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Abstract
We consider finite-dimensional rough differential equations driven by centered
Gaussian processes. Combining Malliavin calculus, rough paths techniques and inter-
polation inequalities, we establish upper bounds on the density of the corresponding
solution for any fixed time t > 0. In addition, we provide Varadhan estimates for
the asymptotic behavior of the density for small noise. The emphasis is on working
with general Gaussian processes with covariance function satisfying suitable abstract,
checkable conditions.
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1 Introduction

Let pt be the density of the solution Y z
t to a stochastic differential equation

Y z
t = z +

∫ t

0
V0(Y

z
s )ds +

d∑
i=1

∫ t

0
Vi (Y

z
s )dBi

s , (1)

driven by a d-dimensional Brownian motion B, where z ∈ R
n is a given initial

condition and V0, . . . , Vd are smooth vector fields on Rn . In this classical setting and
under non-degeneracy conditions on the vector fields V0, . . . , Vd , it is a well-know fact
that pt behaves like a Gaussian density. Such results can be obtained by considering
the PDE governing pt , which relies on the Markovian nature of (1). Alternatively, due
to the celebrated proof of Hörmander’s theorem by Malliavin [26], more probabilistic
tools have been used in order to analyze laws of solutions to stochastic differential
equations. This kind of technology has paved the way to the extension of such results
to a much broader class of differential equations, such as delayed equations [6,14] and
stochastic PDE (see, e.g., [1,29,30] among many others).

While Eq. (1) is restricted to Brownian noise, Terry Lyons’ theory of rough paths
allows to study more general stochastic differential equations of the type

Zz
t = z +

∫ t

0
V0(Z

z
s )ds +

d∑
i=1

∫ t

0
Vi (Z

z
s )dX

i
s, (2)

driven by general p-rough paths X . Among the processes X to which the abstract
theory of rough paths can be applied, fractional Brownian motion has attracted a lot
of attention in recent years. Indeed, based on several recent works in this direction,
the law of the solution to (2) driven by fractional Brownian motion is now fairly
well understood. Important results in this direction include the existence of a density,
smoothness results, Gaussian bounds, short time asymptotics, invariant measures,
hitting probabilities and the existence of local times (see [2–5,8,10,19,22,25] and the
references therein).

Much less is known for differential Eq. (2) driven by general Gaussian processes.
This is in contrast to the theory of rough paths, which covers a lot more than fractional
Brownian motion. In fact, the existence of a rough path lift for Gaussian processes
is naturally related to the existence of 2-d Young type integrals for the covariance
function R, as highlighted in [17] and improved in [12] based on mixed variations
of R. In addition, in [12] the applicability to a wide variety of Gaussian processes,
such as Gaussian random Fourier series and bifractional Brownian motions, is shown,
hence allowing to give a meaning and solve equations of the form (2) in this general
framework. Further studies of differential equations driven by general Gaussian pro-
cesses include Hörmander type theorems under general local non-determinism type
conditions on the covariance R (see [10]).

The current article is a further development toward a more complete description of
differential Eq. (2) driven by general Gaussian processes. More precisely, we consider
(2) driven by a Gaussian process X satisfying appropriate general, checkable con-
ditions. Assuming ellipticity conditions on the vector fields V0, . . . , Vd and natural
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conditions on the covariance R, we prove that the density of Zt admits a sub-Gaussian
upper bound (Theorem 3.4 below). Moreover, we show in Theorem 4.8 below that the
density satisfiesVaradhan type estimates for small noise. The proof of the above results
is based on stochastic analysis tools and, more specifically, on an integration by parts
formula which gives an exact expression for the density function in terms of theMalli-
avin derivatives and theMalliavinmatrix of Z . Thus, a large part of the paper is devoted
to obtaining precise estimates for the Malliavin derivative and Malliavin matrix.

The assumptions on the driving Gaussian process are quite standard in the rough
paths literature and can be divided into the following two groups:

(i) Similarly to [12], we assume that the covariance function R has finitemixed (1, ρ)-
variation for some ρ ∈ [1, 2) in order to ensure that the driving process X admits
a rough path lift and complementary Young regularity is satisfied.

(ii) In order to analyze the inverse of the Malliavin matrix of the solution Z , we
rely on interpolation inequalities for the Cameron–Martin space related to X (see
Proposition 2.22 below), which in turn rely on monotonicity conditions on the
increments of the covariance R (see Hypotheses 2.17 below) and so-called non-
determinism conditions (Hypothesis 2.20 below), which have already been used
in [10].

The rest of the paper is organized as follows: In Sect. 2, we provide some basic tools
from Malliavin calculus and rough path theory that will be needed later. We also
set up corresponding notations in this section. Section 3 is devoted to obtaining the
upper bound of the density, while Sect. 4 focuses on Varadhan estimates. Finally, in
Sect. 5, we provide several examples of Gaussian rough paths that satisfy the general
assumptions supposed in the main body of this work.

Notations: Throughout this paper, unless specified otherwise, we denote Euclidean
norms by |·|. The space ofRn-valued γ -Hölder continuous functions defined on [0, T ]
will be denoted by Cγ ([0, T ],Rn) and Cγ for short. For a function g ∈ Cγ ([0, T ],Rn)

and 0 ≤ s < t ≤ T , we shall consider the semi-norms

‖g‖γ ;[s,t] := sup
s≤u<v≤t

|gv − gu |
|v − u|γ . (3)

Generic universal constantswill be denoted by c,C independently of their exact values.

2 Preliminary Material

This section contains some basic tools fromMalliavin calculus and rough paths theory,
as well as some analytical results, which are crucial for the definition and analysis of
Eq. (2).

2.1 Preliminaries on Rough Paths

In this section we shall recall the notion of a rough path and how this applies to
Gaussian signals. The interested reader is referred to [15,17,18] for further details.
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For s < t and m ≥ 1, consider the simplex �m
st = {(u1, . . . , um) ∈ [s, t]m; u1 <

· · · < um}, while a simplex over [0, T ] will be denoted by �m . For a generic finite-
dimensional vector space E , for an E-valued function f defined on [0, T ] and for all
(s, t) ∈ �2 we set

δ fst = ft − fs .

The notion of a rough path relies on the notion of the signature of a path that we now
proceed to recall.

We start by defining an algebra in which the signature of a rough path will live.

Definition 2.1 For N ∈ N, the truncated algebra T N (Rd) is defined by

T N (Rd) =
N⊕

n=0
(Rd)⊗n,

with the convention (Rd)⊗0 = R. The set T N (Rd) is equipped with a straightforward
vector space structure, plus an operation ⊗ defined by

[g ⊗ h]n =
N∑

k=0
gn−k ⊗ hk, g, h ∈ T N (Rd),

where gn designates the projection on the nth tensor level.

Notice that with Definition 2.1 in hand, (T N (Rd),+,⊗) is an associative algebra with
unit element 1 ∈ (Rd)⊗0.

In the sequel we consider the process X driving Eq. (2) as a special case of continu-
ousRd -valued paths defined on [0, T ]. The regularity of X will often be characterized
by its p-variation.

Definition 2.2 Let f be a continuous function from [0, T ] to a finite-dimensional
vector space E . For all p > 0 we set

‖ f ‖p−var = ‖ f ‖p−var;[0,T ] = sup
�⊂[0,T ]

(∑
i

| fti ti+1 |p
)1/p

,

where the supremum is taken over all subdivisions � of [0, T ]. The set of continuous
functions with finite p-variation is denoted by C p−var(E).

Related to finite p-variation functions, we will also consider the set of γ -Hölder
continuous functions, and we recall that this functional space is defined by (3).

With our simplexnotation� andDefinition2.1 inmind, a continuousmapx : �2 →
T N (Rd) is called amultiplicative functional if for s < u < t one has xs,t = xs,u⊗xu,t .
A particular occurrence of this kind of map is given when one considers a path x with
finite variation and sets for (s, t) ∈ �2,
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xnst =
∑

1≤i1,...,in≤d

(∫
�n

st

dxi1 · · · dxin
)
ei1 ⊗ · · · ⊗ ein , (4)

where {e1, . . . , ed} denotes the canonical basis of Rd . Then, the so-called signature
of x is the following object:

SN (x) : �2 → T N (Rd), (s, t) 	→ SN (x)s,t := 1+
N∑

n=1
xnst . (5)

It is worth mentioning that SN (x) will be our typical example of multiplicative func-
tional. In addition, it can be shown that SN (x) lives in a subset GN (Rd) of T N (Rd)

consisting of group-like elements. This subset is defined by

GN (Rd) = exp⊕
(
LN (Rd)

)
,

where LN (Rd) is the linear span of all elements that can be written as a commutator
of the type a ⊗ b − b ⊗ a for two elements in T N (Rd). It is known that there is a
Carnot–Caratheodory norm on GN (Rd) (see [17]), which we denote by ‖ · ‖CC . It is
a homogeneous norm with respect to the natural scaling operation on T N (Rd).

A rough path can be seen as a generalization of the signature (5) to non-smooth
situations. Specifically, the definition of rough path can be summarized as follows:

Definition 2.3 The space ofweakly geometric p-rough paths is the set ofmultiplicative
paths x : �2 → G�p�(Rd) such that the following norm is finite:

‖x‖p−var;[0,T ] = sup
�⊂[0,T ]

(∑
i

‖xti ti+1‖pCC
)1/p

, (6)

where the supremum is taken over all subdivisions� of [0, T ]. An important subclass
of weakly geometric p-rough paths is the set of geometric p-rough paths. These are
multiplicative paths x : �2 → G�p�(Rd) with ‖x‖p−var;[0,T ] < ∞ such that there
exists a sequence {xε; ε > 0} with xε ∈ C∞([0, T ];Rd) and S�p�(xε) → x under
‖ · ‖p−var;[0,T]. In other words, the set of geometric p-rough paths is the closure of
smooth paths in the space of weakly geometric p-rough paths equipped with a p-var
norm.

With the above preliminary notions in hand, we now give the main theorem con-
cerning existence and uniqueness of the solution to a rough differential equation. We
refer the reader to [15,18] for its proof.

Theorem 2.4 Suppose x can be lifted as a geometric p-rough path and V0, . . . , Vd be
Cγ -Lipschitz continuous vector fields in Rn for some γ > p ≥ 1. For ε > 0, let zε be
the unique solution of the following ordinary differential equation on [0, T ]

zεt = z +
∫ t

0
V0(z

ε
s )ds +

d∑
i=1

∫ t

0
Vi (z

ε
s )dx

ε,i
s , (7)
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where xε is a sequence of smooth functions approximating x in the sense of Defini-
tion 2.3. Then, zε converges in p-variation to a path z, which can be seen as the unique
solution of Eq. (2) understood in rough path sense.

In the remainder of the article, we assume that Xt = (X1
t , ..., X

d
t ) is a continuous,

centered Gaussian process with i.i.d. components, defined on a complete probability
space (	,F ,P). The covariance function of X is defined as follows:

R(s, t) := E

[
X j
s X

j
t

]
, (8)

where X j is any of the components of X . We shall also use the following notation in
the sequel

σ 2
t := E

[(
X j
t

)2]
, and σ 2

s,t := E

[(
δX j

st

)2]
. (9)

A lot of the information concerning X is encoded in the rectangular increments of the
covariance function R, which is given by

Rst
uv := E

[
(X j

t − X j
s ) (X j

v − X j
u)
]
. (10)

The 2D ρ-variation of R on a rectangle [0, t]2 is given by

Vρ(R; [0, t]2) := sup

⎧⎪⎨
⎪⎩

⎛
⎝∑

i, j

∣∣∣Rt j t j+1
si si+1

∣∣∣ρ
⎞
⎠

1/ρ

; (si ), (t j ) ∈ �

⎫⎪⎬
⎪⎭ , (11)

where � is the set of partitions of [0, t]. For simplicity, we denote Vρ(R) =
Vρ(R; [0, T ]2) in the following. The following result (borrowed from [17]) relates
the ρ-variation of R with the path-wise assumptions allowing to apply the abstract
rough paths theory.

Proposition 2.5 Let X = (X1, . . . , Xd) be a continuous, centered Gaussian process
with i.i.d. components and covariance function R defined by (8). If R has finite 2D
ρ-variation for some ρ ∈ [1, 2), then almost surely X can be lifted to a geometric
p-rough path with p > 2ρ.

As a direct application of Theorem 2.4 and Proposition 2.5, we notice that whenever
a Gaussian process X admits a covariance function R with finite 2D ρ-variation (and
ρ ∈ [1, 2)), then, almost surely, Eq. (2) driven by X admits a unique solution in the
rough path sense. In the sequel we shall give some information about the law of this
solution Z .
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2.2 Wiener Space Associated with Gaussian Processes

In this section we consider again the continuous, centered Gaussian process X of
Sect. 2.1. Recall that its covariance function R is defined by (8). Our analysis is based
on two different (though related) Hilbert spaces H̃ andH. Roughly speaking, the space
H is the usual Cameron–Martin space of X , while H̃ is the space allowing a proper
definition of Wiener integrals as defined, e.g., in [28].

The Cameron–Martin space H is defined to be the completion of the linear space
of functions of the form

{
n∑

i=1
ai R (ti , ·) , ai ∈ R and ti ∈ [0, T ]

}
,

with respect to the following inner product

〈
n∑

i=1
ai R (ti , ·) ,

m∑
j=1

b j R
(
s j , ·

)〉

H
=

n∑
i=1

m∑
j=1

aib j R
(
ti , s j

)
. (12)

The space H̃ is defined similarly, but this time we are considering the completion of
the set of step functions

E =
{

n∑
i=1

ai1[0,ti ] : ai ∈ R, ti ∈ [0, T ]

}
,

with respect to the inner product

〈
n∑

i=1
ai1[0,ti ],

m∑
j=1

b j1[0,s j ]

〉

H̃
=

n∑
i=1

m∑
j=1

aib j R
(
ti , s j

)
. (13)

Remark 2.6 Let X0 = 0 and thus R(0, 0) = 0. Then, as suggested by (13), for any
h1, h2 ∈ H̃, we have

〈h1, h2〉H̃ =
∫ T

0

∫ T

0
h1(s)h2(t)dR(s, t), (14)

whenever the 2D Young’s integral on the right-hand side is well defined (see, e.g., [9,
Proposition 4] for details).

Since H̃ is the completion of E w.r.t 〈·, ·〉H̃, it is obvious that the linear map R :
E → H defined by

R (
1[0,t]

) = R (t, ·) (15)

extends to an isometry between H̃ and H.
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Let H1 (X) ⊆ L2 (	,F ,P) be the |·|L2(	)-closure of the set

{∑n

i=1 ai X
1
ti : ai ∈ R, ti ∈ [0, T ] , n ∈ N

}
.

We also recall that H̃ is isometric to H1(X) through theWiener integral X(φ), φ ∈ H̃,
where, in particular, we have that X(1[0,t]) = Xt .

Remark 2.7 Since the space H̃ is a closure of indicator functions, it is easily defined
on any interval [a, b] ⊂ [0, T ]. We denote by H̃([a, b]) this restriction. For [a, b] ⊂
[0, T ], one can then check the following identity by a limiting procedure on simple
functions

〈
f 1[a,b], g 1[a,b]

〉
H̃ = 〈 f , g〉H̃([a,b]) . (16)

The rough path analysis of Gaussian processes relies heavily on embedding results
for the Cameron–Martin spaceH into spaces of functions of finite p-variation. In the
following we shall recall a recent embedding result from [12]. To this aim, let us recall
the definition of the mixed (γ, ρ)-variation given in [32].

Definition 2.8 For a general continuous function R : [0, T ]2 → R and two parameters
γ, ρ ≥ 1, we set

Vγ,ρ(R; [s, t] × [u, v]) := sup
(ti )∈D([s,t])
(t ′j )∈D([u,v])

⎛
⎜⎝∑

t ′j

(∑
ti

∣∣∣∣Rt ′j t ′j+1
ti ti+1

∣∣∣∣
γ
) ρ

γ

⎞
⎟⎠

1
ρ

, (17)

where D([s, t]) denotes the set of all dissections of [s, t] and where we have set

R
t ′j t ′j+1
ti ti+1 = R(ti+1, t ′j+1)− R(ti+1, t ′j )− R(ti , t

′
j+1)+ R(ti , t

′
j ).

Observe thatwhenever the function R inDefinition 2.8 is given as a covariance function

as in (8), then the rectangular increment R
t ′j t ′j+1
ti ti+1 is given by (10). In addition, the

ρ-variation of R introduced in (11) and invoked in Proposition 2.5 is recovered as
Vρ = Vρ,ρ . As a last elementary remark, also notice that

Vγ∨ρ(R; A) ≤ Vγ,ρ(R; A) ≤ Vγ∧ρ(R; A),

for all rectangles A ⊆ [0, T ]2. We set, for future use

κ2
s,t := V1,ρ(R; [s, t]2), and κ2

t := V1,ρ(R; [0, t]2). (18)

With these elementary notions at hand, we next introduce an hypothesis which
allows the use of both rough paths techniques and tools from stochastic analysis for
the underlying process.
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Hypothesis 2.9 Let X be a d-dimensional continuous, centered Gaussian process with
i.i.d. components and covariance R defined by (8). We assume that the function R
admits a finite mixed (1, ρ)-variation, as introduced in Definition 2.8, for some ρ ∈
[1, 2).
Remark 2.10 Since the mixed (1, ρ)-variation of R controls Vρ(R), Proposition 2.5
andHypothesis 2.9 imply the existence of a rough path lift of X to a geometric p-rough
path with p > 2ρ.

Definition 2.11 Given ρ ∈ [1, 2), we say that R has finite Hölder-controlled mixed
(1, ρ)-variation if there exists a C > 0 such that for all 0 ≤ s ≤ t ≤ T we have

V1,ρ(R; [s, t]2) ≤ C(t − s)1/ρ.

Remark 2.12 An important consequence of R having finite Hölder-controlled mixed
(1, ρ)-variation is that X has 1/p-Hölder continuous sample paths for every p > 2ρ.
This will be needed in order to obtain the interpolation inequality in Proposition 2.22
below which plays an important role in the analysis.

Remark 2.13 Similarly to the argument in [10, Remark 2.4], for any process X satisfy-
ingHypothesis 2.9, one can introduce a deterministic time-change τ : [0, T ] → [0, T ]
such that X̃ = X ◦ τ has finite Hölder-controlled mixed (1, ρ)-variation.

We are now ready to recall an embedding result for the Cameron–Martin spaceH,
obtained in [12].

Theorem 2.14 Let X be a centered Gaussian process satisfying Hypothesis 2.9 and
recall thatH is defined by the inner product (12). Then, there is a continuous embed-
ding

H ↪→ Cq−var, with q = 1
1
2ρ + 1

2

< 2.

More precisely, the following inequality holds true

‖h‖q−var;[s,t] ≤ κs,t ‖h‖H, ∀[s, t] ⊆ [0, T ],

where the constant κs,t is defined by (18).

Finally, we can give a statement which will be the basis of the interpretation of
several integrals related to Malliavin derivatives

Corollary 2.15 Let X be a centered Gaussian process satisfying Hypothesis 2.9 for
a given ρ ∈ [1, 2), let H be the Cameron–Martin space related to X, and let ε ∈
(0, 2− ρ] small enough. Then,
(i) The process X gives rise to a geometric p-rough path for p = 2ρ + ε.
(ii) The spaces H and C p−var satisfy Young’s complementary condition: There exists

a q such that H is embedded in Cq−var and such that p−1 + q−1 > 1.
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Proof Item (i) follows from Remark 2.10. As far as item (ii) is concerned, we invoke
Theorem 2.14 and we take q = ( 1

2ρ + 1
2 )
−1. Since ρ < 2 and since we have chosen

p = 2ρ + ε with ε small enough, it is easily checked that p−1 + q−1 > 1.
��

Remark 2.16 Let X be aGaussian process starting at zero and satisfyingHypothesis 2.9
for a given ρ ∈ [1, 2).
(1) Let f ∈ C p−var ([0, T ]) with 1

p + 1
ρ

> 1. Then, f ∈ H̃ and

‖ f ‖2H̃ =
∫ T

0

∫ T

0
f (s) f (t)dR(s, t), (19)

where the right-hand side is well defined as a 2D Young integral. In particular,
C p−var ([0, T ]) ↪→ H̃ with

‖ f ‖2H̃ ≤ C‖ f ‖2p−var‖R‖ρ−var .

(2) Let h1 ∈ C p−var ([0, T ]) with 1
p + 1

ρ
> 1, and h2 ∈ H̃. Then,

〈h1, h2〉H̃([0,t]) =
∫ t

0
h1dRh2,

where the right-hand side is well defined as a Young integral and where we recall
that the isomorphism R is defined by (15).

Proof (1): Since R has finite 2D-ρ variation and f has finite p-variation with 1
p + 1

ρ
>

1, the 2D Young integral is well defined. For elementary processes, (19) is immediate.
Then, approximating f by piece-wise constant approximants f n , and noting that (cf.
[16, Exercise 6.9])

∫ T

0

∫ T

0
f n(s) f n(t)dR(s, t)→

∫ T

0

∫ T

0
f (s) f (t)dR(s, t)

the sequence f n is a Cauchy sequence (identified with f ) in H̃ and the identity carries
over to the limit.
(2): By (1), h1 ∈ H̃ and Rh2 ∈ H and, by Theorem 2.14, Rh2 ∈ Cq−var with
q = 1

1
2ρ+ 1

2
. Since 1

p + 1
q > 1, using ρ ≥ 1, this implies that the Young integral is

well defined. Since the identify is readily checked for elementary functions, the claim
follows as in (1). ��

2.3 Interpolation Inequalities

Interpolation inequalities involving Cameron–Martin spaces are crucial in order to
bound Malliavin derivatives which appear in density formulae. In this section we
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derive such inequalities for a general Gaussian process, under conditions introduced
in [10,12]. The first condition we shall impose concerns correlations of increments.

Hypothesis 2.17 Let X be anRd-valued centered Gaussian process X with i.i.d. coor-
dinates and covariance function R. In the sequel we assume that:

(i) X has non-positively correlated increments, that is, for all (t1, t2, t3, t4) ∈ �4 and
every coordinate j = 1, . . . , d we have

Rt3t4
t1t2 = E

[
δX j

t1t2 δX j
t3t4

]
≤ 0. (20)

(ii) The covariance R is diagonally dominant. That is, for all (t1, t2, t3, t4) ∈ �4 and
every coordinate j = 1, . . . , d we have

Rt1t4
t2t3 = E

[
δX j

t2t3 δX j
t1t4

]
≥ 0. (21)

With this hypothesis at hand, we start with some inequalities which stem from the
Cameron–Martin embedding Theorem 2.14.

Proposition 2.18 Let X be a Gaussian process starting from zero and satisfying
Hypothesis 2.9. Further, let p ≥ 1 such that 1/p + 1/ρ > 1. Then,
(i) There exist constants c1, c2 > 0 such that for every f ∈ C p−var ([0, T ]) and
t ∈ (0, T ], we have

‖ f 1[0,t]‖2H̃ ≤ c2 κ2
t

(
‖ f 1[0,t]‖2p−var + ‖ f 1[0,t]‖2∞

)
,

where κt is as in (18).
(ii) Assume that X satisfies Hypothesis 2.17 and let Cγ be the space of γ -Hölder
continuous functions. Then, for any f ∈ Cγ with 1/ρ + γ > 1,

‖ f 1[0,t]‖2H̃ ≥
∫ t

0
f 2(r)R(dr , t) ≥ σ 2

t min[0,t] | f |
2, (22)

where σ 2
t is as in (9).

Remark 2.19 Equation (22) above is in fact a consequence of [10, Proposition 6.6], by
taking s = 0 and t = T therein. We have included a more elementary proof here for
the sake of clarity.

Proof of Proposition 2.18 We prove the two items of this proposition separately.
Proof of (i). Recall that the spaces H̃([a, b]) are introduced in Remark 2.7. By
Remark 2.16, the following relation holds true, for any h1, h2 ∈ C p−var ([0, T ]),

〈h1, h2〉H̃([0,t]) =
∫ t

0
h1dRh2.
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Hence, if p−1 + q−1 > 1, classical inequalities for Young’s integral imply

|〈h1, h2〉H̃([0,t])| ≤ C(‖h1‖p−var;[0,t] + ‖h1‖∞;[0,t])‖Rh2‖q−var;[0,t]. (23)

We now use Theorem 2.14 to get the bound

‖Rh2‖q−var;[0,t] ≤ κt ‖Rh2‖H([0,t]) = κt ‖h2‖H̃([0,t]),

where we recall that we have set κ2
t = V1,ρ(R; [0, t]2). Plugging this information

back into (23) and choosing h1 = h2 = f , we obtain

‖ f ‖2H̃([0,t]) = |〈 f , f 〉H̃([0,t])| ≤ C(‖ f ‖p−var;[0,t] + ‖ f ‖∞;[0,t])‖R f ‖q−var;[0,t]
≤ Cκt (‖ f ‖p−var;[0,t] + ‖ f ‖∞;[0,t])‖ f ‖H̃([0,t]).

Dividing this expression by ‖ f ‖H̃([0,t]) finishes the proof of claim (i).
Proof of (ii).We first prove the claim for elementary step functions. Namely, consider
t ≤ T , a partition (ti ) of the interval [0, t], and set

f 1[0,t] =
∑
i

ai1[ti ,ti+1].

Then, the following identity obviously holds true

‖ f 1[0,t]‖2H̃ =
∑
i, j

ai a j
〈
1[ti ,ti+1], 1[t j ,t j+1]

〉
H̃ =

∑
i, j

ai a j R
ti ,ti+1
t j ,t j+1 .

We now separate diagonal and non-diagonal terms in order to get

‖ f 1[0,t]‖2H̃ =
∑
i

∑
j �=i

ai a j R
ti ,ti+1
t j ,t j+1 +

∑
i

a2i R
ti ,ti+1
ti ,ti+1 ≥ S1 − S2, (24)

where S1 and S2 are defined by

S1 =
∑
i

a2i R
ti ,ti+1
ti ,ti+1 , and S2 =

∑
i

∑
j �=i
|ai ||a j |

∣∣∣Rti ,ti+1
t j ,t j+1

∣∣∣ .

Next, in order to bound S2 from above, we first invoke the elementary inequality
2|ai ||a j | ≤ |ai |2 + |a j |2 to get

S2 ≤ 1

2

∑
i

∑
j �=i

a2i

∣∣∣Rti ,ti+1
t j ,t j+1

∣∣∣+ 1

2

∑
i

∑
j �=i

a2j

∣∣∣Rti ,ti+1
t j ,t j+1

∣∣∣ .
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Then, using (20), we get

S2 ≤ −1

2

∑
i

∑
j �=i

a2i R
ti ,ti+1
t j ,t j+1 −

1

2

∑
i

∑
j �=i

a2j R
ti ,ti+1
t j ,t j+1 = −

∑
i

∑
j �=i

a2i R
ti ,ti+1
t j ,t j+1 .

Inserting this in (24) yields

‖ f 1[0,t]‖2H̃ ≥
∑
i, j

a2i R
ti ,ti+1
t j ,t j+1 =

∑
i

a2i R
ti ti+1
0t . (25)

Let us observe that, owing to the diagonal dominance assumption (21), the measure
R(dr , t) defined by

R([u, v], t) := Ruv
0t

is non-negative. Furthermore, one can recast inequality (25) as

‖ f 1[0,t]‖2H̃ ≥
∫ t

0
f 2(r)R(dr , t).

Using elementary properties of positive measures, we thus end up with

‖ f 1[0,t]‖2H̃ ≥ min[0,t] | f |
2R0t

0t = min[0,t] | f |
2σ 2

t ,

which proves the claim (ii) for elementary functions f . Finally, we show that the above
remains true all f ∈ H̃ ∩ Cγ . Let D = {ti : i = 0, 1, ..., n} be any partition of [0, T ],
and set fD(t) = f (ti ), ti ≤ t < ti+1. Since fD is an elementary function, we have

∫
[0,t]2

fD(s) fD(t)dR(s, t) = ‖ fD1[0,t]‖2H̃ ≥ min[0,t] | fD|
2σ 2

t .

Note that we assume f ∈ Cγ with 1/ρ + γ > 1. The left-hand side of the above
display is the Riemann sum approximation to the 2D Young integral of f against R
along the partition D. Hence, if we shrink the mesh of the partition D,

∫
[0,t]2

fD(s) fD(t)dR(s, t) →
∫
[0,t]2

f (s) f (t)dR(s, t) = ‖ f 1[0,t]‖2H̃.

On the other hand, min[0,t] | fD| → min[0,t] | f |, when shrinking the mesh of D,
by the construction of fD and the fact that f is continuous. The proof is thus
completed. ��

We now wish to get a non-degeneracy result for the norm in H̃, that is, a lower
bound on ‖ f ‖H̃ involving ‖ f ‖∞. From [10, Condition 2] we recall the following
non-degeneracy condition.
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Hypothesis 2.20 Let (Xt )t∈[0,T ] be a centered continuous Rd-valued Gaussian pro-
cess. For any 0 ≤ a ≤ b ≤ T , denote by Fa,b the following σ -algebra

Fa,b = σ(δXuv : a ≤ u ≤ v ≤ b).

Then, we assume that there exists an α > 0 such that

inf
0≤s<t≤T

1

(t − s)α
Var

(
δXst |F0,s ∨ Ft,T

) = cX > 0. (26)

We call the smallest α that satisfies the above condition the index of non-determinism.

We recall that in [10, Lemma 4.1 and Lemma 4.2] the condition above is verified
for any α ∈ (0, 1] for the case of X being a fractional Brownian motion with Hurst
index H ∈ (0, 1

2 ).

Remark 2.21 Note that since we are working with Gaussian processes, the above
conditional variance Var

(
δXst |F0,s ∨ Ft,T

)
is deterministic. Moreover, assuming

Hypothesis 2.20 holds true and setting s = 0 in (26), the law of total variance gives
us

σ 2
t = Var (Xt ) ≥ Var

(
δX0t |F0,0 ∨ Ft,T

) ≥ cX t
α,

with σ 2
t as in (9).

With Hypothesis 2.20 at hand, we borrow the following interpolation inequality
from [10, Corollary 6.10].

Proposition 2.22 Let (Xt )t∈[0,T ] be a continuous Gaussian process starting from zero
with covariance function R : [0, T ]2 → R. Suppose Hypotheses 2.17 and 2.20 are
satisfied. Furthermore, we assume that R has finite Hölder-controlled mixed (1, ρ)-
variation for some ρ ∈ [1, 2) in the sense of Definition 2.11. Then, there exists a
universal constant c such that for any f ∈ Cγ ([0, T ],R) with γ + 1/ρ > 1, we have

‖ f ‖∞;[0,T ] ≤ 2max

{‖ f ‖H̃
σT

,
1√
cX
‖ f ‖

2γ
2γ+α

H̃ ‖ f ‖
α

2γ+α

γ ;[0,T ]
}

, (27)

where cX is the constant appearing in equation (26) and σt is defined by (9).

Remark 2.23 In [10], relation (27) is proved under the following additional hypothesis

Cov(Xs,t Xu,v|F0,s ∨ Ft,S) ≥ 0, (28)

for any [u, v] ⊂ [s, t] ⊂ [0, S] ⊂ [0, T ]. However, we are working here under the
standing assumptions (20), (21) in Hypothesis 2.17, and it is shown in [10, Corollary
6.8] that (20) together with (21) implies (28).
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Remark 2.24 Our interpolation inequality (27) also reads as

‖ f ‖H̃ ≥
σT ‖ f ‖∞;[0,T ]

2
min

⎧⎨
⎩1,

2
( cX

2

) 2γ+α
4γ

σT

‖ f ‖
α
2γ
∞;[0,T ]

‖ f ‖
α
2γ
γ ;[0,T ]

⎫⎬
⎭ . (29)

In fact we will use a slight generalization of (29) in the sequel. Namely, for all t ≤
T , Remark 2.7 asserts that ‖ f 1[0,t]‖H̃ = ‖ f ‖H̃([0,t]). We thus get the following
interpolation inequality

‖ f 1[0,t]‖H̃ ≥
σt‖ f ‖∞;[0,t]

2
min

⎧⎨
⎩1,

2
( cX

2

) 2γ+α
4γ

σt

‖ f ‖
α
2γ
∞;[0,t]

‖ f ‖
α
2γ
γ ;[0,t]

⎫⎬
⎭ . (30)

2.4 Malliavin Calculus for Gaussian Processes

In this section we review some basic aspects of Malliavin calculus. The reader is
referred to [28] for further details.

As before Xt = (X1
t , ..., X

d
t ) is a continuous, centered Gaussian process with

i.i.d. components, defined on a complete probability space (	,F ,P). For the sake
of simplicity, we assume that F is generated by {Xt ; t ∈ [0, T ]}. An F-measurable
real-valued random variable F is said to be cylindrical if it can be written, for some
m ≥ 1, as

F = f
(
Xt1 , . . . , Xtm

)
, for 0 ≤ t1 < · · · < tm ≤ T ,

where f : Rm → R is a C∞b function. The set of cylindrical random variables is
denoted by S.

The Malliavin derivative is defined as follows: for F ∈ S, the derivative of F in
the direction h ∈ H̃ is given by

Dh F =
m∑
i=1

∂ f

∂xi

(
Xt1 , . . . , Xtm

)
hti .

More generally, we can introduce iterated derivatives. Namely, if F ∈ S, we set

Dk
h1,...,hk F = Dh1 . . .Dhk F .

For any p ≥ 1, it can be checked that the operator Dk is closable from S into
Lp(	; H̃⊗k). We denote by D

k,p(H̃) the closure of the class of cylindrical random
variables with respect to the norm

‖F‖k,p =
⎛
⎝E

[|F |p]+
k∑
j=1

E

[∥∥∥D j F
∥∥∥p

H̃⊗ j

]⎞⎠
1
p

,
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and we also set D∞(H̃) = ∩p≥1 ∩k≥1 Dk,p(H̃). The divergence operator δ� is then
defined to be the adjoint operator of D.

Estimates ofMalliavin derivatives are crucial in order to get information about den-
sities of random variables, and Malliavin matrices as well as non-degenerate random
variables will feature importantly in the sequel.

Definition 2.25 Let F = (F1, . . . , Fn) be a random vector whose components are in
D
∞(H̃). Define the Malliavin matrix of F by

γF = (〈DFi ,DF j 〉H̃)1≤i, j≤n . (31)

Then, F is called non-degenerate if γF is invertible a.s. and

(det γF )−1 ∈ ∩p≥1L p(	).

It is a classical result that the law of a non-degenerate random vector F =
(F1, . . . , Fn) admits a smooth density with respect to the Lebesgue measure on Rn .

2.5 Differential Equations Driven by Gaussian Processes

Recall that we consider the following kind of equation

Zz
t = z +

∫ t

0
V0(Z

z
s )ds +

d∑
i=1

∫ t

0
Vi (Z

z
s )dX

i
s, (32)

where the vector fields V0, . . . , Vd are C∞b -vector fields on R
n and X is a continu-

ous, centered Gaussian process with i.i.d. components. Throughout this section, we
assume that the covariance R has finite 2D ρ-variation for some ρ ∈ [1, 2). Hence,
as mentioned in Sect. 2.1, Proposition 2.5 implies the existence and uniqueness of a
solution to (32).

Once equation (32) is solved, the vector Zz
t is a typical example of random variable

which can be differentiated in the Malliavin sense. We shall express this Malliavin
derivative in terms of the Jacobian J of the equation, which is defined by the relation
Ji jt = ∂z j Z

z,i
t . Setting DVj for the Jacobian of Vj as a function from R

n to Rn , let us
recall that J is the unique solution to the linear equation

Jt = Idn +
∫ t

0
DV0(Z

z
s ) Js ds +

d∑
j=1

∫ t

0
DVj (Z

z
s ) Js dX

j
s . (33)

The following integrability and differentiability results are summarized from [8,
11,21].

Proposition 2.26 Let X be a continuous, centered R
d -valued Gaussian process with

i.i.d. components and covariance function R having finite 2D ρ-variation for some
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ρ ∈ [1, 2). Consider the solution Zz to (32) and suppose that the vector fields Vi are
C∞b . Then
(i) For any η ≥ 1, there exists a finite constant cη such that the Jacobian J defined by
(33) satisfies

E

[
‖J‖ηp−var;[0,T ]

]
= cη. (34)

(ii) For every i = 1, . . . , n, t > 0, and z ∈ R
n, we have Zz,i

t ∈ D
∞(H̃) and the

Malliavin derivative of Z z
t can be realized as a function Ds Z

z
t in s ∈ [0, T ] which

satisfies

D j
s Z

z
t = Js,t V j (Z

z
s ), (35)

for all j = 1, . . . , d, 0 ≤ s ≤ t and

D j
s Z

z
t = 0,

for all s > t . Here D j
s Z

z,i
t is the j th component of Ds Z

z,i
t , and where we have set

Js,t = Jt J−1s .

Proof The integrability of the Jacobian J stated in (i) is the main content of [11,
Theorem 6.5]. The fact that Zz,i

t ∈ D
∞(H̃) is proved in [21, Theorem 1.2]. Finally,

we show that relation (35) holds. First note that by Theorem 2.14 and [8, Proposition
1] we have,

〈DZz
t , h〉H̃ = Dh Z

z
t = Jt

∫ t

0
J−1s V (Zz

s )d(Rh)s, h ∈ H̃.

This together with Remark 2.16 (2) implies that the Malliavin derivative DZz
t can be

realized as a function and

Ds Z
z
t = Jt J−1s V (Zz

s ).

The proof is thus completed.
��

3 Upper Bounds for the Density

The aim of this section is to study upper bounds for the density of the solution to
Eq. (32). Throughout this section X is a continuous, centeredGaussian process starting
at zero with i.i.d. components. In addition, we assume the following uniform ellipticity
condition on the vector fields.

Hypothesis 3.1 The vector fields V1, . . . , Vd of equation (32) are C∞-bounded and
form a uniformly elliptic system, that is, for some λ > 0,
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v∗V (x)V ∗(x)v ≥ λ|v|2, for all v, x ∈ R
n, (36)

where we have set V = (V i
j )i=1,...,n; j=1,...d .

We further introduce

Definition 3.2 Let X be a centered R
d -valued Gaussian process with covariance R.

We assume that X satisfies Hypothesis 2.9. Let σt and κt be as in (9), (18). We define
the self-similarity parameter ηt for t ∈ (0, T ] by

ηt := V1,ρ(R; [0, t]2)
R(t, t)

=
(

κt

σt

)2

. (37)

Remark 3.3 The name self-similarity parameter for ηt stems from the fact that ηt does
not depend on t whenever the Gaussian process X is self-similar. Hence, ηt can be
interpreted as quantifying the lack of self-similarity.

With these definitions at hand, we shall prove an upper bound for the density of Xt ,
under the ellipticity assumption (36).

Theorem 3.4 Let X be an Rd-valued continuous, centered Gaussian process starting
at zero with i.i.d. components and covariance function R. Suppose that Hypothe-
ses 2.9, 2.17, 2.20 and 3.1 are satisfied and let σt , κt , ηt be as in (9), (18), (37). Let
Z z be the solution to (32) driven by the Gaussian rough path lift X of X. Then, for all
t ∈ (0, T ], the density pt of Z

z
t satisfies

pt (y) ≤ c1η
n(n+2)
t

κn
t

exp

(
−|y − z|1+ 1

ρ

c2 κ2
t

)
, for all y ∈ R

n, (38)

for some c1, c2 > 0.

The reminder of this section is devoted to prove Theorem 3.4. Our global strategy is
highlighted in Sect. 3.1, while the main estimates are derived in Sects. 3.2, 3.3 and 3.4.

3.1 Global Strategy

Our starting point in order to get the upper bound (38) is the following integration by
parts type formula. Denote by C∞p (Rn) the space of smooth functions f such that f
and all of its partial derivatives have at most polynomial growth.

Proposition 3.5 [28, Proposition 2.1.4] Let F = (F1, . . . , Fn) be a non-degenerate
random vector as in Definition 2.25. Let G ∈ D

∞ and ϕ be a function in the space
C∞p (Rn). Then, for any multi-index α ∈ {1, 2, . . . , n}k , k ≥ 1, there exists an element
Hα(F,G) ∈ D

∞ such that

E[∂αϕ(F)G] = E[ϕ(F)Hα(F,G)],
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Moreover, the elements Hα(F,G) are recursively given by

H(i)(F,G) =
n∑
j=1

δ�
(
G(γ−1F )i j DF j

)
and

Hα(F,G) = Hαk (F, H(α1,...,αk−1)(F,G)), (39)

and for 1 ≤ p < q <∞ we have

‖Hα(F,G)‖p ≤ cp,q‖γ−1F DF‖kk,2k−1r‖G‖kk,q , (40)

where 1
p = 1

q + 1
r .

As a consequence, one has the following expression for the density of a non-
degenerate random vector.

Proposition 3.6 [28, Proposition 2.1.5] Let F = (F1, . . . , Fn) be a non-degenerate
random vector as in Definition 2.25. Then, the density pF (y) of F belongs to the
Schwartz space, and for any σ ⊂ {1, . . . , n},

pF (y) = (−1)n−|σ |E[1{Fi>yi ,i∈σ,Fi<yi ,i /∈σ }H(1,...,n)(F, 1)], for all y ∈ R
n .

According to the above relation applied to F = Zz
t and σ = {i ∈ {1, . . . , n} :

yi ≥ zi }, and applying inequality (40) with k = n, p = 2, r = q = 4, we obtain the
following general upper bound for the density pt of Z

z
t

pt (y) ≤ c P(|Zz
t − z| ≥ |y − z|)1/2 ‖γ−1t ‖nn,2n+2 ‖DZz

t ‖nn,2n+2 , for all y ∈ R
n,

(41)

where γt denotes the Malliavin matrix of Zz
t . In the remainder of the section, we shall

bound separately the three terms in the right-hand side of (41).

3.2 Tail Estimates

This section is devoted to estimating P(|Zz
t − z| ≥ |y − z|) on the right-hand side of

(41). Our main result in this direction is the following proposition.

Proposition 3.7 Let X be an R
d-valued continuous, centered Gaussian process with

i.i.d. components satisfying Hypothesis 2.9 for some ρ ∈ [1, 2). Let τ ∈ (0, T ], κτ be
as in (18) and Zz, V be as in Theorem 3.4. Then, there exists a constant c2 > 0 such
that

P

(
sup
t≤τ
|Zz

t − z| ≥ y

)
≤ exp

(
−|y − z|1+ 1

ρ

c2 κ2
τ

)
, (42)

for all y ∈ R
n.
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Proof According to Proposition 2.5, which can be applied since the process X fulfills
Hypothesis 2.9, there is a rough path lift X of X . For p > 2ρ, define the control ωX,p

by

ωX,p(s, t) = ‖X‖pp−var;[s,t] =
∑
n≤�p�

‖Xn‖1/np
n−var;[s,t]

. (43)

Then, [17, Lemma 10.7] asserts that

‖Zz‖p−var;[s,t] ≤ cV
([

ωX,p(s, t)
]1/p ∨ ωX,p(s, t)

)
. (44)

In particular, for any ti < ti+1 we have

|δZz
ti ti+1 | ≤ cV

([
ωX,p(ti , ti+1)

]1/p ∨ ωX,p(ti , ti+1)
)

. (45)

Consider now α ≥ 1 and construct a partition of [0, t] inductively in the following
way: we set t0 = 0 and

ti+1 := inf
{
u > ti ; ‖X‖pp−var;[ti ,u] ≥ α

}
. (46)

We then set Nα,t,p = sup{n ≥ 0; tn < t}. Observe that, since we have taken α ≥ 1,
inequality (45) can be read as |δZti ti+1 | ≤ cV ωX,p(ti , ti+1) = cV α. Hence,

|Zz
t − z| ≤ |Zz

t − ZtNα,t,p
| +

Nα,t,p−1∑
i=0

|δZti ti+1 | ≤ cV α (Nα,t,p + 1). (47)

By [11, Theorem 6.3] we have

P
(
Nα,t,p + 1 > n

)
� exp

⎛
⎝−cp,q,α n

2
q

κ2
t

⎞
⎠ , (48)

where κt is as in (18) and q is the exponent given in Theorem 2.14 by 1
q = 1

2ρ + 1
2 .

This easily implies

P

(
sup
t≤τ
|Zz

t − z| ≥ ξ

)
≤ P

(
cV α (Nα,τ,p + 1) > ξ

)

� exp

⎛
⎝−cp,q,α,V ξ

1+ 1
ρ

κ2
τ

⎞
⎠ , (49)

and thus the claim. ��
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3.3 Estimate for Malliavin Derivatives

We now proceed to bound the Malliavin derivatives involved in the right-hand side of
(41). We summarize the results in the following proposition.

Proposition 3.8 Under the same assumptions as in Proposition 3.7, for all m ∈ N and
p > 1 there exists a positive constant cm,p such that

‖Zz
t ‖m,p ≤ cm,p κt , (50)

where κt = V1,ρ(R; [0, t]2) 1
2 is as in (18).

Proof We use a method by Inahama [21] to which we refer for more details. For
simplicity, we assume V0 = 0, and first show (50) for m = 1, 2. The case V0 �= 0 is
treated similarly. Recall that J is the Jacobian process.

Step 1: Expression for the Malliavin derivatives. Let X̂ = (X̂1, ..., X̂d) be an inde-
pendent copy of X and consider the 2d-dimensional Gaussian process (X , X̂). The
expectation with respect to X and X̂ is, respectively, denoted by E and Ê. Set

�1
t :=

d∑
j=1

Jt

∫ t

0
J−1s Vj (Z

z
s )dX̂

j
s ,

and

�2
t :=

d∑
j=1

Jt

∫ t

0
J−1s

{
D2Vj (Z

z
s )
(
�1

s , �
1
s

)
dX j

s + 2DVj (Z
z
t )�

1
s , d X̂

j
s

}
.

Then, one can show that the following bounds hold true (formore details, see equations
(2.8) and (2.9) in [21], and the discussion after them)

‖DZz
t ‖H̃⊗Rn ≤ C(Ê|�1

t |2)1/2,
‖D2Zz

t ‖H̃⊗H̃⊗Rn ≤ C(Ê|�2
t |2)1/2.

Step 2: Bound for the first-order derivative. We now estimate �1 by using general
bounds taken from the theory of rough paths. Namely, let

M = (X , X̂ , Zz, J, J−1). (51)

Then,M can be lifted as a rough pathM obtained by solving an SDE driven by (X , X̂).
Hence, it is a p-rough path for any p > 2ρ, where ρ is the exponent appearing in
Hypothesis 2.9. Furthermore, the integral

∫
J−1s V (Zz

s )d X̂s is a rough integral of the
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type
∫

f (M)dM, where f has polynomial growth. We deduce that for some r > 0,
the following bound is verified

|δ�1
st | ≤ C(1+ ‖M‖p−var ,[0,T ])r‖M‖p−var ,[s,t]. (52)

We now estimate ‖M‖p−var ,[s,t] appearing in (52). Define

Yt =
d∑
j=1

∫ t

0
DVj (Z

z
s )dX

j
s .

Then, M̃ = (X , X̂ , Zz,Y ) can be lifted as a rough path M̃ by solving an SDE (with
C∞-bounded vector fields) driven by (X , X̂). Note that the Jacobian satisfies equation
(33) and that J−1 satisfies a similar equation

J−1t = Idn −
∫ t

0
J−1s DV0(Z

z
s ) ds −

d∑
j=1

∫ t

0
J−1s DVj (Z

z
s ) dX

j
s .

Also recall that we assumed V0 = 0 throughout our proof. It is then clear that the
rough pathM can be obtained by solving an SDE (with linear vector fields) driven by
M̃. Hence, we have the following growth-bound (cf. [11, inequality (4.10) and Remark
4.12])

‖M‖p−var;[0,t] ≤ C ‖M̃‖p−var ,[0,t] exp
(
CNα,t,p(M̃)

)
, (53)

where Nα,t,p(M̃) is defined in [11, equation (4.7)] and has finite moment to any order
by Corollary 3 of [13]. Gathering (52) and (53), together with [13, Lemma 4], we
deduce that

|�1
t | ≤ C‖M̃‖p−var ,[0,t] exp

(
CNα,t,p(M̃)

)
. (54)

Furthermore, by standard rough path estimate for SDEs with C∞-bounded vector
fields (cf. [17, Theorem 10.36]), we have

‖M̃‖p−var;[0,t] ≤ CV (‖X‖p−var;[0,t] + ‖X̂‖p−var;[0,t]) ∨ (‖X‖p−var;[0,t] + ‖X̂‖p−var;[0,t])p.

We now invoke [16, Theorem 35-(i) and Corollary 66], which asserts that

∥∥‖X‖p−var ,[0,t] + ‖X̂‖p−var ,[0,t]
∥∥
Lq ≤ Cqκt .

First using Hölder’s inequality in (54) and then the estimate above completes the proof
of (50) for m = 1.
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Step 3: Higher-order derivatives. In the same way as in Step 2, we estimate �2 as a
rough integral of the type

∫
φ(M1)dM1 where φ has polynomial growth and M1 is

the rough path

M1 = (X , X̂ , Zz, J, J−1, �1)

Arguing as before and using all the previous estimates, we obtain a bound of the same
type as (54)

|�2
t | ≤ C‖M̃‖p−var ,[0,t] exp

(
CNα,t,p(M̃)

)
.

This easily yields the claim (50) for the casem = 2.Higher-orderMalliavin derivatives
are treated similarly by constructing processes �m,m > 2 inductively (see [21]). ��

3.4 Estimates for theMalliavin Matrix

We next provide an estimate for the inverse of the Malliavin matrix γt in (41).

Proposition 3.9 Consider the solution Zz to (32) under the same conditions as in
Theorem 3.4. For t ∈ (0, T ], let γt be its Malliavin matrix defined as in (31). Then,
for all m ∈ N and p > 1 there exists a constant cm,p such that

‖γ−1t ‖m,p ≤ cm,p ηmt

σ 2
t

, (55)

where σt , ηt are as in relations (9) and (37).

Proof Without loss of generality, we will prove (55) for 0 < t ≤ 1. We divide the
proof into two steps.
Step 1: case m = 0. Let Ct be the matrix defined by

Ct =
∫ t

0

∫ t

0
J−1u V (Zx

u )V (Zx
v )∗(J−1v )∗dR(u, v).

ByRemark 2.6 and (35), we have γt = JtCtJ∗t . Therefore, the upper bound on ‖γ−1t ‖p
can be easily deduced from the following inequality

y∗Ct y ≥ Mtσ
2
t |y|2, for y ∈ R

n, (56)

where Mt is a random variable admitting negative moments of any order (see, e.g.,
[28, Lemma 2.3.1]). To this aim, we first notice that

y∗Ct y = ‖ f 1[0,t]‖2H̃, with fu := V (Zz
u)
∗(J−1u )∗y. (57)
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Furthermore, thanks to the interpolation inequality (30), we have

‖ f 1[0,t]‖2H̃ ≥
σ 2
t ‖ f ‖2∞;[0,t]

4
min

⎧⎨
⎩1,

cX ‖ f ‖
α
γ

∞;[0,t]

σ 2
t ‖ f ‖

α
γ

γ ;[0,t]

⎫⎬
⎭ . (58)

Next observe that, due to the uniform ellipticity condition |V (x)y|2 ≥ λ|y|2, it is
readily checked that

| fv|2 ≥ λ |J−1v y|2 ≥ λ ‖Jv‖−2|y|2. (59)

Moreover, we have J0 = Id, which implies that sup{‖Jv‖−1; v ∈ [0, t]} ≥ 1. Relation
(59) thus yields

‖ f ‖∞;[0,t] ≥ λ|y|. (60)

Plugging (60) into (58), we thus get

‖ f 1[0,t]‖2H̃ ≥ σ 2
t Mt |y|2, with Mt = λ2

4
min

⎧⎨
⎩1,

cX (λ|y|) α
γ

σ 2
t ‖ f ‖

α
γ

γ ;[0,t]

⎫⎬
⎭ .

According to (56) and (57), it is therefore left to prove E[M−p
t ] < ∞ for all p ≥ 1,

uniformly in t and y. We trivially have

M−1
t ≤ 4

λ2
max

⎧⎨
⎩1,

σ 2
t ‖ f ‖

α
γ

γ ;[0,t]
cX (λ|y|) α

γ

⎫⎬
⎭ , (61)

and by definition of f in (57)

‖ f ‖γ ;[0,t] ≤ ‖J−1V (Zz)‖γ ;[0,t] |y|.

Substituting this value in (61) yields

M−1
t ≤ 4

λ2
max

⎧⎨
⎩1,

σ 2
t ‖J−1V (Zz)‖

α
γ

γ ;[0,t]
cX λ

α
γ

⎫⎬
⎭ . (62)

It is thus readily checked that M−1
t admits moments of any order uniformly in t and

y, thanks to the fact that ‖J−1V (Zz)‖γ ;[0,t] admits moments of any order. Indeed,
similar arguments as used in [11] to control the p-variation norm of J−1 can be used
to show that the γ -Hölder norm of J−1 admits moments of any order. This concludes
the proof for m = 0, namely

‖γ−1t ‖p ≤ c σ−2t . (63)
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Step 2: case m ≥ 1. Now that we have established (63), the case of higher-order
derivatives follows from more standard considerations. Indeed, applying elementary
rules for the derivative of the inverse to γ−1t , we get

D(γ−1t )i j = −
d∑

k,l=1
(γ−1t )ik(γ−1t )l jDγ kl

t . (64)

Therefore, it is easily seen that, using the definition of γt ,

‖D(γ−1t )i j‖H̃ ≤ cd
(
‖DZt‖H̃ + ‖D2Zt‖H̃⊗2

)2 ‖γ−1t ‖2.

Together with (50) and (63), this implies

‖D(γ−1t )i j‖H̃ ≤
cd κ2

t

σ 4
t
= cd ηt

σ 2
t

,

which yields the claim (55) for m = 1. Similarly, by using equation (64) repeatedly,
we obtain the general case of relation (55). ��

We can now conclude this section by giving a short proof of the main theorem.

Proof of Theorem 3.4 We plug the estimates (42), (50) and (55) into (41). This easily
yields the claim (38). ��
Remark 3.10 Concerning the dependence of the constants c1, c2 in (38) on T we note
the following: (i) An analysis of the proof of Proposition 3.7 yields that c2 can be
chosen independently of the time horizon T .
(ii) The dependence of c1 on T is less explicit, since it relies on the constant cX
appearing in Hypothesis 2.20, which in turn is intimately linked to the variance of the
driving process X (cf., e.g., Example 5.4). In the case of fractional Brownian motion,
Hardy–Littlewood lemma (see, e.g., [28, Equation (5.20)]) reveals that cX is bounded
from below uniformly in T . Assuming that this is the case, an analysis of the derivation

of (50) shows that c2 depends on T via Mκ
2/(1+1/ρ)
T for some M > 1.

4 Varadhan Estimate

Fix a small parameter ε ∈ (0, 1], and consider the solution Z ε
t to the stochastic

differential equation

Z ε
t = z +

∫ t

0
V0(Z

ε
s )ds + ε

d∑
i=1

∫ t

0
Vi (Z

ε
s )dX

i
s, ∀t ∈ [0, T ], (65)

where, as before, the vector fields V0, V1, . . . , Vd are C∞-bounded vector fields on
R
n . In this section we will work under the same assumptions as in Sect. 3 which are

summarized as follows.
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Hypothesis 4.1 Let X beanRd -valued continuous, centeredGaussianprocess starting
at zero with i.i.d. components and covariance function R satisfying Hypothesis 2.9.
We further assume that X satisfies Hypotheses 2.17 and 2.20 and that the vector fields
V1, . . . , Vd satisfy Hypothesis 3.1. Without loss of generality we choose T = 1.

WithHypothesis 4.1 at hand,wewill describe the asymptotic behavior of the density
of Z ε

t as ε → 0. We start by recalling the large deviation setting for rough paths in
Sect. 4.1 and will complete the estimates in Sect. 4.2.

4.1 Large Deviations Setting

Let us first recall that under Hypothesis 4.1, X can be lifted to a p-rough path with
p > 2ρ. According to the general rough path theory (see, e.g., inequality (10.15) and
Theorem 15.33 in [17]), for any positive λ and δ < 2/p we have

E

[
exp

(
λ sup
t∈[0,1],ε∈(0,1]

|Z ε
t |δ

)]
<∞. (66)

In addition, the Malliavin derivative and Malliavin matrix of Z ε
1 can be controlled

using the same arguments as in the previous section. More precisely, replacing the
Vi ’s with εVi ’s in the proof of Propositions 3.8 and 3.9, we have

sup
ε∈(0,1]

‖Z ε
1‖k,r <∞, for each k ≥ 1 and r ≥ 1; (67)

‖γ−1Zε
1
‖r ≤ crε

−2, for any r ≥ 1, (68)

where γZε
1
is the Malliavin matrix of Z ε

1.
Denote by Jε the Jacobian of Z ε. Similar to (33), the process Jε is the unique

solution to the linear equation

Jε
t = Idn +

∫ t

0
DV0(Z

ε
s )J

ε
sds + ε

d∑
j=1

∫ t

0
DVj (Z

ε
s ) J

ε
s dX

j
s .

Its moments are uniformly bounded (in ε ∈ (0, 1]) in the next proposition.
Proposition 4.2 For any η ≥ 1, there exists a finite constant cη such that the Jacobian
Jε satisfies

sup
ε∈(0,1]

E

[
‖Jε‖ηp−var;[0,1]

]
= cη. (69)

Proof When ε = 1, the integrability of Jε is proved in [11] and has been recalled in
Proposition 2.26 above. It can be checked that the estimates in [11] only depend on
the supremum norm of the vector fields and their derivatives. In the present case, the
vector fields εVi in Eq. (65) are uniformly bounded in ε ∈ (0, 1] together with their
derivatives. Hence, the uniform integrability of Jε (in ε) follows. ��
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In order to state a large deviation type result, let us introduce the so-called skeleton
of Eq. (65), that is, we introduce the map � : H → C([0, 1],Rn) associating with
each h ∈ H the unique solution of the ordinary differential equation

�t (h) = z +
∫ t

0
V0(�s(h))ds +

d∑
i=1

∫ t

0
Vi (�s(h))dhis . (70)

By the embedding Theorem 2.14, for each h ∈ H, the above equation can be under-
stood in Young sense. In particular, it follows that there is a unique solution �·(h).
Moreover, �t is a differentiable mapping from H to the space C([0, 1],Rn). We let
γ�1(h) be the deterministic Malliavin matrix of �1(h), that is,

γ
i j
�1(h) = 〈D�i

1(h),D�
j
1(h)〉H̃. (71)

Along the same lines, we introduce the Jacobian J (h) of equation (70), that is the
unique solution of the following equation

Jt (h) = Idn +
∑
i

∫ t

0
DVi (�s(h))Js(h)dhis +

∫ t

0
DV0(�s(h))Js(h)ds. (72)

Remark 4.3 For a geometric p-rough path x, it is sometimes convenient to write �(x)
obtained by solving (70) with h replaced with x. By the general theory of rough path,
� is a continuous function of x in the p-variation topology. We will use this notation
without further mention when there is no confusion.

Remark 4.4 Let X be an R
d -valued Gaussian process satisfying Hypothesis 4.1, and

let h ∈ H be an element of the Cameron–Martin space of X . We use the notation
X+ h to denote lift of X + h to a p-rough path. This construction is made possible by
the embedding in Theorem 2.14 and Young’s pairing. We direct the readers to Section
9.4 of [17] for more details.

The following lemma will be needed later.

Lemma 4.5 For each h ∈ H, we have

lim
ε↓0

1

ε
(�t (εX+ h)−�t (h)) = Gt (h), (73)

in the topology of D∞, and Gt (h) satisfies an SDE of the form

Gt (h) =
∫ t

0
DV0(�s(h))Gs(h)ds +

d∑
i=1

∫ t

0
DVi (�s(h))Gs(h)dhis

+
d∑

i=1

∫ t

0
Vi (�s(h))dXi

s . (74)
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Proof Note that �t (εX+ h) satisfies the following rough SDE

�t (εX+ h) = z +
∫ t

0
V0(�s(εX+ h))ds +

d∑
i=1

∫ t

0
Vi (�s(εX+ h))d(εXi + his).

(75)

By standard path-wise estimates, �t (εX+ h) is smooth in ε and its derivatives satisfy
a rough SDE obtain by formally differentiating (75) on both sides (see, e.g., [17,
Proposition 11.4]). In particular, at ε = 0, we have

lim
ε↓0

1

ε
(�t (εX+ h)−�t (h)) = Gt (h),

where Gt (h) satisfies Eq. (74). The fact that the above convergence takes place inD∞
follows the same lines of the proof of Proposition 2.14 in [7]. ��

Comparing Eqs. (74) and (72), an elementary variational principle argument reveals
that

Gt (h) = Jt (h)

∫ t

0
(Js(h))−1Vi (�s(h))dXi

s, (76)

which implies that Gt (h) is a centered Gaussian random variable. Moreover, starting
from Eq. (76), some easy computations show that the Malliavin derivative of Gt (h)

and the deterministic Malliavin derivative of � at h coincide. Hence, the covariance
matrix of G1(h) is the deterministic Malliavin matrix γ�1(h).

As a last preliminary step, we recall the large deviation principle for stochastic
differential equations driven by Gaussian rough path, which is the basis for Varadhan
type estimates and is standard in rough paths theory (see [17, Section 19.4]).

Theorem 4.6 Let � be as in (70), Z ε
1 be the solution to Eq. (65) and set

I (y) := inf
�1(h)=y

1

2
‖h‖2H ∀y ∈ R

n .

Then, Z ε
1 satisfies a large deviation principle with rate function I (y).

Proof First, it is known (see, e.g., [17, Theorem 15.55]) that εX, as a p-rough path,
satisfies a large deviation principle in the p-variation topology with good rate function
given by

Rt(h) =
{ 1

2‖h‖2H if h ∈ H
+∞ otherwise.

Moreover, by Remark 4.3, �1(x) is continuous function of x in p-variation topology.
Since Z ε

1 = �1(εX), the result follows from the contraction principle. ��
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4.2 Asymptotic Behavior of the Density

Recall that the skeleton � is defined by (70). Our density estimates will involve a
“distance” which depends on � as follows:

d2(y) = I (y) = inf
�1(h)=y

1

2
‖h‖2H, and d2R(y) = inf

�1(h)=y,det γ�1(h)>0

1

2
‖h‖2H.

(77)

When (65) has no drift term and is driven by a standard Brownian motion, it is shown
in [24, Theorem 1.1] that under strong Hörmander conditions the above two distances
are the same. Interestingly enough, the two distances d and dR always coincide under
the ellipticity assumptions (even with the presence of a drift).

Lemma 4.7 Assume that Hypothesis 4.1 is satisfied. Then, we have d2(y) = d2R(y)
for every y ∈ R

n.

Proof The claimed identity is mainly due to the uniform ellipticity of the vector fields
V ′i s. Indeed, pick any h ∈ H such that �1(h) = y. Recall that J (h) is the Jacobian of
the deterministic Eq. (70) and γ�1(h) is the deterministic Malliavin matrix of � at h.
Similarly to (35) we have

Dk
s�1(h) = J1(h)(Js(h))−1Vk(�s(h)).

Therefore, owing to the definition (71) of the Malliavin matrix, we get the following
identity for all x ∈ R

n

∑
i j

xiγ
i j
�1(h)x j =

∑
k

∥∥∥∥
∑
i

xi (Dk�1(h))i
∥∥∥∥
2

H̃

=
∫ t

0

∫ t

0

〈
xT Ju1(h)V (�u(h)) , xT Jv1(h)V (�v(h)

〉
dR(u, v).

Let us now define a function f by

fu = xT Ju1(h)V (�u(h)).

Under the same assumptions as in Proposition 2.22, which are satisfied due to Hypoth-
esis 4.1, we have the interpolation inequality (see relation (30))

∫ 1

0

∫ 1

0
〈 fu, fv〉dR(u, v) ≥ 1

4
σ 2
1 ‖ f ‖2∞;[0,1]min

⎧⎨
⎩1,

2
( cX

2

) 2γ+α
4γ

σ1

‖ f ‖
α
2γ
∞;[0,1]

(1+ ‖ f ‖
α
2γ
γ ;[0,1])

⎫⎬
⎭

2

.

Furthermore, the uniform ellipticity condition implies that for any x �= 0,

‖ f ‖∞;[0,1] > 0.
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Therefore, the deterministic Malliavin matrix γ�1(h) is non-degenerate at h. In con-
clusion, for any h ∈ H such that �1(h) = y we have det γ�1(h) > 0 and thus
dR(y) ≡ d(y). ��

Now we can state the main result of this section, giving the logarithmic asymptotic
behavior of the density as ε → 0.

Theorem 4.8 Let Z ε be the process defined by (65), and denote by pε(y) the density
of Z ε

1 . Due to Hypothesis 4.1, we have

lim
ε↓0 ε2 log pε(y) = −d2(y),

where d is the function defined by (77).

Proof With the previous estimates in hand, the proof is similar to the oneof [7, Theorem
3.2]. For the reader’s convenience, we give some details below. Let us divide the proof
in two steps.
Step 1: Lower bound. We shall prove that

lim inf
ε↓0 ε2 log pε(y) ≥ −d2R(y). (78)

To this aim, fix y ∈ R
n .We only need to show (78) for d2R(y) <∞, since the statement

is trivial whenever d2R(y) = ∞. Next fix an arbitrary η > 0 and let h ∈ H be such
that �1(h) = y and ‖h‖2H ≤ d2R(y) + η. Let f ∈ C∞0 (Rn). By Cameron–Martin’s
theorem for the Gaussian process X , it is readily checked that

E
[
f (Z ε

1)
] = e

−‖h‖
2
H

2ε2 E

[
f (�1(εX + h))e−

X(h)
ε

]
,

where X(h) denotes theWiener integral of h with respect to X introduced in Sect. 2.2.
We now proceed by means of a truncation argument: consider a function χ ∈ C∞(R),
satisfying 0 ≤ χ ≤ 1, such thatχ(t) = 0 if t /∈ [−2η, 2η], andχ(t) = 1 if t ∈ [−η, η].
Then, if f ≥ 0, we have

E
[
f (Z ε

1)
] ≥ e

−‖h‖
2
H+4η
2ε2 E [χ(εX(h)) f (�1(εX + h))] .

Hence, bymeans of an approximation argument applying the above estimate to f = δy ,
we obtain

ε2 log pε(y) ≥ −
(
1

2
‖h‖2H + 2η

)
+ ε2 logE

[
χ(εX(h))δy(�1(εX + h))

]
. (79)

Indeed, for any non-degenerate random vector F , the distribution on Wiener’s space
δy(F) is an element in D−∞, the dual of D∞. The expression E[δy(F)G] can thus be
interpreted as the coupling 〈δy(F),G〉 for any G ∈ D

∞ (see [28, Section 2.1.5]).

123



Journal of Theoretical Probability (2020) 33:611–648 641

Let us now bound the right-hand side of Eq. (79). Owing to the fact that�1(h) = y
and thanks to the scaling properties of the Dirac distribution, it is easily seen that

E
(
χ(εX(h))δy(�1(εX + h))

) = ε−nE
(

χ(εX(h))δ0

(
�1(εX + h)−�1(h)

ε

))
.

In addition, according to the definition (73), we have

lim
ε↓0

�1(εX + h)−�1(h)

ε
= G1(h),

and recall that we have established, thanks to (76), that G1(h) is an n-dimensional
random vector in the first Wiener chaos with variance γ�1(h) > 0. Hence, G1(h)

is non-degenerate and integrating by parts combined with standard arguments from
Malliavin calculus yields

lim
ε↓0 E

[
χ(εX(h))δ0

(
�1(εX + h)−�1(h)

ε

)]
= E [δ0(G1(h))] . (80)

In particular, we get

lim
ε↓0 ε2 logE

(
χ(εX(h))δy(�1(εX + h))

) = 0.

Plugging this information in (79) and letting ε ↓ 0, we end up with

lim inf
ε↓0 ε2 log pε(y) ≥ −

(
1

2
‖h‖2H + 2η

)
≥ −

(
d2R(y)+ 3η

)
.

Since η > 0 is arbitrary this yields (78). At this point we can notice that we have chosen
h such that ‖h‖2H ≤ d2R(y)+η in order to get a non-degenerate random variableG1(h)

in (80).

Step 2: Upper bound. Next, we show that

lim sup
ε↓0

ε2 log pε(y) ≤ −d2(y). (81)

Toward this aim, fix a point y ∈ R
n and consider a function χ ∈ C∞0 (Rn), 0 ≤ χ ≤ 1

such that χ is equal to one in a neighborhood of y. The density of Z ε
1 at point y is

given by

pε(y) = E
[
χ(Z ε

1)δy(Z
ε
1)
]
.

Next integrate the above expression by parts in the sense of Malliavin calculus thanks
to Proposition 3.5. This yields

E[χ(Z ε
1)δy(Z

ε
1)] =E

[
1{Zε

1>y}H(1,2,...,n)(Z
ε
1, χ(Z ε

1))
]

≤E [|H(1,2,...,n)(Z
ε
1, χ(Z ε

1))|
]
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=E[|H(1,2,...,n)(Z
ε
1, χ(Z ε

1))|1{Zε
1∈suppχ}

]

≤P(Z ε
1 ∈ suppχ)

1
q ‖H(1,..,n)(Z

ε
1, χ(Z ε

1))‖p,

where 1
p + 1

q = 1. Furthermore, relation (40) and an application of Hölder’s inequality
(see, e.g., [28, Proposition 1.5.6]) give

‖H(1,...,n)(Z
ε
1, χ(Z ε

1))‖p ≤ cp,q‖γ−1Zε
1
‖mβ ‖DZ ε

1‖rn,γ ‖χ(Z ε
1)‖nn,q ,

for some constants β, γ > 0 and integers m, r . Thus, invoking the estimates (67) and
(68), we obtain

lim
ε↓0 ε2 log ‖H(1,...,n)(Z

ε
1, χ(Z ε

1))‖p = 0.

Finally, the large deviation principle for Z ε
1 recalled in Theorem 4.6 ensures that for

small ε we have

P(Z ε
1 ∈ suppχ)

1
q ≤ e

− 1
qε2

(inf z∈suppχ d2(z)+o(1))
.

Since q can be chosen arbitrarily close to 1 and supp(χ) can be taken arbitrarily close
to y, the proof of (81) is now easily concluded thanks to the lower semi-continuity of
d.

Combining Lemma 4.7, (78) and (81), the proof of Theorem 4.8 is thus completed.
��

Remark 4.9 It is clear from the proof of Theorem 4.8 that the key to establish a Varad-
han estimate is to have some quantitative control of the Malliavin derivative and
Malliavin matrix of Z ε. More precisely,

(i) supε∈(0,1] ‖Z ε
1‖k,r <∞, for each k ≥ 1 and r ≥ 1; and

(ii) for any r ≥ 1, ‖γ−1Zε
1
‖r ≤ crε−μ, for some μ > 0.

While (i) is generally true for any C∞-bounded vector fields, the estimate in (ii) needs
some non-degeneracy condition on V . In this paper, we have restricted our analysis
to the elliptic case of Hypothesis 3.1 for the sake of simplicity. However, one way to
extend our results to a Hörmander type situation would be the following: along the
same lines as in [10], carefully track the dependence on V in order to show that the
bound in (ii) for the Malliavin matrix still holds. This step should be enough to prove
that the Varadhan estimate is valid. However, it is worth pointing out that we do not
in general have

d(y) = dR(y)

when the vector fields are not elliptic. Hence, we expect the corresponding Varadhan
estimate under Hörmander’s condition to be read as:

−d2R(y) ≤ lim inf
ε↓0 ε2 log pε(y) ≤ lim sup

ε↓0
ε2 log pε(y) ≤ −d2(y).
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Also notice that the hypoelliptic situation has been handled when X is a fractional
Brownian motion in [4].

5 Applications

Ourmain results, Theorem3.4 andTheorem4.8, rely onHypotheses 2.9, 2.17 and 2.20.
Let us also recall that the density bound (38) involves a coefficient η defined by (37).
In this section we provide explicit examples of Gaussian processes satisfying the
aforementioned assumptions and give estimates for η as a function of t .

Remark 5.1 The interpolation inequalities in Proposition 2.18 and Proposition 2.22
rely on an integral representation for the Cameron–Martin norm related to X (see
relation (14)), which is satisfied for Gaussian processes starting at zero. We note that
this is not a restriction in applications, since the RDE (2) driven by X is the same as
the one driven by X̃ = {X̃t = Xt − X0, t ≥ 0}. Moreover, one easily checks that if X
satisfies Hypotheses 2.9, 2.17 and 2.20, then so does X̃ .

Remark 5.2 Suppose that Xt is a continuous, centered real-valued Gaussian processes
with covariance R. Then,

(i) If ∂2abR ≤ 0 in the sense of distributions, then Hypothesis 2.17, (i) is satisfied.
(ii) If σ 2

s,t = F(|t−s|) for some continuous, non-decreasing function F , then Hypoth-
esis 2.17, (ii) is satisfied.

(iii) If X starts at zero, satisfies Hypothesis 2.17, (i) and ∂a R(a, b) ≥ 0 for a < b in
the sense of distributions, then Hypothesis 2.17, (ii) is satisfied.

Proof We first note that (i) is proved in [12, Lemma 2.20] and (iii) follows from [10,
Section 4.2.1]. For (ii): We have

2Rst
uv = σ 2

s,v − σ 2
s,u + σ 2

u,t − σ 2
v,t

= F(|v − s|)− F(|u − s|)+ F(|t − u|)− F(|t − v|).

Since F is non-decreasing this implies, for s ≤ u ≤ v ≤ t , 2Rst
uv ≥ 0. ��

With this remark in mind, we are now ready to provide a series of examples to
which the results of Sects. 3 and 4 apply.

Example 5.3 Let BH be a fractional Brownian motion with Hurst parameter H ∈
(0, 1). As mentioned in Remark 3.3, in this case ηt does not depend on t due to the
self-similarity of BH . It is also shown in [10] thatHypotheses 2.17 and2.20 are satisfied
whenever H ∈ ( 14 ,

1
2 ). In [12, Example 2.8] it is proved that BH has Hölder-controlled

mixed (1, ρ)-variation and thus Hypothesis 2.9 is satisfied.

Example 5.4 Let X be a d-dimensional centered Gaussian process with i.i.d. compo-
nents, such that the coefficient σ 2

s,t defined by (9) satisfies the following relation

σ 2
s,t = F

(|t − s|) ≥ 0,
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for some nonnegative, concave function F satisfying F(0) = 0 and

inf
s∈[0,T ] F

′−(s) > 0, (82)

where F ′− denoted the left-hand derivative of the concave function F .
We note that if F is not identically equal to zero, then F(0) = 0, F ≥ 0 and

concavity imply that (82) is satisfied for some T > 0. In addition, we assume that

C1t
1
ρ ≤ F(t) ≤ C2t

1
ρ ∀t ∈ [0, T ], (83)

for some ρ ∈ [1, 2), C1,C2 > 0. Since 2R(s, t) = −F(|t − s|)+ F(t)+ F(s), con-
cavity of F and the fact that F is increasing imply Hypothesis 2.17, due to Remark 5.2.
It is readily checked from [12, Example 2.9] that under assumption (83) we have

V1,ρ
(
R; [s, t]2) ≤ C |t − s|1/ρ

for some constant C > 0 and thus X has Hölder-controlled mixed (1, ρ)-variation.
Recalling that σ 2

t := σ 2
0,t , invoking (83) again we obtain

ηt = V1,ρ
(
R; [0, t]2)
σ 2
t

≤ C .

In particular, η is bounded on [0, T ]. Finally, from [12, Theorem 6.1] we have that
Hypothesis 2.20 is satisfied with α = 1.

Example 5.5 Let X = BH1 + BH2 be a sum of two independent fBm with Hurst
parameters H1, H2 ≤ 1/2. Then,

σ 2
s,t = |t − s|2H1 + |t − s|2H2 =: F(|t − s|)

and the previous example applies.

Example 5.6 Consider a bifractional Brownian motion (cf., e.g., [20,23,31]), that is, a
centered Gaussian process BH ,K on [0, T ] with covariance function given by1

R(s, t) = 1

2K
((
s2H + t2H

)K − |t − s|2HK ),

for some H ∈ (0, 1) and K ∈ (0, 1] such that HK ≤ 1/2. Since BH ,K is a self-similar
process with index HK , the coefficient η does not depend on t . Hypothesis 2.17 and
the fact that R admits a Hölder-controlled mixed (1, ρ)-variation, i.e., Hypothesis 5.2,

1 As pointed out, for example, in [23] this process does not fit in the Volterra framework.

123



Journal of Theoretical Probability (2020) 33:611–648 645

have been verified in [12, Example 2.12]. In order to check Hypothesis 2.20 we recall
from [12, equation (6.2)], using Hypothesis 2.17, that

2Var(Xs,t |F0,s ∨ Ft,T ) ≥ 2R

(
0 T
s t

)
.

Hence,

2Var(Xs,t |F0,s ∨ Ft,T ) ≥ 2E(XT − X0)(Xt − Xs) = 2(R(T , t)− R(T , s))

= 21−K ((t2H + T 2H )K − |t − T |2HK )

− ((s2H + T 2H )K − |s − T |2HK )
)

≥ 21−K (|s − T |2HK − |t − T |2HK )

≥ C(T )|t − s|,
which implies Hypothesis 2.20.

Example 5.7 Consider a random Fourier series2

�(t) =
∞∑
k=1

αkY
k sin(kt)+ α−kY−k cos(kt), t ∈ [0, 2π ],

with zero-mean, independent Gaussians {Y k; k ∈ Z} with unit variance. Then, the
covariance R can be computed in an elementary way

R(s, t) =
∞∑
k=1

α2
k sin(ks) sin(kt)+ α2−k cos(ks) cos(kt)

= 1

2

∞∑
k=1

(α2
k + α2−k) cos(k(t − s))+ (α2

k − α2−k) cos(k(t + s)). (84)

Let us consider the special case where � is a stationary random field. This implies
α2
k = α2−k and thus

R(s, t) = K (|t − s|), and σ 2
s,t = 2(K (0)− K (|t − s|)) =: F(|t − s|),

where the function K is defined by

K (t) :=
∞∑
k=1

α2
k cos(kt).

Wenowwish to prove that this situation can be seen as a particular case of Example 5.4.
For simplicity we concentrate on the model case

2 We may ignore the (constant, random) zero-mode in the series since we are only interested in properties
of the increments of the process.
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α2
k = Ck−(1+ 1

ρ
)
. (85)

for some ρ ∈ [1, 2), C > 0. For more general conditions on the coefficients we refer
to [12, Section 3]. By [12, Section 3], K is convex on [0, 2π ], decreasing on [0, π ]
and 1

ρ
-Hölder continuous. In order to check the conditions of Example 5.4, it remains

to verify the lower bound in (83). We observe

F(t) = K (0)− K (t) =
∞∑
k=1

α2
k (1− cos(kt)) = 2

∞∑
k=1

α2
k sin

2
(
kt

2

)

≥ 2

� 1t �∑
k=� 1

2t �
α2
k sin

2
(
kt

2

)

�
� 1t �∑

k=� 1
2t �

α2
k � α2

� 1t �
(�1

t
� − � 1

2t
�) � α2

� 1t �
�1
t
� � t

1
ρ ,

where we write a � b whenever a ≥ c b for a universal constant c and where we have
used inequality (85) for the last step. Since F is not identically equal to zero, it follows
that there is a time T ∈ (0, 2π ], such that F is concave, infs∈[0,T ] F ′−(s) > 0, F is 1

ρ
-

Hölder continuous and (83) is satisfied. Hence, by Example 5.4 Hypotheses 2.9, 2.17
and 2.20 are satisfied and η is bounded on [0, T ].
Example 5.8 Let X be a d-dimensional continuous, centered Gaussian process with
i.i.d. components. In the following Xt denotes one of its components. Assume that Xt

is a stationary, zero-mean process with covariance

R(s, t) = K
(|t − s|)

for some continuous and positive definite function K . By Bochner’s theorem, there is
a finite positive symmetric measure μ on R such that

K (t) =
∫

cos(tξ)μ(dξ)

and thus

σ 2(t) := σ 2
0,t = 2

(
K (0)− K (t)

) = 4
∫

sin2(tξ/2)μ(dξ).

The case of discrete μ corresponds to Example 5.7. Another example is given by the
fractional Ornstein–Uhlenbeck process,

Xt =
∫ t

−∞
e−λ(t−u) dBH

u , t ∈ R.
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In this case, it is known that X has a spectral density μ(dξ) such that

dμ

dξ
= cH

|ξ |1−2H
λ2 + ξ2

≡ K̂ (ξ). (86)

By Theorem 7.3.1 in [27] we have that if K̂ is regularly varying at ∞, then the

coefficient σt defined by (9) satisfies σ 2
t ∼ CK̂ (1/t)

t as t → 0 which in the case of (86)
implies that there exists a T > 0 such that

C1t
2H ≤ σ 2(t) ≤ C2t

2H for all t ∈ [0, T ].

Moreover, it can be seen that there is a T > 0 such that K is convex on the interval
[0, T ] (cf. [12, Example 5.3]) and supt∈[0,T ] K ′(t) < 0. Hence, Hypothesis 2.17 and
by [12, equation (6.2)] Hypothesis 2.20 are satisfied. By [12] we conclude

V1,ρ(R; [s, t]2) = O(|t − s|2H ) for all [s, t] ⊆ [0, T ].

Hence, Hypothesis 2.9 is satisfied and

ηt ≤ C for all t ∈ [0, T ].
Acknowledgements We would like to thank the anonymous referee for his/her very careful reading of the
first version of this paper and for many valuable suggestions.
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