results;
Theorems 1–3, on the existence and regularity of a solution to (1) and (2). Section
3 is devoted to basic properties of the heat semigroup on weighted spaces. In
Section 4, we recall main facts concerning stochastic integration in Lq-spaces. Then,
in Section 5, we establish some estimates for the so-called �-radonifying norm of a
multiplication operator. These estimates are the crucial ingredients of the proofs of
the Theorems 1 and 2, see Sections 6 and 7. The next two sections are devoted to
the proof of Theorem 3 dealing with the existence of a solution to (2). Our results
present conditions (9) and (10) for the existence of a solution in terms of the spatial
correlation 
 of the noise. In Section 10, we deal with two examples; 
 being a
bounded function, which on �N corresponds to the case of W being a random field,
and 
 of the type �
− ��−�. In Section 11, G is the Heisenberg group. We formulate
our main condition (10) using Fourier transform. In the appendix we present the
definition and basic properties of the Fourier transform on a Lie group.

1.1. Lie Group G and the Subelliptic Operator �

In this article, G is a locally compact connected Lie group of a dimension N , with
the Lie algebra � and identity element e. The group G is assumed to be equipped
with a left invariant metric � given by a scalar product on �, and with a left
invariant volume element, denoted by dx, which is unique up to a multiplicative
constant. We assume that G is unimodular, so that the Haar measure dx is also
right invariant. Moreover, see for example [12, p. 48], dx is invariant with respect
to the inverse mapping x �→ x−1.

Let ��1� � � � ��N 	 be an orthonormal basis of �, and let ��1� � � � ��l	 be a fixed
Hörmander system taken out of this basis. In this article, we are concerned with
the sub-elliptic operator

∑l
i=1 �

2
i . It is known, see for example [7, p. 21], that

∑l
i=1 �

2
i

with the domain C�
0 �G� is a symmetric negative defined operator on L2 = L2�G� dx�.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ite
 d

e 
L

or
ra

in
e]

 a
t 0

2:
52

 0
6 

Se
pt

em
be

r 
20

12
 



Stochastic Equations on a Lie Group 665

We will denote by � its Friedrichs extension, see [7, p. 20]. Then � is a negative
defined self-adjoint operator on L2.

Let C� be the set of absolutely continuous paths � � �0� 1� �→ G satisfying �̇�t� =∑l
i=1 ai�t��i���t�� for all t ∈ �0� 1�. Set ��� = ∫ 1

0 �a�t���ldt. Then

��x� y� = inf����� � ∈ C�� ��0� = x� ��1� = y	

defines the Carnot–Cathéodory distance associated with �. Topologically, the
distances � and � are equivalent, see for example, [7, p. 39]. We write ��x� = ��x� e�.
As ��x� y� = ��zx� zy� (see [7, p. 40]) we have ��x� = ��x−1�.

We assume that G is of polynomial growth, that is, the volume of the ball
B�e� r� = �x ∈ G � ��x� < r	 does not grow faster than a polynomial in r as r → �.

Let S = �S�t�� t ≥ 0	 be the semigroup on L2 generated by �. Thus for any
u�0� ·� ∈ L2, u�t� ·� = S�t�u�0� ·� is a unique solution to the equation

�u

�t
�t� x� = � u�t� x�� �t� x� ∈ �0���×G�

Then S is a symmetric C0-contraction semigroup. In this article, we deal with the
weighted Lp-spaces Lp

� = Lp�G����x�dx�, p ∈ �1���, � ∈ �, where

���x� = e−���x�� (4)

Obviously �0 = 1. For brevity we write Lp instead of Lp
0 . We will show, see Lemma

3, that �� ∈ L1 ∩ L2 for � > 0, and the heat semigroup S is a C0-semigroup on any
Lp
�-space.

Let �l� be the set of multi-indexes I with values in �1� � � � � l	. For I =
�i1� � � � � i�	 ∈ �l� we define �I = ��i1� ��i2� � � � � ��i�−1

��i� � � � � ��. Given j > 0 we
set Kj = Span ��I � I ∈ �l�� �I� ≤ j	. Then, the Hörmander condition implies the
existence of a minimal s ∈ � such that Ks = �. Define n0 = 0 and nj = dim Kj ,
j > 0, and

d =
s∑

j=0

�N − nj�� (5)

1.2. Spatially Homogeneous Wiener Process on G

Let us denote by � �G� the space of all infinitely differentiable functions  on G for
which the seminorms

pm�n�� = sup
x∈G

sup
I∈�l�� �I�≤m

∣∣��x�n�i1 � � ��i��x�∣∣� m� n ∈ ��

are finite. The dual � ′�G� of � �G� is then the space of tempered distributions on G.
In what follows we denote by 
�� � the value of � ∈ � ′�G� on  ∈ � �G�.

Definition 1. Let � = ������� be a complete probability space with a filtration
��t�t≥0. We say that an � ′�G�-valued process W defined on � is Wiener iff

(i) for arbitrary finite sets �1� � � � � n	 ⊂ � �G� and �t1� � � � � tn	 ⊂ �0���, the
random vector �
W�t1�� 1�� � � � � 
W�tn�� n�� is Gaussian,
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666 Peszat and Tindel

(ii) for any test function  ∈ � �G�, 
W�t�� �, t ≥ 0, is a real-valued ��t�-adapted
Wiener process.

Let ��Lx � x ∈ G	 and ��Rx � x ∈ G	 be the groups of left and right translations on
� ′�G�, e.a. for � ∈ � ′�G�,  ∈ � �G� and x� y ∈ G,


�Lx �� � = 
�� �L
x−1�� �L

x−1�y� = �x−1y�� (6)


�Rx �� � = 
�� �R
x−1�� �R

x−1�y� = �yx−1�� (7)

Definition 2. An � ′�G�-valued Wiener process W is called spatially homogeneous
iff for any t ≥ 0 the law of W�t� is invariant with respect to the group of left
translations ��Lx � x ∈ G	, that is for all x ∈ G and � ∈ ��� ′�G��,

��W�t� ∈ �� = ��W�t� ∈ ��Lx �
−1�����

Given two functions  and � on G we set

 ∗ ��x� =
∫
G
�xy−1���y�dy�

We call a bilinear form � on � �G� left translation invariant iff for all �� ∈ � �G�,
and x ∈ G,

��� �� = ���Lx� �
L
x���

Given a function  on G we set ∗�x� = �x−1�.

Remark 1. Let ��� �� = �
W�1�� �
W�1�� ��, �� ∈ � �G�, be the covariance
form of an � ′�G�-valued Wiener process W . Then, since W is Gaussian, it is spatially
homogeneous iff � is invariant with respect to the group of left translations.

Since for all z ∈ G and �� ∈ � �G�, ∗ ∗ � = ��Lz �
∗ ∗ ��Lz �� we have the

following result.

Proposition 1. Assume that 
 ∈ � ′�G�. Then

��� �� = 

� ∗ ∗ ��� � � ∈ � �G�� (8)

is a continuous left translation invariant bilinear form on � �G�.

Remark 2. It is known, see for example [14], that any translation invariant
continuous bilinear form on � ��N � is of the form (8). Moreover, by Bochner’s
theorem it is positive definite iff 
 is the Fourier transform of a positive measure.

Remark 3. Assume that the kernel theorem holds true on � �G�, that is any
continuous bilinear form � on � �G� is of the form ��� �� = 
�� ⊗ ��, where
� ∈ � ′�G×G�. Then one can adopt the proof from [14], and show that any left
and right translation invariant continuous bilinear form on � �G� is of the form (8)
with a 
 ∈ � ′�G� satisfying �Rx �

L
x−1
 = 
� x ∈ G. We note that the kernel theorem
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Stochastic Equations on a Lie Group 667

holds true, see [14], if � �G� is nuclear, that is its topology is given by an increasing
sequence of Hilbertian seminorms �qn	, such that the injections Hn+1 ↪→ Hn are
Hilbert–Schmidt, Hn being the completion on � �G� with respect to qn.

Remark 4. It is easy to show that if G is nilpotent, than � �G� is nuclear. For, see
[5, Appendix A.2], the Sobolev spaces on G are isomorphic to Sobolev spaces in
�N . Professor Malliavin has pointed out that if G is semi-simple, then the nuclearity
of � �G� can be obtained using the techniques developed in [19]. Namely, G can be
first decomposed as G = K × V , where K is a maximal compact subgroup of G, and
V = G/K is a symmetric space. Clearly, it is sufficient to prove that � �K� and � �V�
have a nuclear structure, where � �K� and � �V� are defined in a standard way. The
nuclear structure of � �K� is obvious, since K is a compact Lie group. The fact that
� �V� is also nuclear is reduced, in [19], using Iwasawa coordinates, to the study of
a space � �A�, where A is an abelian group, and � �A� is defined via a second order
elliptic operator.

Remark 5. Having a positive-definite translation invariant continuous bilinear
form � one can ask if there is an � ′�G�-valued Wiener process with the covariance
form �. This holds true if � ′�G� is nuclear, see [15 or 16].

2. Main Results

Let ��� �� = � 
W�1�� �
W�1�� ��, �� ∈ � �G�, be the covariance form of W . In
what follows we assume that � is of the form (8) with a distribution 
 . We call

 the space correlation of W . Recall that d is defined in (5). In our exposition the
following assumption plays an essential role.

∃C
 ≥ 0 � 
 + C
dx is a non-negative measure. (9)

Definition 3. Let p ∈ �2��� and � ∈ �. We say that a function h � �0���×G×
� �→ � belongs to the class Lip �p� �� iff for any T < � there are a constant L and
a function l0 ∈ Lp

� such that

�h�t� x� z�� ≤ L�l0�x�+ �z�� and �h�t� x� z�− h�t� x� z̃�� ≤ L�z− z̃��

Our first theorem provides conditions for the existence of a solution to the
stochastic heat equation (1). By a solution to (1) we understand the so-called mild
solution, that is, a solution to the following integral equation

u�t� = S�t�u�0�+
∫ t

0
S�t − s�F�s� u�s��ds +

∫ t

0
S�t − s�B�s� u�s��dW�s��

where S is the semigroup generated by �, and the stochastic integral is understood
as Itô’s integral with respect to an infinite dimensional Wiener process, for more
details see Section 4.

Theorem 1. Let p ∈ �2��� and � ∈ �. Assume that (9) is satisfied, and the coefficients
f� b are of the class Lip �p� ��.
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668 Peszat and Tindel

(i) If {∫
B�e�1� log���x�

−1�
�dx� < � for d = 2�∫
B�e�1� ��x�

−d+2 
�dx� < � for d �= 2�
(10)

then for any u0 ∈ Lp
� there is a unique mild solution u to (1) such that for every

T < �,

sup
t∈�0�T�
��u�t��2

L
p
�
< �� (11)

(ii) Assume that � > 0. If there are T > 0 and b0 > 0 such that �b�t� x� z�� ≥ b0 for all
t ∈ �0� T�, x ∈ G, and z ∈ �, then (10) follows from the existence of a solution to
(1) satisfying (11).

Remark 6. Note that as 
 is a tempered distribution, for d = 1, (10) follows from
(9).

Let �� be the class of all continuous functions  � G �→ � such that
��x�����x� → 0 as ��x� → �. Then �� equipped with the norm ���� =
supx∈G ��x����x�� is a Banach space. Our next result deals with time and space-time
continuous solutions to the stochastic heat equation on G.

Theorem 2. Let � ∈ � and p ∈ �2���. Assume that (9) holds and the coefficients f� b
are of the class Lip �p� ��.

(i) If there is an � > 0 such that∫
B�e�1�
��x�−d−�+2
�dx� < �� (12)

then for any u0 ∈ Lp
� there is a unique mild solution u to (1) having continuous

trajectories in Lp
� and satisfying

� sup
t∈�0�T�

�u�t��q
L
p
�
< � for all T < �� q ∈ �2����

(ii) If 2d/p < 1 and there is an � > 2d/p such that (12) holds true, then for any u0 ∈
Lp
� ∩��/p there is a unique mild solution u to (1) having continuous trajectories in

Lp
� ∩��/p and satisfying

� sup
t∈�0�T�

��u�t��q��/p + �u�t��q
L
p
�
� < � for all T < �� q ∈ �2����

We are able to show the existence of a solution to the stochastic wave equation
in a space with the weight �� being a regularization of ��, see Lemmas 5 and 14. It
is obtained in the following way

�� = S�1���� (13)

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ite
 d

e 
L

or
ra

in
e]

 a
t 0

2:
52

 0
6 

Se
pt

em
be

r 
20

12
 



Stochastic Equations on a Lie Group 669

S being the heat semigroup. Let 	2
� = L2�G� ���x�dx�� � ∈ �� Let r = ±1, and let

� ∈ �. Define a Sobolev space Hr
� as the completion of C�

0 �G� with respect to the
norm

��Hr
�
= ��
− ��r/2��1/2� ��L2 �

Let

�� =
(
	2

�

H−1
�

)
� �� =

(
H1

�

	2
�

)
� =

(
0 

� 0

)
(14)

We will show, see Lemma 15, that � with the domain Dom� = �� generates a
C0-semigroup U = �U�t�	 on ��. We define an ��-valued solution X to (2) as a
process satisfying the following stochastic evolution equation

X�t� = U�t�X�0�+
∫ t

0
�t − s�F�s� X�s��ds +

∫ t

0
U�t − s�B�s� X�s��dW�s��

where X�0� = �u0� v0�
T, and for X = �u� v�T,

F�t� X� =
(

0
R�t� u�

)
and �B�t� u��� =

(
0

B�t� u��

)
� (15)

The theorem below provides sufficient conditions for the existence of an ��-valued
solutions to the stochastic wave equation on G. In its formulation the coefficients
are required to be from the following Lipschitz class.

Definition 4. Let p ∈ �2��� and � ∈ �. We say that a function h � �0���×G×
� �→ � belongs to Lip �2� �� iff for any T < � there are a constant L and a
function l0 ∈ 	2

� such that

�h�t� x� z�� ≤ L�l0�x�+ �z�� and �h�t� x� z�− h�t� x� z̃�� ≤ L�z− z̃��
Note that in Definition 3 of Lip �2� �� the function l0 belongs to L2

�, whereas in
the definition of Lip�2� �� it belongs to 	2

�.

Theorem 3. Let � ∈ �. Assume that (9) and (10) are fulfilled, and the coefficients
f� fi� b ∈ Lip�2� ��. Then for any �u0� v0�

T ∈ �� there is a unique solution to (9) with
continuous trajectories in �� and such that

� sup
t∈�0�T�

�X�t��q��
< � for all T < �� q ∈ �1����

3. Properties of the Heat Semigroup

Let �t be the heat kernel on G, see [7, p. 106]. Thus, for any  ∈ L2,

S�t��x� =  ∗ �t�x� =
∫
G
�t�y

−1x��y�dy�

Note as S is symmetric we have �∗
t = �t. Set �t�r� = t−d/2 exp�−r2/t	. For a proof

of the lemma below we refer the reader to [7, Th. 8.2.9].
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670 Peszat and Tindel

Lemma 1. There are constants c� C > 0 such that for all t > 0 and x ∈ G, and
i∈ �1� � � � � l	,

c�t���x�/c� ≤ �t�x� ≤ C�t���x�/C��

ct−
1
2 �t���x�/c� ≤ �i�t�x� ≤ Ct−

1
2 �t���x�/C��

ct−1�t���x�/c� ≤ ��t�x� ≤ Ct−1�t���x�/C��

Obviously, �t�x� > 0 for all x and t. Since the constant function 1 is the unique
solution to

�u

�t
= �u� u�0� ·� = 1�

we have
∫
G
�t�y

−1x�dy = 1, t > 0� x ∈ G.

Lemma 2. For each t > 0��t ∈ � �G�, and x �→ ��t�y
−1x�� y ∈ G	 is a continuous

mapping from G into � �G�. Moreover, the restriction of the heat semigroup to � �G�
is a C0-semigroup on � �G�.

Proof. Clearly it is enough to show that for all n ∈ �� I = �i1� � � � � in� ∈ �l� and
�I = �i1 � � ��in , and a fixed x ∈ G,

lim
��z�x�→0

sup
y∈G

�t�y� x� z� = 0�

where

�t�y� x� z� = ��y�n�i1�����in ��t�y−1x�− �t�y−1z���

Note that for any � ∈ �0� 1�, �t�y� x� z� ≤ �
���
t �y� x� z��

�1−��
t �y� x� z�, where

�
���
t �y� x� z� = ��y�n���i1�����in�t�y−1x�� + �Xi1�����in

�t�y
−1z�����

�
�1−��
t �y� x� z� = ��i1�����in�t�y−1x�− �i1�����in�t�y−1z��1−��

Let y be such that ��y� ≥ 3��x�. Then, observing that for z ∈ B�x� ��x�/2� we have

��y−1x� ≥ ��y�− ��x� ≥ 1
2
��y� and ��y−1z� ≥ ��y�− ��z� ≥ 1

2
��y�

we obtain

�
���
t �y� x� z� ≤
2n
(
��y−1x�n/���i1�����in�t�y−1x�� + ��y−1z�n/���i1�����in�t�y−1z��)�

and, hence,

sup
{
�

���
t �y� x� z� � ��y� ≥ 3��x�� z ∈ B�x� ��x�/2�

}
< ��
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Stochastic Equations on a Lie Group 671

By boundedness of all the derivatives of the heat kernel, we also have

sup
{
�

���
t �y� x� z� � ��y� ≤ 3��x�� z ∈ B�x� ��x�/2�

}
< ��

and thus,

sup
y∈G�z∈B�x���x�/2�

�
���
t �y� x� z� =� M��� < �� (16)

Consider now a normalized Cantor geodesic �, see Section 1.1, joining x and z. Then

��
�1−��
t �y� x� z��1/�1−�� =

∣∣∣∣ l∑
i=1

∫ ��x�z�
0

a����i�i1�����in�t�y
−1�����d�

∣∣∣∣
and setting

C = sup
i=1�����l�z∈G

��i�i1�����in��z��

we get

��
�1−��
t �y� x� z��1/�1−�� ≤ C��x� z�� (17)

Putting (16) and (17) together we obtain

�t�y� x� z� ≤ �����C��x� z��1−� for z ∈ B�x� ��x�/2��

which completes the proof. �

In Lemmas 3 and 4 below we show that the heat semigroup is C0 on the
weighted spaces Lp

� and ��. In the proofs we will use arguments of Funaki, see [13,
Lemma 2.1].

Lemma 3. Let � ∈ �, and let �� be given by (4). Then �� ∈ L1 ∩ L2 for � > 0, and
the heat semigroup S has the unique extension from C�

0 �G� to a C0-semigroup on Lp
�

for arbitrary p ∈ �2��� and � ∈ �. Moreover, �Ry ���x� ≤ e�����y����x� for all x� y ∈ G.

Proof. Recall that V�r� = ∫
B�e�r�

dx has a polynomial growth. Hence for any � > 0
we have ∫

G
e−���x�dx =

∫ �

0
e−�rV�dr� < ��

which proves the first part of the lemma. Since C�
0 �G� is dense in Lp

� it is enough to
show that for all T > 0, � ∈ �, and p ∈ �2��� there is a constant C such that for
all  ∈ C�

0 �G� and t ∈ �0� T� one has �S�t��p
L
p
�
≤ C ��p

L
p
�
. Let us fix T , � and p. Let

S̃�t��x� =
∫
G
�t���y

−1x���y�dy� (18)

Taking into account Lemma 1 it is enough to show that

∃C̃ � ∀ ∈ C�
0 �G�� t ∈ �0� T�� �̃S�t��p

L
p
�
≤ C̃��p

L
p
�
� (19)
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672 Peszat and Tindel

Note that

�t���y
−1x�����x� = t−d/2 exp�−�2�x� y�/t − ���x�	

= t−d/2 exp�−�2�x� y�/t − ���x�+ ���y�	���y�

≤ t−d/2 exp�−�2�x� y�/t + �����x� y�	���y�

≤ exp�t�2/2	�t���x
−1y�/

√
2����y�� (20)

Since
∫
G
�t�x

−1y�dy = 1, Lemma 1 yields that there is a constant C1 = C1�T� such that∫
G
�t���x

−1y�/
√
2�dx ≤ C1 for all t ∈ �0� T�� (21)

Combining (20) with (21) we can find a constant C2 = C2�T� �� such that∫
G
�t���y

−1x�����x�dx ≤ C2���y� for all y ∈ G and t ∈ �0� T�� (22)

From this and (21) one can easily obtain (19). In order to show the last part of the
lemma note that since �Ry ��x� = ��e� xy� = ��y−1� x�, we have

−�Ry ��x� ≤ ��y−1�− ��x� = ��y�− ��x��
�Ry ��x� ≤ ��y−1�+ ��x� ≤ ��y�+ ��x��

Consequently �Ry e
−���x� ≤ e�����y�e−���x�. �

Lemma 4. Let � ∈ �. Then the heat semigroup S is C0 on ��. Moreover, for all p ∈
�2��� and t > 0, S�t� is a bounded linear operator from Lp

� into ��/p, and for any T

there is a constant C = C�T� p� �� such that

�S�t��L�Lp����/p� ≤ Ct−d/�2p� for t ∈ �0� T�� (23)

Proof. Let us fix T , � and p. Let S̃ be given by (18). Clearly it is enough to show
that there are constants C̃1 = C̃1�T� �� and C̃2 = C̃2�T� �� p� such that

�̃S�t���� ≤ C̃1���� for all t ∈ �0� T��  ∈ � �G�� (24)

and that

�̃S�t����/p ≤ C̃2t
−d/�2p���Lp� for all t ∈ �0� T��  ∈ � �G�� (25)

We have ∣∣̃S�t��x�∣∣ ≤ ∫
G
�t���y

−1x����y��dy

≤
∫
G
�t���y

−1x���−��y����y���y��dy

≤ ����
∫
G
�t���y

−1x���−��y�dy�
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Stochastic Equations on a Lie Group 673

Combining this estimate and (22) with � being replaced by −� we obtain (24).
To show (25) note that using first Hölder’s inequality we get

∣∣̃S�t��x�∣∣ ≤ ��Lp�
( ∫

G
�p

∗
t ���y

−1x���−p∗�/p�y�dy
)1/p∗

�

where p∗ = p/�p− 1�. Using now (22) for � being replaced by −p∗�/p, one can
easily obtain ( ∫

G
�p

∗
t ���y

−1x���−p∗�/p�y�dy
)1/p∗

≤ Ct−d/�2p��−�/p�x��

which proves (25). �

Lemma 5. Let � ∈ �, and let �� be given by (12). Then �� > 0, �� ∈ L1 ∩ L2 for
� > 0, and the heat semigroup S has the unique extension to a C0-semigroup on 	p

� =
Lp�G� ���x�dx� for arbitrary p ∈ �2��� and � ∈ �.

Proof. Clearly �� > 0. By Lemma 3, �� ∈ L1 ∩ L2 for � > 0. Hence, by Lemmas 1
and 4, �� > 0 and �� ∈ L1 ∩ L2 for � > 0. To show that S is C0 on any 	p

�-space it
is enough to show that for every T > 0 there is a constant C such that S�t����x� ≤
C���x� for t ∈ �0� T�. This follows from (22);

S�t��� = S�t�S�1��� ≤ CS�1��� = C���

4. Distribution-Valued Wiener Processes

Let W be � ′�G�-valued Wiener process. Then, see for example [15 or 16], there is a
unique real separable Hilbert space HW ⊂ � ′�G� such

W�t� = ∑
k

Wk�t��k� (26)

where ��k	 is an arbitrary orthonormal basis of HW and �Wk	 is a sequence
of standard independent real-valued ��t�-adapted Wiener processes. The series
converges in � ′�G�, in the sense that for any test function , and for any t, 
W�t�� �
is the L2�������-limit of the series

∑
k Wk�t�
�k� �. We call HW the Reproducing

Hilbert Kernel Space of W , RHKS in short.

4.1. Stochastic Integration in Hilbert Spaces

In this section, we recall the construction and properties of Itô’s integral with
respect to an � ′�G�-valued Wiener process W defined on probability basis � =
����� ��t�t≥0���. We denote by HW the RHKS of W . Given q ∈ �2��� and a
Banach space V we denote by �q�V� the space of all measurable ��t�-adapted
processes � with values in V such that the seminorms

���T =
(
�
∫ T

0
���t��qVdt

)1/q

� T ∈ �0����
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674 Peszat and Tindel

are finite. Assume that V is a separable Hilbert space. Let L�HS��HW� V� be the
space of all of Hilbert–Schmidt operators from HW to V . Let us fix an orthonormal
basis ��k	 of HW , and let �Wk	 be a sequence of independent real-valued Wiener
processes for which (4.1) holds true. Let us denote by �n the projection onto
the space spanned by �1� � � � � �n. Let �0�L�HS��HW� V�� denote the class of all
�∈�2�L�HS��HW� V�� such that

���� t� =
n∑

j=1

�j����i��tj �tj+1�
�t�

for some positive integers n and i, and 0 ≤ t1 < · · · < tn+1 < �, and �j ∈
L2����tj ��� L�HS��HW� V��. For � ∈ �0�L�HS��HW� V�� and t ∈ �0��� we put

W
t � =

∫ t

0
��s�dW�s� =

n∑
j=1

i∑
k=1

�Wk�tj+1 ∧ t�−Wk�tj ∧ t���j�k�

It is easy to see that W
t can be extended continuously to �2�L�HS��HW� V��.

Moreover, for any � ∈ �2�L�HS��HW� V�� the process W
t �, t ∈ �0���, is a

continuous square integrable martingale in V , and

� �W
t ��2V = �

∫ t

0
���s��2L�HS��HW �V�ds� t ∈ �0���� (27)

It is easy to see that the stochastic integral does not depend on the particular choice
of orthonormal basis ��k	.

Lemma 6. Let ��� �� = �
W�1�� �
W�1�� ��, �� ∈ � �G� be the covariance form
of a Wiener process W with the RHKS HW . Then for an arbitrary orthonormal basis ��k	
of HW one has

��� �� = ∑
k


�k� �
�k� ��� � � ∈ � �G��

where 
·� ·� stands for the bilinear duality form on � ′�G�×� �G�.

Proof. Let ��k	 be an orthonormal basis of HW , and let �Wk	 be a sequence of
independent standard Wiener processes such that (26) holds true. Then

��� �� = �
W�1�� �
W�1�� ��
= �

(∑
k


�k� �Wk�1�
)(∑

k


�k� ��Wk�1�
)
= ∑

k


�k� �
�k� ���

which is the desired conclusion. �

In the next result we compute the Hilbert–Schmidt norm of an integral operator
on the RHKS of W .

Lemma 7. Let � be a nonnegative measure on a measurable space �O���, let L2��� =
L2�O��� ��, and let � be a measurable mapping from O into � �G�. Consider the
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Stochastic Equations on a Lie Group 675

operator K��x� = 
����x��, � ∈ HW� x ∈ O. Then for any orthonormal basis ��k	 of HW

one has

∑
k

�K�k�2L2��� =
∫
O
����x����x����dx��

Proof. Since

∑
k

�K�k�2L2��� =
∑
k

∫
O

�k���x��2��dx��

Lemma 6 gives the desired conclusion. �

4.2. Stochastic Integration in Weighted Lp-Spaces

Let � be a nonnegative measure on a measurable space �O���, and let Lp��� =
Lp�O��� ��. In this section we present basic facts on the stochastic integral in
Lp���-spaces with respect to a spatially homogeneous Wiener process W . Most of
results presented here are particular cases of the more general theory of stochastic
integration in Banach spaces, see for example [2–4, 10, 22, 28].

In this section, we fix p ∈ �2���, an orthonormal basis ��k	 of HW , and a
sequence ��k	 of independent standard real-valued normal random variables defined
on a probability base �.

A bounded linear operator K � HW �→ Lp��� is called �-radonifying, iff the series∑�
k=1 �kK�k converges in L

2������� Lp����. We use R�HW� L
p���� to denote the class

of all �-radonifying operators from HW into Lp���. Given a linear operator K from
HW into Lp��� write

�K�2R�HW �Lp���� = lim sup
n

�

∣∣∣∣ n∑
k=1

�kK�k

∣∣∣∣2
Lp���

� (28)

Then, see for example [22], K is �-radonifying iff �K�R�HW �Lp���� is finite. Note that
R�HW� L

p���� equipped with the norm �K�R�HW �Lp���� is a Banach space. Note that
if p = 2, that is if Lp��� is a Hilbert space, then the spaces R�HW� L

2���� and
L�HS��HW� L

2���� and the radonifying and Hilbert–Schmidt norms are equal.
The lemma below provides an useful estimate for the �-radonifying norm of

an operator given by a kernel, and it is an analogue of Lemma 7 from the present
paper. It is a reformulation of [4, Prop. 2.1].

Lemma 8. Assume that K ∈ L�HW� L
p���� is given by �K���x� = 
����x��, x ∈ O,

� ∈HW , where � is a measurable mapping from O into � �G�. Then there is a constant
C independent of K such that

�K�R�HW �Lp���� ≤ C

( ∫
G
����x����x��p/2��dx�

)1/p

�
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676 Peszat and Tindel

Proof. Since for each x the real-valued random variable
∑n

k=1 �k
��x�� �k� is
Gaussian, there exists a constant C1 depending only on p such that(

�

∣∣∣∣ n∑
k=1

�kK�k

∣∣∣∣2
Lp���

)p/2

=
(
�
( ∫

G

∣∣∣∣ n∑
k=1

�k
�k���x��
∣∣∣∣p��dx�)2/p)p/2

≤ �
∫
G

∣∣∣∣ n∑
k=1

�k
�k���x��
∣∣∣∣p��dx�

≤ C1

∫
G

(
�

∣∣∣∣ n∑
k=1

�k
�k���x��
∣∣∣∣2)p/2

��dx�

≤ C1

∫
G

∣∣∣∣ n∑
k=1


�k���x��2
∣∣∣∣p/2��dx��

Thus, by Lemma 6,

�K�2R�HW �Lp���� = lim sup
n

�

∣∣∣∣ �∑
k=1

�kK�k

∣∣∣∣2
Lp���

≤ C
2/p
1

( ∫
G
����x����x��p/2��dx�

)2/p

�

which is the desired conclusion. �

The stochastic integral with respect to W can be defined first for processes from
�0�R�HW� L

p����� and then extended to �2�R�HW� L
p�����. We have the following

consequence of general theorems on stochastic integration in Banach spaces, [2, 10,
22, 28].

Theorem 4. For any � ∈ �2�R�HW� L
p����� the stochastic integral∫ t

0
��s�dW�s�� t ≥ 0�

is an Lp
�-valued square integrable martingale with continuous modification and 0 mean.

Moreover, for every q ∈ �2��� there is a constant C independent of T and �, such that

� sup
0≤t≤T

∣∣∣∣ ∫ t

0
��s�dW�s�

∣∣∣∣q
Lp���

≤ C�
( ∫ T

0
���s��2R�HW �Lp����ds

)q/2

�

5. Main Estimates

Throughout this section we assume that (9) is fulfilled with a constant C
 ≥ 0, that
is 
 + C
dx is a non-negative measure, and ��k	 is an orthonormal basis of the
RKHS HW of a spatially homogeneous Wiener process W with the space correlation

 . Given  ∈ � �G� we define the multiplication operator on HW by M� = �.
We extent M for  equal to the constant function 1 taking M1� = �. In fact, we
will show, see Corollary 1 that if (9) is satisfied, then M has a unique extension,
denoted also by M , to a bounded linear operator from any Lp

�-space to R�HW� L
p
��.
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Stochastic Equations on a Lie Group 677

Recall that �K�R�HW �L
p
��
∈ �0��� is given by (28), and that K is �-radonifying iff

�K�R�HW �L
p
��
< �. Moreover, �K�R�HW �L2

��
= �K�L�HS��HW �L2

��
.

Let T > 0, � > 0. For r ≥ 0 we set

���� T� r� =
∫ T

0
t−�e−r/tdt and ���� r� =

∫ �

0
t−�e−te−r/tdt� (29)

Lemma 9. (i) For all � ≥ 0, n ∈ �, and T > 0, rn���� T� r� → 0 and rn���� r� → 0
as r → �,

(ii) If � ∈ �0� 1�, then ���� T� ·� and ���� ·� are bounded functions,
(iii) There are constants C1� C2 ∈ �0��� such that for every r ∈ �0� 1�,

C1 log��r�−1� ≤ ��1� T� r� ≤ C2 log��r�−1��

C1 log��r�−1� ≤ ��1� r� ≤ C2 log��r�−1��

(iv) If � > 1, then there are constants C1� C2 ∈ �0��� such that for every r ∈ �0� 1�,

C1�r�1−� ≤ ���� T� r� ≤ C2�r�1−� and C1�r�1−� ≤ ���� r� ≤ C2�r�1−��
Proof. Since ���� r� ≥ e−1���� 1� r� and

���� r� ≤ ���� 1� r�+
∫ �

1
e−te−r/tdt

≤ ���� 1� r�+ e−
√
r
∫ max�

√
r�1	

1
e−tdt + e−

√
r/2

∫ �

max�
√
r�1	

e−t/2dt

≤ ���� 1� r�+ e−
√
r/2

∫ �

0
e−t/2dt ≤ ���� 1� r�+ 2e−

√
r/2

it is enough to check (i)–(iv) for ���� T� ·�. After changing variables s = t/r we get
���� T� r� = r1−�

∫ T/r

0 t−�e−1/tdt. Hence (i) follows from

lim
x↓0

x−m
∫ x

0
t−�e−1/tdt = 0 for all � > 0 and m ∈ ��

If � ∈ �0� 1� then ���� T� r� ≤ ∫ T

0 t−�dt < �, which proves (ii).
Let � = 1. Then (iii) follows from

lim
x→+�

∫ x

0 t
−1e−1/tdt

log x
= lim

x→+�
x−1e−1/x

x−1
= lim

x→+� e−1/x = 1�

Finally, (iv) follows from

lim
x→+�

x�−1
∫ x

0 t
−�e−1/tdt

x�−1
=

∫ �

0
t−�e−1/tdt ∈ �0�+���

�

Lemma 10. For all t ∈ �0��� and � > 0, S�t�M1 ∈ R�HW� L
2
��. Moreover, one has

�S�t�M1�2R�HW �L2
��
= ���t��t�

∫
G
���x�dx� t > 0�
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678 Peszat and Tindel

Proof. Let us fix t. First note that ���t��t� < �. For, by Lemma 2, �t ∈ � �G�.
Let ��x��y� = �t�y−1x�. Then, by Lemma 2, � is a measurable mapping from G
into � �G�. Hence, since S�t�M1��x� = 
����x��, Lemma 7 yields

I = ∑
k

�S�t�M1�k�2L2
�
=

∫
G
����x����x�����x�dx�

Since � is left translation invariant and �∗
t = �t we have

I�x� �= ����x����x�� = ����e����e�� = ���∗
t ��

∗
t � = ���t��t��

�

Lemma 11. Let p ∈ �2��� and � ∈ �. Then for all  ∈ � �G� ∩ Lp
� and t ∈ �0���,

S�t�M is a �-radonifying operator from HW into Lp
�. Moreover, there is a constant

C ∈ �0��� such that for all  ∈ � �G� ∩ Lp
� and t ∈ �0���, one has

�S�t�M�R�HW �L
p
��
≤ CeCt

 + C
dx� �t���·�/C��1/2��Lp� � (30)

Proof. Let us fix t and , and let ��x��y� = �t�y−1x��y�. By Lemma 8, S�t�M ∈
R�HW� L

p
�� and

I = �S�t�M�pR�HW �L
p
��
≤ c

∫
G
����x����x��p/2���x�dx�

Let I�x� = ����x����x��, and let 
̃ = 
 + C
dx, C
 ≥ 0. Then for any � ∈ � �G�,


C
dx� �
∗ ∗ �� = C


∫
G

∫
G
��yx−1���y�dxdy = C


( ∫
G
��x�dx

)2

≥ 0�

Hence,

I�x� �= ����x����x�� = ���Lx��x�� �
L
x��x��

= 

� ��Lx��x��∗ ∗ ��Lx��x��� ≤ 

̃ � ��Lx��x��∗ ∗ ��Lx��x��� =� Ĩ�x��

Hence, as �̃�x��y� �= �Lx��x��y� = �t�y��xy�, we have

Ĩ�x� =
∫
G

∫
G
�̃�x��yz−1��̃�x��y�̃
�dz�dy

≤
∫
G

∫
G
�t�yz

−1���xyz−1���t�y���xy��̃
�dz�dy�

Thus,

I ≤ c
∫
G

( ∫
G

∫
G
��xyz−1����xy�� t�dz� dy�

)p/2

���x�dx�

where

 t�dz� dy� = �t�yz−1��t�y�̃
�dz�dy�
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Stochastic Equations on a Lie Group 679

By Jensen’s inequality,

I ≤ c

( ∫
G

∫
G
 t�dz� dy�

)p/2−1

×
∫
G

∫
G

∫
G
��xyz−1��p/2��xy��p/2���x�dx  t�dz� dy��

Using Lemma 1, the semigroup property �t ∗ �s = �t+s, and the identity �∗
t = �t,

we obtain ∫
G

∫
G
 t�dz� dy� =

〈̃

��∗

t ∗ �t
〉 ≤ C1

〈̃

� �t���·�/C1�

〉
�

Note also that

L�z� y� �=
∫
G
��xyz−1��p/2��xy��p/2���x�dx

≤
( ∫

G
��xyz−1��p���x�dx

)1/2( ∫
G
��xy��p���x�dx

)1/2

≤
( ∫

G
��x��p���xzy

−1�dx
)1/2( ∫

G
��x��p���xy

−1�dx
)1/2

� (31)

Hence, by Lemma 3, we have

L�z� y� ≤ ��p
L
p
�
exp

{ ������zy−1�+ ��y−1��

2

}
�

and consequently,

I ≤ C2��pLp�
〈̃

� �t���·�/C1�

〉p/2−1
R� (32)

where

R �=
∫
G

∫
G
exp

{ ������zy−1�+ ��y−1��

2

}
�t�yz

−1��t�y�̃
�dz�dy�

Now Lemma 1 and the inequality

−�
2�u�

t
+ �����u�

2
= −�

2�u�

2t
+

(
−�

2�u�

2t
+ �����u�

2

)
≤ −�

2�u�

2t
+ t���2

8
�

imply

exp
{ �����u�

2

}
�t�u� ≤ C3e

C3t�C4t
�u�� t ∈ �0���� u ∈ G�

Hence,

R ≤ C5e
C5t

∫
G

∫
G
�C6t

�yz−1��C6t
�y�̃
�dz�dy

≤ C5e
C5t

〈̃

��∗

C6t
∗ �C6t

〉 ≤ C6e
C5t

〈̃

� �t���·�/C7�

〉
�

Combining this estimate with (32) we obtain the desired conclusion. �
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680 Peszat and Tindel

Since for all p and �, S�G� ∩ Lp
� is dense in Lp

� we have the following corollary
to Lemma 11.

Corollary 1. If (9) is satisfies, then for arbitrary p ∈ �2��� and � ∈ �, the
multiplication operator M is bounded from Lp

� into the space of �-radonifying operators
R�HW� L

p
��. Moreover, for any  ∈ Lp

� one has (30).

Lemma 12. Assume that the space correlation 
 of W is equal to the Haar measure dx.
Then for all  ∈ L2

� and t ∈ �0���, S�t�M ∈ R�HW� L
2
�� = L�HS��HW� L

2
��. Moreover,

there are constants C1� C, such that for all  ∈ L2
� and t ∈ �0��� we have

�S�t�M�2R�HW �L2
��
≤ C1e

C1t ��2L2
�

∫
G
�t���x�/C1�dx ≤ CeCt ��2L2

�
�

Proof. By Corollary 1, there is a constant C1 such that

�S�t�M�2R�HW �L2
��
≤ C1e

C1t��2L2
�

∫
G
�t���x�/C1�dx�

Applying Lemma 1, we obtain∫
G
C1�t���x�/C1�dx ≤ C2

∫
G
�C3t

�x�dx = C2�
�

6. Proof of Theorem 1

Assume that � ∈ � ′�G� is a measure such that �+ C�dx ≥ 0 for a certain C�. Let
!�d� �� ∈ �−��+�� be given by

!�d� �� =



∫
B�e�1�

��dx� if d = 1�∫
B�e�1�

log���x�−1���dx� if d = 2�∫
B�e�1�
��x�−d+2 ��dx� if d > 2�

(33)

Proof of Theorem 1. (i) Let � ∈ � and p ∈ �2���, and let T ∈ �0��� and
q ∈ �2��� be fixed. Let B̃�t� u��x� = b�t� x� u�x��, t ≥ 0, x ∈ G, u ∈ Lp

�. Since
f� b∈Lip�p� ��, there is a constant L such for all t ∈ �0� T� and �� ∈ Lp

� one has

�F�t� �− F�t� ���Lp� + �̃B�t� �− B̃�t� ���Lp� ≤ L�− ��Lp� �
(34)

�F�t� ��Lp� + �̃B�t� ��Lp� ≤ L�1+ ���Lp� ��

Note that B satisfies

B = MB̃� (35)
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Stochastic Equations on a Lie Group 681

where M� = � is a multiplication operator. Recall that S is a C0-semigroup on Lp
�,

see Lemma 3. We will show that there is a function a ∈ L2�0� T��� such that for all
t� s ∈ �0� T� and �� ∈ Lp

�,

�S�t�B�s� ��R�HW �L
p
��
≤ a�t��1+ ���Lp� ��

(36)
�S�t�B�s� �− S�t�B�s� ���R�HW �L

p
��
≤ a�t��− ��Lp� �

Having (34) and (36), the existence and uniqueness of a solution to (1) satisfying (11)
follows by means of the contraction principle, see for example, [4, 26–28]. Taking
into account (35) with B̃ satisfying (34) one can easily see that to show (36) it is
enough to prove that there is a b ∈ L2�0� T��� such that

�S�t�M�R�HW �L
p
��
≤ b�t���Lp� for all  ∈ Lp

� and t ∈ �0� T�� (37)

By Corollary 1, we have (37) with b�t� = C

 + C
dx� �t���·�/C��1/2. Thus, what is
left is to show that ∫ T

0


 + C
dx� �t���·�/C��dt

=
∫ T

0

∫
G
�t���x�/C��
(dx�+ C
dx�dt < �� (38)

Let 
̃ = 
 + C
dx. To show (38) note that by Lemma 12,∫ T

0

∫
G
�t���x�/C�dxdt < �� (39)

Recall that ���� T� ·� is given by (29). We have∫ T

0

〈̃

� �t���·�/C�

〉
dt =

∫
G

∫ T

0
�t���x�/C�dt
̃�dx�

=
∫
G
��d/2� �2�x�/C�̃
�dx�

≤ C1

∫
G
��d/2� C2T� �

2�x��̃
�dx� �= C1�I1 + I2��

where

I1 =
∫
G
�
(
d/2� C2T� �

2�x�
)

�dx� and I2 = C


∫
G
�
(
d/2� C2T� �

2�x�
)
dx�

By (39), I2 < �. In order to show that I1 < � note that

I1 =
∫
B�e�1�

��d/2� C2T� �
2�x��
�dx�+

∫
G\B�e�1�

��d/2� C2T� �
2�x��
�dx�

=� I11 + I12�

The integral I12 is finite since 
 is a tempered measure and since by Lemma 9 for
every m > 0, rm��d/2� C2T� r� → 0 as r → �. To show that I11 < � note that by
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682 Peszat and Tindel

Lemma 9, there is a constant c such that I11 ≤ c!�d� 
�. Hence the desired conclusion
follows from (10). �

Proof of Theorem 1(ii). In the proof we use the ideas from [27]. Let � > 0, p ∈
�2���, and let b satisfies the assumptions of the theorem on a time interval �0� T�.
Finally, let u be a solution to (1) satisfying (11). Then, since �� ∈ L1, u satisfies (11)
with p = 2. Since F satisfies (34) it is easy to see that

�

∣∣∣∣S�T�u�0�+ ∫ T

0
S�T − s�F�s� u�s��ds

∣∣∣∣2
L2
�

< ��

Thus,

�

∣∣∣∣ ∫ T

0
S�T − s�B�s� u�s��dW�s�

∣∣∣∣2
L2
�

< ��

Hence, (27) yields ∫ T

0
��S�T − s�B�s� u�s���2L�HS��HW �L2

��
ds < �� (40)

By Lemma 7,

�S�T − s�B�s� u�s���2L�HS��HW �L2
��
=

∫
G


��s�x�

∗ ∗�s�x�����x�dx�

where �s�x��y� = �T−s�y−1x�B̃�s� u�s���y�. By Lemma 12, there is a constant C1 such
that

I =
∫ T

0
�
∫
G
�s�s�

∗ ∗�s�x��y�dy ���x�dx ≤ C1 sup
s∈�0�T�
� � B̃�s� u�s���2L2

�
�

Hence, by (34) we obtain I < �. Consequently, (40) yields∫ T

0
�

∫
G

〈̃

��s�x�

∗ ∗�s�x�
〉
���x�dx ds < ��

where 
̃ = 
 + C
dx is a nonnegative measure. Since B̃�s� u�s���z� ≥ b0 > 0, we have

J =
∫ T

0

∫
G

〈̃

��T−s ∗ �T−s�x�

〉
���x�dx ds < ��

Hence, since �� ∈ L1 for � > 0, we have
∫ T

0 

̃ ��2s�ds < �. Thus, there are T1 > 0
and a constant C such that∫

G

∫ T1

0
�t���x�/C�dt 
�dx� ≤

∫
G

∫ T1

0
�t���x�/C�dt 
̃�dx� < �� (41)

Since ∫ T1

0
�t���x�/C�dt = ��d/2� T1� �

2�x�/C2��

where � is given by (29), (10) follows from (41) and Lemma 9. �
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Stochastic Equations on a Lie Group 683

7. Proof of Theorem 2

Given q ∈ �2���, T > 0, and a Banach space V we denote by �q
T �V� the Banach

space of all adapted processes Z with continuous trajectories in V such that

���Z����q
T �V�

�=
(
� sup

t∈�0�T�
�Z�t��qV

)1/q

< ��

We equip the space Lp
� ∩��/p, with the norm � · �Lp� + � · ���/p . In the proof of

Theorem 2 we will use the contraction principle for the functional � given by

��Z��t� = S�t�X�0�+
∫ t

0
S�t − s�F�s� Z�s��ds +

∫ t

0
S�t − s�B�s� Z�s��dW�s��

Our goal will be to show that under the hypothesis of the theorem for q large
enough one can chose T = T�q� > 0 such that � is a contraction from �p

T �L
p
�� into

�p
T �L

p
��, or from �p

T �L
p
� ∩��/p� into �p

T �L
p
� ∩��/p�. Having regular solution on a

small time interval one can easily prolong it to an arbitrary time interval. Let

��Z��t� = S�t�X�0�+
∫ t

0
S�t − s�F�s� Z�s��ds�

�Z��t� =
∫ t

0
S�t − s�B�s� Z�s��dW�s��

Since the heat semigroup is C0 on Lp
� and �� spaces it is not difficult to show that

� is a contraction on a proper space. In the proof we will concentrate on showing
this for  . Let B̃�t� u��x� = b�t� x� u�x��. Note that B̃ is a Lipschitz mapping from
�p

T �L
p
�� into �

p
T �L

p
��. Thus it is enough to show that

I�Z��t� =
∫ t

0
S�t − s�MZ�s�dW�s�� (42)

where M is a multiplication operator, is a bounded linear operator from �p
T �L

p
��

into �p
T �L

p
�� in the point (i), and from �p

T �L
p
�� into �

p
T �L

p
� ∩��/p� in (ii), and that its

norm goes to 0 as T → 0. To do this we will use the Da Prato–Kwapień–Zabczyk
factorization, see [11 or 28];

I�Z��t� = ��Y��Z��t�� (43)

where

���t� =
sin "�
"

∫ t

0
�t − s��−1S�t − s��s�ds�

(44)
Y��Z��t� =

∫ t

0
�t − s�−�S�t − s�MZ�s�dW�s��

In the proof of Theorem 2 we will need the following lemma.

Lemma 13. Let p ∈ �2��� and � ∈ �, and let �� be given by (44). Then:
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684 Peszat and Tindel

(i) for arbitrary � > 0, T > 0, and q ∈ �2��� such that �� − 1�q∗ > −1, �� is a
bounded linear operator from Lq�0� T� Lp

�� into C��0� T�� Lp
�� and

����L�Lq�0�T�Lp���C��0�T��Lp��� → 0 as T → 0�

(ii) For arbitrary � > d/�2p�, T > 0, and q ∈ �2��� such that �� − 1−
d/�2p��q∗> − 1, �� is a bounded linear operator from Lq�0� T� Lp

�� into
C��0� T����/p� and

����L�Lq�0�T�Lp���C��0�T����/p�� → 0 as T → 0�

Proof of (i). It is enough to show that �� transforms continuously Lq�0� T� Lp
�� into

L��0� T� Lp
�� with the norm decreasing to 0 as T → 0, see [11]. This follows from

Hölder’s inequality. Namely given T̂ > 0 one can find a constant C1 depending on
S and T̂ such that for any T ≤ T̂ ,

����L�Lq�0�T�Lp���L��0�T�Lp��� ≤ sup
t∈�0�T�

( ∫ t

0
�t − s���−1�q∗�S�t − s��q∗

L�L
p
��L

p
��
ds
)1/q∗

≤ C1

(
T��−1�q∗+1�

�� − 1�q∗ + 1

)1/q∗

�

Proof of (ii). It is enough to show that �� maps continuously Lq�0� T� Lp
�� into

L��0� T���/p� with the norm decreasing to 0 as T → 0. Let T̂ > 0. Using Lemma 4
and arguments from the proof of the first part of the lemma one can find a constant
C such that for T ≤ T̂ ,

����L�Lq�0�T�Lp���L��0�T���/p�� ≤ C

(
T��−1−d/�2p��q∗+1�

�� − 1− d/�2p��q∗ + 1

)1/q∗

�

Proof of Theorem 2(i). Let us fix p, and �, and T̂ ∈ �0���. Let be such that (12)
holds, and let � = �/4. Clearly, we may assume that � < 1/2. Let q ∈ �2��� be such
that �� − 1�q∗ > −1. Let Y� be given by (44). Taking into account (43) and Lemma
13(i) the proof will be completed as soon as we show that there exists C such that
for all T ≤ T̂ , and Z ∈ �q

T �L
p
��,

�
∫ T

0
�Y��Z��t��qLp�dt ≤ C�

∫ T

0
�Z�t��q

L
p
�
dt� (45)

By Theorem 4, there is a constant C1 independent of T and Z such that for all t ∈
�0� T�,

� � Y��Z��t��qLp� ≤ C1�
( ∫ t

0
�t − s�−2��S�t − s�MZ�s��2R�HW �L

p
��
ds
)q/2

� (46)

By Lemma 11 the left hand side of (46) is less or equal to

C3 ��Z��q�q
T �L

p
��

( ∫ t

0
�t − s�−2�b�t − s�ds

)q/2

�
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Stochastic Equations on a Lie Group 685

where b�s� = 

 + C
dx� �s���·�/C4��. Since∫ t

0
�t − s�−2�b�t − s�ds ≤ 〈


 + C
dx� ��d/2+ 2�� T̂ � �2�·�/C2
4�
〉
�

we conclude by Lemma 9(i). �

Proof of Theorem 2(ii). Let p ≥ 2 such that d < p, and let � > 2d/p be such that
(12) holds true. Since d/p < 1, we may assume that � = �/4 < 1/2. Let q ∈ �2���
be such that �� − 1�q∗ > −1. Since � > d/�2p�, Lemma 13(ii) yields that for any
T > 0, �� is a bounded operator from Lq�0� T� Lp

�� into C��0� T����/p�. Thus, as in
the proof of (i) it is enough to show that for any T̂ > 0 there is a C such that for
all T ≤ T̂ and Z ∈ �q

T �L
p
��, one has

�
∫ T

0
�Y��Z��t��qLp�dt ≤ C�

∫ T

0
�Z�t��q

L
p
�
dt�

This follows from (12) in the same way as in the proof of (i). �

8. Wave Semigroup

Recall that �� is given by (13), the Sobolev spaces H1
� and H−1

� are defined in Section
2, and that the spaces ��, ��, and the operator � are given by (14). For brevity we
write � and � instead of �0 and �0. Let

j�

(


�

)
=

(
�−1/2
� 

�−1/2
� �

)
�

Then j� is an isometry between � and ��, and � and ��.

Lemma 14. Let � ∈ �. Then:
(i) �−1

� �i�� ∈ L��G� dx�,
(ii) �−1

� ��� ∈ L��G� dx�,
(iii) �i, i = 1� � � � � l are bounded operators from H1

� into 	2
� and from 	2

� into H−1
� .

Proof if (i). Note that

�−1
� �j���x� =

���x�
−1�jS�1����x�

���x�
−1S�1����x�

= I1�x�

I2�x�
�

By Lemma 1 there is a constant C > 0 such that

I1�x� ≤ C
∫
G
exp

{−�2�x� y�/C + ���x�− ���y�
}
dy

≤ C
∫
G
exp

{−�2�x� y�/C + �����x� y�}dy
≤ C exp�C�2/2	

∫
G
exp

{−�2�y�/�2C�}dy�
Hence, I1 is bounded from above as

∫
G
exp�−�2�y�/�2C�	dy < �.
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686 Peszat and Tindel

Applying Lemma 1 again we can find a constant c > 0 such that

I2�x� ≥ c
∫
G
exp

{−�2�x� y�/c + ���x�− ���y�
}
dy

≥ c
∫
G
exp

{−�2�x� y�/�2c�− �2�x� y�/�2c�− �����x� y�}dy
≥ c exp�−c�2/2	

∫
G
exp

{−�2�y�/�2c�}dy�
Thus, I2 is bounded from below, which completes the proof of (i). �

Proof of (ii). One can easily prove (ii) using the arguments from the proof of (i). �

Proof of (iii). First note that

∑
i

∫
G
��i�

2�x�dx = −
∫
G
�x���x�dx ≤

∫
G
�x��
− ���x�dx

≤
∫
G

(
�
− ��1/2)2�x�dx�

Hence, �i�
− ��−1/2, i = 1� � � � � l are bounded operators on L2. Now for any  ∈
C�

0 �G� we have

��i�	2
�
= ��1/2� �i�L2 = ��i��1/2� �− �i�

1/2
� �L2

≤ ��i�
− ��−1/2�
− ��1/2��1/2� ��L2 + ��−1/2
� �i�

1/2
� �	2

�
�

This gives the continuity of �i from H1
� into 	2

� since �−1/2
� �i�

1/2
� = 1/2�−1

� �i�� is
by (i) a bounded function. To see that �i is bounded from 	2

� into H−1
� note that

H1
� ↪→ 	2

� = �	2
��

∗ ↪→ �H1
��

∗ = H−1
� �

Thus �∗
i is bounded from 	2

� into H−1
� . Since for �� ∈ C�

0 �G� we have, see [7, p.
21], 
�i� ��L2 = −
��i��L2 , we have

�∗
i  = −�−1/2

� �i��
1/2
� � = −��−1/2

� �i�
1/2
� �− �i�

Hence, �i is bounded as �−1/2
� �i�

1/2
� is a bounded function. �

Since � = ∑
i �

2
i we have the following corollary to Lemma 14.

Corollary 2. Let � ∈ �. Then the operator � is a bounded linear operator from H−1
�

into H1
� .

Lemma 15. The operator � with Dom� = �� generates C0-semigroup on ��.

Proof. Clearly � generates a C0-semigroup on �� iff Ã = j−1
� �j� with Dom Ã = �

generates C0 semigroup on �. Note that �̃ = �+�, where � has the domain �,
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Stochastic Equations on a Lie Group 687

and

� =
(
0 0
P 0

)
�

where

P = �1/2� �
(
�−1/2
� 

)− � = (
�1/2� ��

−1/2
�

)
+ 2

∑
i

(
�1/2� �i�

−1/2
�

)
�i�

Now the fact that � generates a C0-semigroup on � follows directly from the fact
that � is self-adjoint, see for example, [6]. Thus, it is enough to show that � is a
bounded operator on �, or equivalently, that P is a bounded linear operator acting
from L2 into H−1. Since

�1/2� ��
−1/2
� = −1

2

∑
i

�1/2� �i
(
�−3/2
� �i��

) = −1
2
�−1
� ��� +

5
4

∑
i

(
�−1
� �i��

)2
and �1/2� �i�

−1/2
� = −1/2�−1

� �i��, we conclude by Lemma 14. �

Let

� =
(
� �G�
� �G�

)
and  X� =

(
0
u�

)
for X = �u� v�T ∈ � and � ∈ � ′�G�. Recall that !�d� �� is given by (33).

Lemma 16. Assume that (9) holds with the constant C. Then for any � ∈ � there is a
constant C1 such that for arbitrary X ∈ � and orthonormal basis ��k	 of HW one has∑

k

� X�k�2��
≤ C1�X�2��

�!�d� 
 + Cdx�+ 1��

Proof. Since Xf = �0� �u�T it is enough to prove that there is a constant C1 such
that for arbitrary u ∈ � �G�, and orthonormal basis ��k	,

I = ∑
k

�Mu�k�2H−1
�

≤ C1�u�2	2
�
�!�d� 
 + Cdx�+ 1��

Set

��x��y� =
∫ �

0
e−t�t�y

−1x��1/2� �y�u�y�dt�

Then

I = ∑
k

∫
G

�k���x��dx

and consequently, by Lemma 7, I = ∫
G
����x����x��dx. Let 
̃ = 
 + C
dx be a

nonnegative measure, and let �̃�� �� = 

̃ � ∗ ∗ ��. Then

I ≤
∫
G
�̃
(
�̃�x�� �̃�x�

)
dx�
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688 Peszat and Tindel

where

�̃�x��y� =
∫ �

0
e−t�t�y

−1x��1/2� �y��u�y��dt�

Thus,

I ≤
∫ �

0

∫ �

0
e−�t+s�

∫
G
�̃��t�x���s�x��dx dt ds�

where �t�x��y� = �t�y−1x��1/2� �y��u�y��. Note that

�Lx ��t�x���y� = �t�y��1/2� �xy��u�xy���

Hence,

�̃��t�x���s�x�� = �̃��Lx�t�x�� �
L
x�s�x��

=
∫
G

∫
G
�t�yz

−1��s�y��
1/2
� �xyz−1��u�xyz−1���1/2� �xy��u�xy��̃
�dz�dy�

Note that ∫
G
�1/2� �xyz−1��u�xyz−1���1/2� �xy��u�xy��dx ≤ �u�2	2

�
�

Therefore,

�̃��t�x���s�x�� ≤ c1
〈̃

��∗

t ∗ �s
〉�u�2	2

�
≤ c2

〈̃

� ��t+s����·�/c2�

〉 �u�2	2
�
�

Summing up, we have

I ≤ c2

〈

̃ �

∫ �

0

∫ �

0
e−�t+s���t+s����·�/c2�ds dt

〉
�u�2	2

�
= c2

〈̃

� �̃

(
�2�·�/c2

)〉 �u�2	2
�
�

where

�̃�r� =
∫ �

0

∫ �

0
e−�t+s��t + s�−d/2e−r/�t+s�ds dt�

Note that

�̃�r� =
∫ �

0

∫ �

t
e−ss−d/2e−r/sds dt ≤

∫ �

0
e−t/2

∫ �

t
e−s/2s−d/2e−r/sds dt

≤ 2
∫ �

0
e−s/2s−d/2e−r/sds ≤ 22−d/2��d/2� 2r��

� being defined by (29). Thus, the lemma follows from Lemma 9 and the fact that

 is a tempered distribution. �

9. Proof of Theorem 3

Let � ∈ �. By Lemma 15, � with the domain �� generates C0-semigroup U on ��.
Let F and B be given by (15). Lemma 14 and the assumption f� fi ∈ Lip �2� �� ensure
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Stochastic Equations on a Lie Group 689

that for any T < � there is a constant L such that for all t ∈ �0� T� and X� Y ∈ ��,

�F�t� X�− F�t� Y����
≤ L�X − Y ���

and �F�t� X�� ≤ L�1+ �X���
��

Lemma 16 and the assumption b ∈ Lip �2� �� guarantee that for any T < � there is
a constant L such that for all t ∈ �0� T� and X� Y ∈ ��,

�B�t� X�− B�t� Y��L�HS��HW ����
≤ L�X − Y ���

�

�B�t� X���L�HS��HW ����
≤ L�1+ �X���

��

Having the Lipschitz continuity of the nonlinear coefficients one can prove the
existence and uniqueness of the solution to (2) by means of the Banach fix point
theorem, just applying known existence results, see for example [4, 26, 27]. Namely,
given T ∈ �0��� and q ≥ 2 define �q

T ���� as the class of all adapted continuous in
�� processes Z satisfying

� sup
t∈�0�T�

�Z�t��p��
< ��

We define on �p
T ���� a functional � ,

��Z��t� = U�t�X�0�+
∫ t

0
U�t − s�F�s� Z�s��ds +

∫ t

0
U�t − s�B�s� Z�s��dW�s��

For q large enough one can chose T = T�q� > 0 such that � is a contraction from
�p

T ���� into �
p
T ����. In this point the Da Prato–Kwapień–Zabczyk factorization,

see (42) and (43), enables us to take supremum operator in the stochastic integral

� sup
t∈�0�T�

∥∥∥ ∫ t

0
U�t − s�B�s� Z�s��dW�s�

∥∥∥p
��

outside the expectation operator, see for example [4, 26, 27], or the proof of
Theorem 2. �

10. Examples

Example 1. Assume that 
 is a bounded function. Then it satisfies (9) and (10). For
(10) is by Lemma 9 equivalent to

∫ 1
0 

��t�dt < �. This is satisfied by any bounded


 as 
dx��t� = 1.

Example 2. Given � ∈ �−�� 1� we set 
��x� =
∫ �
0 t−�e−t�t�x�dt, x ∈ G. Then we

have the following result.

Theorem 5.

(i) 
� is a non-negative finite tempered measure on G, and hence it satisfies (9) with
C
�

= 0. Moreover,

���� �� = 

�� ∗ ∗ ��� � � ∈ � �G�

is a continuous positive-definite left translation invariant bilinear form on � �G�.
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690 Peszat and Tindel

(ii) (10) is satisfied if d = 1� 2, or � < 1− d/2, or

d = N and � < 2− N/2� or d = N + 1 and � < 1− N/2�

(iii) If G is nilpotent then (10) is satisfied if d = 1� 2, or � < 2− d/2.

Proof of (i). First note that 
��x� ∈ �0�+�� for every x ∈ G. Moreover, by Lemmas
1 and 9 one has 
��x� < � for x �= e, and for every m ≥ 0, �m�x�
��x� → 0 as
��x� → �. Thus 
� ∈ � ′�G� follows from

∫
G
�t�x�dx = 1. Due to Proposition 1, ��

is continuous and left translation invariant. Since


�t� ∗ ∗ �� = 
�t ∗ ��� = 
S�t�� ���

we have

���� �� =
∫ �

0
t−�e−1
S�t�� ��dt =

∫ �

0
t−�e−1
S�t/2�� S�t/2���dt�

and hence, �� is positive-definite. �

Proof of (ii). Note that, by Lemmas 1 and 9 there are constants C1� C2 ∈ �0���
such that for all x ∈ B�e� 1�,

C1 ≤ 
��x� ≤ C2 if �+ d/2 < 1�

C1 log���x�
−1� ≤ 
��x� ≤ C2 log���x�

−1� if �+ d/2 = 1�

C1��x�
2−2�−d ≤ 
��x� ≤ C2��x�

2−2�−d if �+ d/2 > 1�

Thus, (10) holds true iff d = 1, or �+ d/2 < 1, or

∫
B�e�1�

�log���x�−1��2dx < � if � = 0� d = 2�∫
B�e�1�
��x�−2� log���x�−1�dx < � if � > 0� d = 2�∫

B�e�1�
��x�2−d log���x�−1�dx < � if �+ d/2 = 1� d > 2�∫

B�e�1� ��x�
4−2d−2�dx < � if �+ d/2 > 1� d > 2�

(47)

Note that � dominates the original metric � on G, and the exponential map is a
local isomorphism between G and �N . Thus, (47) holds true if

∫ 1

0
�log�t−1��2tN−1dt < � if � = 0� d = 2�∫ 1

0
t−2�+N−1 log�t−1�dt < � if � > 0� d = 2�∫ 1

0
t2−d+N−1 log�t−1�dt < � if �+ d/2 = 1� d > 2�∫ 1

0
t4−2d−2�+N−1dt < � if �+ d/2 > 1� d > 2�

(48)
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Stochastic Equations on a Lie Group 691

Note that if d = 2 then N = 2, and consequently the first two conditions in (48)
hold true. It is easy to see that if � < 1− d/2, or one of the last two conditions hold
true, than either d = N > 2 and � < 2− N/2, or N = d + 1 and � < 1− N/2. �

Proof of (iii). Taking into account the second part of the theorem we can assume
that d > 2 and � ≥ 1− d/2. Let V�t� = ∫

B�e�t�
dx, t > 0. From (47) it is enough to

show that 
∫ 1

0
t2−d log�t−1�dV�t� < � if �+ d/2 = 1� d > 2�∫ 1

0
t4−2d−2�dV�t� < � if �+ d/2 > 1� d > 2

implies � ∈ �1− d/2� 2− d/2�. This is a simple consequence of the fact that if G is
nilpotent, then there is a constant C such that V�t� ≤ Ctd, t > 0, see [7]. �

11. Heisenberg Group

For n ≥ 1, the Heisenberg group Gn is the group whose underlying space is �n ×
�n ×� or equivalently !n ×�, and whose group law is

��1� !1� �1� ��2� !2� �2� =
(
�1 + �2� !1 + !2� �1 + �2 +

1
2
��1!2 − !1�2�

)
�

Note that Gn is identified with its Lie algebra �n. The canonical basis of �n will be
denoted by ��1� � � � ��n�"1� � � � �"n�#�. The Haar measure on Gn is just Lebesgue’s
one on !n ×�, and the distance � is also the Euclidean distance.

In this section

� =
n∑
i=1

��2
i + "2i ��

Note that since ��i�"i� = # for all i = 1� � � � � n and N = 2n+ 1, formula (5) reads
d = 2n+ 2.

Let �hk� k ≥ 1	 be the L2���-orthonormal basis given by the Hermite functions

hk�t� =
�−1�k

�2k
√
"k!�1/2

dk

dtk
�e−t

2
�et

2/2�

let #��x� =
∏n

j=1 h�j �xj� for � ∈ �n, x ∈ �n, and let

���$�r� = �$�n/4#���$�n/2r�� r ∈ �n�

Denote by 
̂ the Fourier transform of 
 ∈ L2�Gn�, see Appendix A and the proof
of the theorem below. In this case, 
̂ is well defined as a function from �∗ into the
space L�L2��n�� of linear operators on L2��n�. For $ ∈ �∗, � ∈ �n, set

�2��$� =
〈̂

�$����$� ���$

〉
L2��n�

�

Then, see [12, p. 137], �2��$� ≥ 0 for all �� $.
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692 Peszat and Tindel

Theorem 6. Assume that 
 ∈ L2. Then 
 satisfies (10) iff

∑
�∈�n

∫
�

�2��$��$�n
1+ �$����d$ < �� (49)

Proof. The Fourier analysis on Gn involves the set of representations �"$� $ ∈ �∗	
defined as follows. For all $ ∈ �∗, x = ��� !� �� ∈ Gn, "$�x� is an element of L2��n�,
and

�"$�x�%��r� = ei�$�+�r+
1
2 �!�%�r + !� % ∈ L2��n�� r ∈ �n�

Thus in the terminology of the appendix H" = L2��n�. If  ∈ L1�Gn�, then the
Fourier transform of  will be an L�L2��n��-valued function �̂�$�� $ ∈ �∗	.
Theorem 7 from the appendix holds then with the Plancherel measure given by

 �d$� = �$�n
�2"�n+1

d$�

The operator � and the Fourier transform on Gn are related in the following way,
see [30, p. 51]. If  ∈ � �Gn�, then for every $ ∈ �∗, ���̂�$� = ̂�$�U�$�, where

U�$� = &�n − $2�r�2

is the scaled Hermite operator. Then, for all $ ∈ �∗, U�$� has the eigenvectors
����$	 with the corresponding eigenvalues ���$ = −�2��� + n��$�. In particular, U�$�
generates a C0-semigroup $t�$� on L2��n�. Let �t be the heat kernel on Gn. Our
first goal is to show that

�̂t�$� = $t�$� $ ∈ �∗� (50)

For the function �t is the fundamental solution to the heat equation on Gn. In
Fourier coordinates for any  ∈ � ��n� one has{

�tv�t� r� = U�$� v�t� r�� �t� r� ∈ �0���×�n�

v�0� r� = �r�� r ∈ �n�

Since � ��n� is dense in L2��n�, we have �∗
t �$� = $t�$�, which gives (50).

By Lemma 9, (10) is equivalent to
∫ T

0 

��s�ds < �, which in Fourier
coordinates yields, using Plancherel’s formula,∫ T

0

∫
�
Tr�̂
�$��̂∗

s �$�� �d$� < ��

Then

Tr�̂
�$��̂∗
s �$�� =

∑
�∈�n

�2��$� exp�−���$s��

which is equivalent to (49). �
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Stochastic Equations on a Lie Group 693

A. Appendix

The material included here is taken mainly from [12, chap. 7], and references
therein, and we refer to that book for further details. We say that " is a unitary
representation of G on a separable Hilbert space H", if it is a homomorphism from
G to U�H"�, where U�H"� denotes the set of unitary operators on H". Let Ĝ be the
set of equivalence classes of unitary irreducible representations (see [12, chap. 3],
for basic definitions of representation theory). We will still write " for the generic
element of Ĝ.

The Mackey Borel structure on Ĝ is the �-algebra % on Ĝ, which makes all the
functions

" �→ 
"�x�u� v�H�"�� x ∈ G� u� v ∈ H�"�

measurable. Suppose that G is of type I (see the definition in [12, p. 206]), which
occurs if G is either Abelian, or semisimple, or nilpotent, or a real algebraic group.
Then �Ĝ�%� is a standard measurable space (see [12, Th. 7.6]). For a given measure
� on �Ĝ�%�, and a family of separable Hilbert spaces ��"� " ∈ Ĝ	 one can associate,
as in [12, section 7.4], the direct integral of the spaces �" with respect to �, denoted
by ∫ ⊕

Ĝ
�"��d"��

which is the space of measurable vector fields  such that �"� ∈ �", and

��2 =
∫
Ĝ
��"��2�"��d"� < ��

For a fixed element " ∈ Ĝ and f ∈ L1�G�, the Fourier transform of  at " is
defined as the vector-valued integral

̂�"� =
∫
G
�x�"�x�dx�

Let us denote by L�HS��H� the space of Hilbert–Schmidt operators on a Hilbert
space H .

Theorem 7. Suppose G is a unimodular locally compact type I group. Then there exists
a unique measure  on �Ĝ�%� such that the Fourier transform can be extended into a
unitary map

 ∈ L2�G� �→ ̂ ∈
∫ ⊕

Ĝ
L�HS��H"� �d"�

and the following Plancherel formula holds on L2�G�;∫
G
�x��̄�x�dx =

∫
Ĝ
Tr

(
̂�"��̂�"�∗

)
 �d"��

Furthermore, the Fourier transform has the following properties:
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694 Peszat and Tindel

• If �� ∈ L1�G� ∩ L2�G�, then, for all " ∈ Ĝ,

� ∗ ��̂�"� = ̂�"��̂�"��

• If X is a left invariant first order differential operator, and  ∈ C�
b �G� ∩ L1�G�,

then

�Xf�̂�"� = f̂ �"�AX�"��

where AX�"� is the skew-symmetric operator on H" defined by AX�"� =
−d"e�X�.
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