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Abstract This note is devoted to an analysis of the so-called peeling algorithm in
wavelet denoising. Assuming that the wavelet coefficients of the useful signal are
modeled by generalized Gaussian random variables and its noisy part by independent
Gaussian variables, we compute a critical thresholding constant for the algorithm,
which depends on the shape parameter of the generalized Gaussian distribution. We
also quantify the optimal number of steps which have to be performed, and analyze
the convergence of the algorithm. Several implementations are tested against classical
wavelet denoising procedures on benchmark and simulated biological signals.
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1 Introduction

Among the wide range of applications of wavelet theory, the processing of noisy
signals is certainly one of the most important one. In general, denoising is performed
by thresholding and/or shrinkage algorithms, as discussed and analysed for example
in Donoho et al. (1995), in the application oriented presentation Antoniadis et al.
(2001) or by the sharp uniform central limit theorems in Gin and Nickl (2009). This
fundamental algorithm can be summarized in the following way: recall that the wavelet
decomposition of a function z ∈ L2(R) is usually written as

z(t) =
2 j0 −1∑

k=0

α j0kφ j0k(t)+
∞∑

j= j0

2 j −1∑

k=0

β jkψ jk(t), (1)

where

α j0k = 〈
φ j0k, z

〉
L2(R)

, and β jk = 〈
ψ jk, z

〉
L2(R)

.

The functions ψ and φ are respectively called mother and father wavelets (or, alterna-
tively, wavelet and scaling functions respectively), and enjoy some suitable scaling and
algebraic properties (see e.g. Daubechies 1992; Mallat 1997 for a complete account
on wavelet decompositions). In this context, the thresholding algorithm assumes that,
if z can be decomposed into z = x + w, where x is the useful signal and w the noisy
part, then the wavelet coefficients corresponding to w will typically be very small.
A reasonable estimation for the signal x is thus:

x̂(t) =
2 j0 −1∑

k=0

α j0k 1{|α j0k |≥τ } φ j0k(t)+
J∑

j= j0

2 j −1∑

k=0

β jk 1{|β jk |≥τ } ψ jk(t), (2)

where τ is a suitable threshold (which may also depend on the resolution j and, in
practice, except for very sparse signals, is often zero for the coefficients α j0 of the
scaling function) and where J corresponds to the maximal resolution one is allowed
to consider. It is then proved in the aforementioned references (Antoniadis et al. 2001;
Donoho et al. 1995) that this kind of estimator satisfies some nice properties concerning
the asymptotic behavior of the approximation error, in terms of the total number of
wavelet coefficients (which is denoted by N in the sequel).

To properly fix the notations employed in this paper, note that continuous time
functions z, x and w can be approximated, after sampling, by vectors containing
their discrete time versions. Moreover, as the wavelet decomposition is linear, the
model z = x + w equally holds for the wavelet coefficients of the aforementioned
functions. Therefore, in the sequel, we will denote by z, x and w respectively the
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Convergence and performance 511

wavelet coefficients of the measured signal, of the underlying noise-free signal and of
the noise.

The literature on wavelet thresholding methods is very rich (see Antoniadis et al.
2001 for a review), but most of the algorithms consist in two steps: (i) compute τ
starting from some hypothesis on the statistical properties of the wavelet coefficients
and (ii) reconstruct the denoised signal according to (2).

The critical issue is thus the value of the threshold(s) τ : too low it is inefficient,
too high it distorts the information from x . In order to improve the performances
of wavelet-based denoising algorithms by adapting them to the processed signals,
an iterative method called peeling algorithm has been introduced and shown to be
particularly useful for biomedical applications in Coifman and Wickerhauser (1995)
and Hadjileontiadis and Panas (1997).

The main algorithmic difference between peeling algorithms and classical methods
consists in the threshold computing method: iterative for the former, one-step for the
latter. Furthermore, peeling algorithms do not assume explicitly an underlying model
z = x + w (signal + noise, each one with its different statistical properties), but it
focuses instead on the method used to estimate the threshold between large and small
magnitude coefficients. Nevertheless, the two approaches are equivalent and the goal
is strictly the same: separating large significant wavelet coefficients from small ones,
attributed to noise.

With this equivalence in mind, the algorithm introduced in Coifman and Wicker-
hauser (1995) and Hadjileontiadis and Panas (1997) intends then to separate x from
w iteratively. Indeed, the kth step of the procedure produces an estimated signal x̂k ,
as well as an estimated noise ŵk , initialized for k = 0 as ŵ0 = z. Then the (k + 1)th
step is as follows:

(1) Compute σ̂ 2
k = ‖ŵk‖2

N , where we recall that N denotes the total number of wavelet
coefficients involved in the analysis.

(2) Set a thresholding level Tk+1 as Tk+1 = h(̂σk), where h is usually linear, which
means that Tk+1 = F σ̂k for a certain coefficient F .

(3) Compute �x̂k+1 as:

�x̂k+1(q) = ŵk(q) 1{|ŵk (q)|≥Tk+1},

for all the coefficients ŵk(q) of the wavelet decomposition. The vectors
x̂k+1, ŵk+1 are then defined as x̂k+1 = x̂k +�x̂k+1, and ŵk+1 = ŵk −�x̂k+1.

(4) Loop this procedure until a stop criterion of the form ‖ŵk‖2 − ‖ŵk+1‖2 ≤ ε is
reached, for a certain positive constant ε. Notice that one can choose ε = 0.

This iterative procedure tends to retrieve a higher quantity of (approximate) signal x
from the noisy input z, correcting some of the failures of the original thresholding
algorithm in some special situations.

On the basis of these promising experimental results, the peeling algorithm has been
further investigated in Ranta et al. (2003, 2005), and it has been first observed that the
peeling problem could be handled through a fixed point algorithm. This possibility
stems basically from the fact that the sequence {Tk; k ≥ 0} is decreasing (as ‖ŵk‖2 ≥
‖ŵk+1‖2), which means that the previous algorithm can be reduced to the following:
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(1) Set T0 = +∞ and Tk+1 = fN (Tk), where fN is of the form:

fN (t) = F

[∑
q≤N z2(q) 1{|z(q)|<t}

N

]1/2

, (3)

with F a user chosen parameter that modifies the decreasing sequence {Tk ; k ≥ 0}
and its final value at convergence T f ∈ [0,+∞).

(2) Stop the loop when Tk+1 = T f , and then set

x̂(q) = z(q) 1{|z(q)|≥T f }. (4)

The main issue is to ensure that the random threshold T f is positive almost surely.
Under some hypothesis on the signal z, it is shown in Ranta et al. (2003) for F large
enough. Moreover, a further analysis on the choice of the coefficient F is performed
in Ranta et al. (2005).

However, in spite of the efforts made in the aforementioned references Ranta et al.
(2003, 2005), a probabilistic analysis of the algorithm is still missing. The current
article proposes to make a step in this direction, and we proceed now to describe the
results we have obtained.

First of all, our measured signal z is of course characterized by the family of its
wavelet coefficients, which will be denoted from now on by {z(q); q ≤ N }. As
said previously, most of the literature considers z = x + w a sum between an ideal
signal and the noise, generally presumed Gaussian. It is also quite usual to model x
as uncorrelated generalized Gaussian variables (Mallat 1989; Moulin and Liu 1999;
Do and Vetterli 2002; Buccigrossi and Simoncelli 1999; Pižurica and Philips 2006).
This hypothesis was empirically verified on several real images in Simoncelli and
Buccigrossi (1997) and Buccigrossi and Simoncelli (1999). The wavelet coefficients
of the noisy part are assumed independent Gaussian. In the current article, we assume
the following:

Hypothesis 1.1 Our signal z = x + w can be decomposed as follows:

(1) The wavelet coefficients {x(q); q ≤ N } of the useful signal x form an i.i.d family
of generalized Gaussian variables, whose marginal density (pσ,u(t))t∈R is given
by

pσ,u(t) = α

σ
e− |βt |u

σu , with β =
(

(3/u)


(1/u)

)1/2

, α = βu

2
(1/u)
, (5)

where 
 stands for the usual Gamma function 
(ξ) = ∫∞
0 e−t tξ−1dt. Notice that

the coefficient σ > 0 above is the standard deviation of each random variable
x(q), and that u > 0 represents the shape parameter of the probability law (u = 2
for the Gaussian, u = 1 for the Laplace pdf).

(2) The wavelet coefficients {w(q), q ≤ N } of the noisy part of the signal form an
i.i.d. family of centered Gaussian variables, with standard deviation σw. Their
common density is noted pσw .
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(3) The coefficients {x(q), q ≤ N } and {w(q), q ≤ N } are independent.

The two main results which will be presented in this paper are the following:

(1) As shown in Ranta et al. (2003), the sequence of thresholds {Tk; k ≥ 0} involved
in the peeling algorithm converges almost surely. However, it is easily checked that
it can converge either to a strictly positive quantity T f , either to 0. This latter limit
is not suitable for our purposes, since it means that no noise will be extracted
from our signal. One of the main questions raised by the peeling algorithm is
thus to find an appropriate constant F in (3) such that (i) The algorithm yields a
convergence to a non trivial threshold T f > 0. (ii) F is small enough, so that a
sufficient part of the original signal is retrieved.
The previous attempts in this direction were simply (see Hadjileontiadis and Panas
1997) to take F = 3σ with experimental arguments; after the analysis performed
in Ranta et al. (2005), this quantity was reduced to F = Fm , a quantity which is
defined by

Fm =
√

3
(1/u)

u
(ue)1/u, (6)

where u is the shape parameter of x . However, the latter bound has been obtained
thanks to some rough estimates, and we have thus decided here to go one step
further into this direction. Indeed, our first task will be to determine precisely,
on a mathematical ground, a constant Fc = Fc(u, σ ) such that: if F > Fc,
the algorithm yields a convergence, with high probability, to a strictly positive
constant T f = T f (ω) (see Theorem 3.1). In particular, we will see that our
constant Fc is always lower than Fm . Whenever F < Fc, we also show that Tk

converges to 0 with high probability (see Proposition 3.4).
(2) In the regime F > Fc, we determine that the optimal number of steps for the

peeling algorithm is of order log(N ), where we recall that N is the total number
of wavelet coefficients involved in the analysis. After this optimal number of
steps, Theorem 3.1 quantifies also sharply the oscillations of T f with respect to a
typical non-random value.

It is important to show that our theoretical results can really be applied to real
data. We have thus decided first to compare the performances of our algorithm with
other wavelet denoising procedures, on some classical benchmark signals proposed in
Donoho and Johnstone (1994). It will be seen that our algorithm performs well with
respect to other methods, independently of the value of the shape parameter in (5) and
of the form of the benchmark signal.

A second step in our practical part of the study is the following: since the peeling
algorithm has been introduced first in a medical context, we give an illustration of its
performances on ECG type signals. More specifically, we shall consider a simulated
ECG signal, and observe the denoising effect of our algorithm on a perturbed version
of those electrocardiograms. As we shall see, the algorithm under analysis is a good
compromise between denoising and preservation of the original signal. We also inves-
tigate the behavior of our method with non Gaussian noises, which is a possibility left
open by our theoretical analysis.
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Let us mention some open problems that have been left for a subsequent publication:
first, let us recall that the so-called block thresholding has improved the behavior of the
original thresholding algorithm in a certain number of situations (see e.g. Chesneau
2007 for a nice overview). It would be interesting to analyze the effect of this procedure
in our peeling context. In relation to this problem, one should also care about some
reasonable dependence structure among wavelet coefficients, beyond the independent
case treated in this article. Finally, we have assumed in this paper that the parameters
of the distributions pσ,u and pσw were known, which is typically not true in real world
applications. One should thus be able to quantify the effect of parameter estimation
on the whole denoising process.

Here is how our article is structured: we show how to compute optimal constants
for the peeling algorithm at Sect. 2. Then the probabilistic analysis of the algorithm is
carried out at Sect. 3. Finally, some numerical experiments on simulated and pseudo-
real data are performed at Sect. 4.

2 Critical constants for the peeling algorithm

This section is devoted to the computation of an optimal constant F in Eq. (3), ensuring
a convergence of the threshold Tk to a non trivial T f , and still allowing to retrieve a
maximal amount of approximate signal from our noisy input z.

Let us start this procedure by changing slightly the setting of the peeling algorithm.
Indeed, it will be essential for our convergence theorems at Sect. 3, to be able to express
the fixed point algorithm in terms of empirical processes. To this purpose, we resort
to a simple change of variables by setting:

Uk = T 2
k , U f = T 2

f and Y (q) = z(q)2 = (x(q)+ w(q))2.

Note that the decreasing sequence {Uk; k ≥ 0} converges to U f . Moreover, U0 = +∞
and for any integer k ≥ 0,

Uk+1 = gN ,w(Uk), (7)

where

gN ,w(t) = f 2
N (

√
t) = F2

N

∑

q≤N

Y (q) 1{Y (q)<t}, for t ≥ 0. (8)

The random fixed point U f = U f (ω) is then solution of the random equation

gN ,w(t) = t. (9)

Remark 2.1 Observe that we have emphasized the dependence of the function gN ,w

on the noise w. The reader should be aware that in the sequel of the paper, w denotes
the noisy part of our signal, while ω stands for the generic element of an underlying
probability space (
,F ,P).
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We wish to find the critical (minimal) F which ensures U f > 0. First, we reduce
the random fixed point Eq. (9) to a deterministic one. Then we focus on the fixed point
study of this deterministic fixed point equation.

2.1 Reduction to a deterministic problem

We shall identify here a natural deterministic problem related to Eq. (9). Indeed, for
t ∈ R+, the law of large numbers asserts that

a.s.− lim
N→∞ gN ,w(t) = gσ,u,σw (t) = 2F2

√
t∫

0

y2 [pσ,u ∗ pσw
]
(y) dy, (10)

where pσ,u and pσw are defined at Hypothesis 1.1. Moreover, letting σw → 0+, for
any t ∈ R+,

lim
σw→0

gσ,u,σw (t)=gσ,u(t) = 2F2

√
t∫

0

y2 pσ,u(y)dy = F2σ 2
inc

((
β

σ

√
t

)u

, 3/u

)
,

(11)

where 
inc is the incomplete Gamma function and β is defined at Hypothesis 1.1.
Though both Eqs. (10) and (11) are expressed as simple limits of functions, it is

thus reasonable to think that U f (fixed point of gN ,w) will be close to a fixed point of
gσ,u . This is indeed the content of our Theorem 3.1 and Remark 3.2. Our first aim is
thus to give some sharp conditions on the coefficient F ensuring that the equation the
deterministic fixed point equation

gσ,u(t) = t, (12)

has at least one solution t > 0.

2.2 Deterministic fixed point study

In this section, we are first interested in the solutions of the Eq. (12) and then in the
fixed point study of gσ,u,σw .

Observe that a trivial change of variables y 
→ σ 2 y in the integral (11) yields that

gσ,u(t) = σ 2g1,u(t/σ
2). (13)

Hence to solve Eq. (12) for any σ > 0 and u > 0, it is sufficient to deal with the case
σ = 1, up to replace t by v = t/σ 2. An elementary analysis of g1,u , whose details are
left to the reader, leads to the following lemma.
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Lemma 2.2 Recall that g1,u and β are defined by (11) and (5) with u > 0 the shape
of the distribution of each wavelet coefficient x(q).

(1) Then, the function g1,u is increasing, convex on [0, β−2u−2/u], concave on the
interval [β−2u−2/u,+∞) and such that limt→∞ g1,u(t) = F2.

(2) Moreover there exists a critical value Fc, depending only on u, such that the
following assertions hold.

(a) If F < Fc, the only fixed point of g1,u is 0.
(b) If F = Fc, g1,u has exactly two fixed points 0 and t∗c > β−2u−2/u.
(c) If F > Fc, g1,u has exactly three fixed points 0, �1 > 0 and t∗ >

max(�1, β
−2u−2/u).

The content of the above lemma is well illustrated by Fig. 1.
Let us turn now to the computation of the critical coefficient Fc and the critical

fixed point t∗c . In fact, it is also easy to show that (Fc, t∗c ) is the solution (F, r) of the
system

{
g′

1,u(r) = 1,
g1,u(r) = r

where we recall that the coefficient F enters into the definition of g1,u . This system is
equivalent to:

{
F2α

√
re−(β√

r)u − 1 = 0,
F2
inc((β

√
r)u, 3/u)− r = 0

(14)

Fig. 1 Curves corresponding to g1,u with F ∈ {0.9Fc, Fc, 1.15Fc}, with u defined in Hypothesis 1.1 and
Fc in Lemma 2.2
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where it should be reminded that
 and
inc designate respectively Gamma and incom-
plete Gamma functions. The latter system can be solved with the Mathematica soft-
ware, and the solutions for different u are illustrated in Fig. 2 and Table 1.

In particular, as illustrated in Fig. 2 it can be observed that Fc < Fm where Fm is
the bound proposed by Ranta et al. (2005), and has been recalled at Eq. (6).

We are now interested in the deterministic dynamic in presence of noise, that is in
the sequence {uwk ; k ≥ 0} defined by

{
uw0 = +∞
uwk+1 = gσ,u,σw (u

w
k ), k ≥ 0,

(15)

with gσ,u,σw defined by (10). The deterministic sequence {uwk ; k ≥ 0} converges to a
fixed point of gσ,u,σw (see Proposition 2.3). We will see in the Sect. 3 that this limit
may be closed to the limit of the stochastic sequence {Uk; k ≥ 0}.

We only focus on the case F > Fc, since we shall mainly analyze the performances
of the peeling algorithm under this condition.

Proposition 2.3 For σ > 0, u > 0 and σw > 0, let gσ,u and gσ,u,σw be defined by
(11) and (10). Assume F > Fc with Fc introduced in Lemma 2.2. Recall that the fixed
points of gσ,u are 0 < σ 2�1 < σ 2t∗, with �1 and t∗ defined in Lemma 2.2. Then define
the sequence {uwk ; k ≥ 0} by (15) and fix M > F2. Then there exist three constants

0 1 2 3 4
1.5

2

2.5

3

3.5

4

4.5

5

u

F

 

 
F

c

F
m

Fig. 2 Evolution of Fm and of critical Fc (respectively defined in Eq. (6) and Lemma 2.2) in function of
the shape u (defined in Hypothesis 1.1)

Table 1 Critical constant Fc for different shapes u

u 0.1 0.5 1 2 3 4

Fc 4.0215 2.7830 2.42537 2.16169 2.0472 1.98181

The shape u is defined in Hypothesis 1.1 and the critical coefficient Fc in Lemma 2.2
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�2 ∈ (0, t∗),C ∈ (0,∞), and M̃ ∈ (0, 1), which depend neither on σ nor on σw, such
that for σw/σ small enough, the following assertions hold.

(1) sup{gσ,u,σw (t); t ∈ R+} < σ 2 M and gσ,u,σw (σ
2�2) > σ 2�2.

(2) sup{g′
σ,u,σw (t); t ∈ [σ 2�2, σ

2 M]} ≤ M̃ < 1.
(3) The function gσ,u,σw has exactly one fixed point in [σ 2�2,∞), called t∗σ,w. More-

over t∗σ,w ∈ (σ 2�2, σ
2 M) and for any k ≥ 1,

|uwk − t∗σ,w| ≤ σ 2 M M̃k−1. (16)

Furthermore, the quantity t∗σ,w − σ 2t∗ can be bounded as

|t∗σ,w − σ 2t∗| ≤ Cσ 2
(σw
σ

)min(1,u)
. (17)

Proof See Appendix 1. �

Then, for F > Fc, the deterministic sequence {uwk ; k ≥ 0}, given by (15) and

obtained by letting the number of wavelet coefficients N goes to infinity in the peeling
algorithm, converges to a positive value. Moreover, this limit is very close to the greater
fixed point σ 2t∗ of gσ,u when the noise-to-signal ratio σw/σ goes to 0.

3 Probabilistic analysis of the algorithm

In this section, we are interested in the convergence for the peeling algorithm, that
is in the random sequence {Uk; k ≥ 0}. Comparing this random sequence with the
deterministic dynamic given by (15), we establish a concentration result on {Uk; k
≥ 0}.

In the supercritical case F > Fc, the following theorem states that the peeling
algorithm converges to a fixed point which is close to a fixed point of the non-noisy
deterministic dynamic governed by gσ,u . The proof, which is given in Sect. 6.2, hinges
heavily on some empirical processes tools.

Theorem 3.1 Assume F > Fc and that Hypothesis 1.1 is fulfilled. Let

ηu = min
(u

2
, 1
)
,

where u is the shape parameter of the wavelet coefficients of the signal x. Let us also
recall that σ 2 > 0 is the variance of the wavelet coefficients of the signal x. Then,
there exist some finite positive constants c,C, A and γ̃ such that if σw/σ ≤ c we
have: for all α ∈ (0, 1) and for all N ∈ N

∗, choosing k = k(N ) := [Cα log(N )] + 1,

P

(∣∣Uk − t∗σ,w
∣∣ ≥ N−α/2) ≤ Ae−γ̃ N (1−α)ηu/2

. (18)
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Remark 3.2 This theorem induces several informations about the convergence of our
algorithm: (i) For a fixed number of wavelet coefficients N , the optimal number of
iterations k for the peeling algorithm is of order log(N ). (ii) Once k is fixed in this
optimal way, Uk is close to the fixed point t∗σ,w of gσ,u,σw , the magnitude of |Uk −
t∗σ,w| being of order N−(1/2−ε) for any ε > 0. (iii) The deviations of Uk from t∗σ,w
are controlled exponentially in probability. (iv) Adding the information contained in
Proposition 2.3, we obtain that |t∗σ,w − σ 2t∗| is of order σw/σ , where t∗ is the fixed
point of function g1,u alluded to at Lemma 2.2. Hence, if the ratio signal/noise is large,
the iterated value Uk of the peeling algorithm will be very close to σ 2t∗ when k is of
order log(N ).

Remark 3.3 In Theorem 3.1, we have assumed a classical Gaussian structure for the
noisy part w of the signal. Notice however that we could have derived all our results
with different distributions, up to a change on all the scaling factors in (18). This is
the reason why we shall investigate the performances of the peeling algorithms with
different shapes of noises at Sect. 4.

We finish this section by establishing that the choice of the constant Fc for the
peeling algorithm is optimal in the following sense: if one chooses a parameter F < Fc,
then the threshold sequence converges to 0 with high probability. Specifically, we get
the following result:

Proposition 3.4 Consider F < Fc and assume that our signal z satisfies Hypothe-
sis 1.1. Let α ∈ (0, 1). Then, there exist some finite positive constants c,C, A and γ̃
such that if σw/σ ≤ c, we have: for any N ∈ N

∗ and any integer k ≥ C log(N ),

P

(
Uk ≥ N−α/2) ≤ Ae−γ̃ N (1−α)ηu/2

. (19)

Remark 3.5 We have chosen here to investigate the case of a probability P(Uk ≥
N−α/2) and of a logarithmic number of iterations k, in order to be consistent with
Theorem 3.1. However, in the simpler subcritical setting, one could have considered a
number of iterations of order N , opening the door to a possible almost sure convergence
of Uk to 0. We have not entered into those details for sake of conciseness. In the same
spirit, we have not tried to solve the (much harder) problem of the behavior of our
algorithm in the critical case F = Fc.

4 Simulation results

The aim of this section is two-folded:

• We wish to illustrate by numerical simulations the analysis presented above,
namely the peeling algorithm convergence.

• We will also evaluate the denoising performances of our method, and compare it
to other thresholding algorithms.

These two goals and the respective simulation setups are detailed below.
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4.1 Convergence issues

One of the assumptions made above was that the influence of the noise is limited
(and obviously, controlled by its variance). Under this hypothesis, the peeling algo-
rithm iterations should converge in about log(N ) iterations to a deterministic threshold
uniquely determined by the parameters of the signal probability law (assumed gener-
alized Gaussian). This convergence should take place for multiplicative constants F
greater than the critical value Fc.

The following simulation illustrates this convergence: we have generated the
wavelet coefficients of an original signal x according to a generalized Gaussian
(GG) law with zero mean, unitary standard deviation (σ = 1) and a shape factor
u = 1 (Laplace distribution). A Gaussian noise w was then added with a signal to
noise ratio SNR = 5. The length of the considered signal was N = 10,000 (namely
log(N ) ≈ 9.21). With this simulated noisy signal in hand, we have performed the
following steps:

(i) According to the real value of u, we have computed the critical constant Fc solution
of the Eq. (14). We have also displayed two other values for the multiplicative
constant F , both greater than Fc (namely F05 = 1.05Fc and F15 = 1.15Fc). We
denote by Tc,x , T05,x and T15,x the thresholds corresponding to Fc, F05 and F15
respectively.

(ii) We have also pretended to only know the observation z = x + w. In particular,
the real values of u and σ are unknown. To estimate them, we have applied the
classical moments method described in Mallat (1989) to the observation z and
not to the real signal x . Since we assume that the signal/noise ratio is large, this
method should lead to some reasonable estimators uz , and σz of u and σ . Once uz

and σz were computed, our procedure (i) has been performed again, replacing u, σ
by uz, σz (the final threshold being obtained by Lemma 2.2 and Proposition 2.3).
We denote by Tc,z, T05,z and T15,z the thresholds corresponding to Fc, F05 and
F15 respectively.

The results of steps (i) and (ii) have been compared to the deterministic thresh-
olds obtained in Lemma 2.2. The experiment, which exhibits a reasonable con-
vergence of the iterated thresholds to the deterministic ones, is summarized in
Fig. 3.

Similar results, not presented here, were obtained for other GG signals (varying u)
and noises (not only Gaussian, but generalized Gaussian), for relatively high SNRs
(10–5). For lowed SNR, as expected the performances degrade: the peeling algorithms
continue to converge in log(N ) iterations, but the final value of the threshold becomes
more significantly different from the deterministic value.

4.2 Denoising performances

The previous subsection aimed at shedding light on the convergence properties of
the peeling algorithm. According to the presented analysis and the simulation results,
the deterministic threshold can be used instead of the iterative algorithm. We now
wish to test this algorithm in terms of denoising performances on an empirical basis,
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Fig. 3 Convergence speed for different versions of the peeling algorithms, based on the parameters (u, σ )
and (uz , σz). The constant lines correspond to the deterministic thresholds. The number of iterations until
convergence and our final values for the thresholds, followed by the deterministic value given by Lemma 2.2,
are given in parenthesis. Recall that, for signals having N = 10,000 points, the convergence should occur
after a number of iterations of order log(N ) ≈ 9.21. a Fc/Tc , b F05/T05, c F15/T15

Fig. 4 Clean test signals, from
top to bottom: Blocks, Bumps,
HeaviSine, Doppler, ECG

(a)

(b)

(c)

(d)

(e)

i.e., on benchmark and on realistic signals (the four classical signals proposed in
Donoho and Johnstone 1994 plus an ECG-like signal—recall that the peeling algo-
rithms were proposed and mainly used in biomedical applications Coifman and Wick-
erhauser 1995; Hadjileontiadis and Panas 1997; Ranta et al. 2010). The signals are
displayed at Fig. 4.
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In real situations, one does not have access to the distribution of the underlying
clean signal x and to its parameters. Therefore our simulation assumes that the noisy
signal z = x + w is not very far from x , which means that we can use estimated uz

and σz to compute the critical constant Fc. We denote by T05,z and T15,z the thresholds
corresponding to F05 and F15, respectively.

Several simulations were made, using different types of white noise: Laplacian,
Gaussian and quasi-uniform (noted further on by ∼Uniform) and SNRs (10, 5, 2
and 1). Note that the quasi-uniform distribution is a GG law, whose shape parameter
is equal to 20.

Signals having N = 2,048 points were considered, the algorithm performance being
evaluated using the SNR obtained after denoising. We considered here a level 5 decom-
position and classical symlets with 8 null moments sym8.

We compare two traditional wavelet denoising procedures, namely Universal and
SURE shrinkage (see Donoho and Johnstone 1994) with two of the peeling algorithms
described above. Soft thresholding was implemented for all algorithms. The noise
being white (namely, i.i.d coefficients with equal variance σ 2

w for all scales), we did
not considered scale-by-scale implementations for the compared algorithms (except
for SURE, originally proposed with different thresholds by scale; note that peeling
algorithms can also be implemented scale-by-scale).

To ease the comparisons, we present the results in a graphical manner in Fig. 5.
A first analysis of these results indicates that, as expected, SURE thresholding is

the best option for Gaussian noise, regardless of the SNR. The Heavisine signal is a
particular case: indeed, aggressive high thresholds such as Universal and T15,z seem
to work better, except when the noise is very small (SNR = 10). This situation is even
clearer for ∼Uniform noise, when Heavisine makes no exception. It is interesting
to note that T15,z thresholding performs generally better than Universal and it can
constitute an alternative if the main goal is a quasi-complete noise elimination and a
visually clean signal (recall that Universal thresholding is also known as VisuShrink
because of its almost noise-free results).

On the other hand, the performances are quite different for Laplacian noise, when
SURE thresholding performs very poorly. In this case, T05,z is the best option for
rather low-power noises, except for the Heavisine and Doppler benchmarks, when
the high thresholds as Universal and T15,z become more performant (as for low
SNR).

To conclude, the T05,z threshold derived from the minimal denoising peeling algo-
rithm from Ranta et al. (2005) seems to be a good choice for heavy-tailed noises
and high to moderate signal to noise ratios. On the contrary, for Gaussian and supra-
Gaussian noises, SURE remains the best option for the considered model (i.e., inde-
pendent wavelet coefficients, excluding thus block-thresholding algorithms like Cai
and Silverman 2001, Cai and Zhou (2009)). Notice however that our T15,z threshold
performs similarly to SURE in this context, while preserving better the visual aspect
of the signal. Furthermore, these conclusions could be challenged by scale-by-scale
implementations of the Tc-type thresholds.

We finish this implementation section by presenting two examples of denoising of
Blocks and ECG signals in Fig. 6, which confirm the aforementioned considerations.
Two-dimensional versions of the tested algorithms have also been applied on real
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Fig. 5 Denoising results comparisons between four algorithms on five signals. We considered Laplacian,
Gaussian and ∼Uniform noises, with SNR varying from 10 to 1. The original SNR σ/σw before denoising
is represented by the dotted line, while the bar heights represent the final SNR after denoising. a Lapla-
cian/SNR = 10, b Gaussian/SNR = 10, c ∼Uniform/SNR = 10, d Laplacian/SNR = 5, e Gaussian/SNR = 5,
f ∼Uniform/SNR = 5, g Laplacian/SNR = 2, h Gaussian/SNR = 2, i ∼Uniform/SNR = 2, j Laplacian/SNR = 1,
k Gaussian/SNR = 1, l ∼Uniform/SNR = 1

benchmark images (Lena, House, Barbara, Peppers), with similar performances to
those obtained for the 1-D signals. They are not presented here for sake of concise-
ness.
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(a)

(b)

(c)

(d)

(e)
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(a) Blocks

(a)

(b)

(c)

(d)

(e)

(f)

(b) ECG

Fig. 6 Denoising example. From top to bottom: a clean signal; b noisy signal (Laplacian noise, SNR = 3);
c Universal thresholding (Blocks: SNR = 5.7, ECG: SNR = 4.8); d SURE thresholding (Blocks: SNR = 5.9,
ECG: SNR = 5.4); e T05,z thresholding (Blocks: SNR = 6.8, ECG: SNR = 5.9); f T15,z thresholding (Blocks:
SNR = 6.4, ECG: SNR = 5.2)

5 Appendix 1: Proof of proposition 2.3

5.1 Preliminaries

This section gives the main tools to prove Proposition 2.3. The first lemma is interested
in some useful properties of g1,u , which is defined by (11), and in the associated
deterministic dynamic.

Lemma 5.1 Assume F > Fc. Let g1,u : R+ → R+ be defined by (11), where u is the
shape parameter given in Hypothesis 1.1. Let �1 < t∗ be the two positive fixed points
of g1,u as defined in Lemma 2.2.

(1) Then there exists �2 ∈ (�1, t∗) such that g1,u(�2) > �2, g′
1,u(�2) < 1 and g1,u is

concave on [�2,∞).
(2) Define the deterministic sequence {uk; k ≥ 0} recursively by

{
u0 = +∞
uk+1 = g1,u(uk), k ≥ 0.

(20)

Then for k ≥ 1,

|uk − t∗| ≤ Mk−1
t∗

(
F2 − t∗

)
· (21)

where Mt∗ = g′
1,u(t

∗) ∈ (0, 1).
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Proof The first assertion is easily deduced from the variations of t 
→ d1,u(t) =
g1,u(t) − t , and its proof is left to the reader. Let us now prove the second assertion.
According to Lemma 2.2, g1,u is an increasing function and has exactly three fixed
points: 0 < �1 < t∗. Then the sequence {uk; k ≥ 0}, defined by (20), is decreasing
and converges to t∗ as k → ∞. Furthermore,

|uk+1 − t∗| = uk+1 − t∗ = g1,u(uk)− g1,u(t
∗) ≤ Mt∗

(
uk − t∗

)
,

with Mt∗ = sup{|g′
1,u(t)|; t ≥ t∗}. Since g1,u is increasing and concave on [�2,+∞)

with �2 < t∗ and g′
1,u(�2) < 1,

Mt∗ = g′
1,u(t

∗) ∈ (0, 1).

Then, Assertion (2) follows by a trivial induction procedure. The proof of Lemma 5.1
is then complete. �


The following lemma compares the functions gσ,u,σw and gσ,u defined by (10) and
(11) respectively.

Lemma 5.2 Assume F > Fc. For u > 0, σ > 0 and σw > 0, let gσ,u and gσ,u,σw be
defined by (11) and (10) with pσ,u and pσw introduced in Hypothesis 1.1. Let �1 < t∗
be the two positive fixed points of g1,u as defined in Lemma 2.2. Then, there exists
C := C(u) ∈ (0,∞) a constant which does not depend on (σ, σw, F) such that for
any t ∈ R+ we have

|g′
σ,u,σw (t)− g′

σ,u(t)| ≤ C F2√t

σ

(σw
σ

)min(1,u)
(22)

and

|gσ,u,σw (t)− gσ,u(t)| ≤ C F2t3/2

σ

(σw
σ

)min(1,u)
. (23)

In particular, gσ,u,σw → gσ,u and g′
σ,u,σw → g′

σ,u uniformly on every compact set of
R+, as σw goes to 0.

Proof Since (23) is a direct consequence of (22), we only prove (22). By definition
of gσ,u,σw and gσ,u , for any t ∈ R+,

|g′
σ,u,σw (t)− g′

σ,u(t)| = F2√t |pσ,u ∗ pσw(
√

t)− pσ,u(
√

t)|. (24)

Notice that for all y ∈ R+

pσ,u ∗ pσw(y)− pσ,u(y) =
∫

R

(
pσ,u(r)− pσ,u(y)

)
pσw(y − r)dr. (25)
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It can be readily checked that

∀t ∈ R, pσ,u(t) = 1

σ
p1,u

(
t

σ

)
= α

σ
e
−
∣∣∣ βt
σ

∣∣∣
u

.

Let us first assume u ≥ 1. Then t 
→ p1,u(t) is C1 on R and its derivate p′
1,u is bounded

on R. In this case,

∣∣pσ,u(r)− pσ,u(y)
∣∣ ≤

|r − y|
∥∥∥p′

1,u

∥∥∥∞
σ 2 . (26)

Assume now that u ∈ (0, 1]. Then by the Mean Value Theorem applied to the expo-
nential map,

∣∣pσ,u(r)− pσ,u(y)
∣∣ ≤ αβu

σ 1+u

∣∣∣|r |u − |y|u
∣∣∣.

Since for any γ ∈ (0, 1) and 0 ≤ b ≤ a, aγ − bγ ≤ |a − b|γ , one checks that

∣∣pσ,u(r)− pσ,u(y)
∣∣ ≤ αβu

σ 1+u
|r − y|u . (27)

Plugging (26) or (27) in (25), we now get the existence of a finite positive constant
c := c(u, α, β) which only depends on u, α, β such that

∣∣pσ,u ∗ pσw(y)− pσ,u(y)
∣∣ ≤ c

σ 1+min(1,u)

∫

R

|v|min(1,u) pσw(v)dv.

Since pσw is the density of a centered Gaussian variable of variance σ 2
w,

∣∣pσ,u ∗ pσw(y)− pσ,u(y)
∣∣ ≤ c

σ
E

(
|W |min(1,u)

) (σw
σ

)min(1,u)
,

with W a standard Gaussian variable. This inequality and Eqs. (24) lead to (22) setting
C = cE(|W |min(1,u)), which concludes the proof. �


5.2 Proof of proposition 2.3

This section is devoted to the proof of Proposition 2.3. In this proof, c and C denote two
unspecified positive and finite constants which may not be the same in each occurrence
and depend neither on the standard deviation σ of the signal x nor on the standard
deviation σw of the noise w. Let us recall that gσ,u,σw is defined by (10).
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(1) First observe that

∀t ∈ R+, gσ,u,σw (t) ≤ 2F2

+∞∫

0

y2 pσ,u ∗ pσw(y)dy = F2
E

(
z(1)2

)
,

owing to the fact that pσ,u ∗ pσw is the density of the wavelet coefficient z(1) =
x(1)+w(1). Since the centered random variables x(1) andw(1) are independent,
this leads to

∀t ∈ R+, gσ,u,σw (t) ≤ F2
(
σ 2 + σ 2

w

)
.

Thanks to the relation M > F2, there exists a finite positive constant
c1 := c1(M, F) depending only on M and F so that, if σw/σ ≤ c1, then
F2

(
σ 2 + σ 2

w

)
< Mσ 2 and henceforth,

sup{gσ,u,σw (t); t ∈ R+} < Mσ 2.

Let �2 ∈ (�1, t∗) be defined by Lemma 5.1. Note that �2 only depends on g1,u
and thus on both parameters F and u. Since t∗ is a fixed point of the increasing
function g1,u , we get

�2 < t∗ ≤ F2 = lim
t→+∞ g1,u(t) < M.

Hence, applying (23) and (13), we have :

gσ,u,σw
(
σ 2�2

)
≥ σ 2

(
g1,u (�2)− C

(σw
σ

)min(1,u)
)

where C := C(M, F, u) ∈ (0,+∞) does not depend on (σ, σw). Since
g1,u (�2) > �2 by Lemma 5.1, the previous equation leads to the existence of
a constant c := c(M, F, u), such that if σw/σ ≤ c,

gσ,u,σw
(
σ 2�2

)
> σ 2�2.

Then, the proof of Assertion (1) is complete.
(2) According to (22) and (13),

∀t ∈ [σ 2�2, σ
2 M], g′

σ,u,σw (t) ≤ g′
1,u

(
t

σ 2

)
+ C

(σw
σ

)min(1,u)

where C := C(M, F, u) ∈ (0,+∞). Thanks to Lemma 5.1,

sup
{
g′

1,u(y), y ≥ �2
} = g′

1,u(�2) < 1. (28)
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Then, choosing c := c(M, F, u) small enough, if σw/σ ≤ c, we obtain

∀t ∈ [σ 2�2, σ
2 M], g′

σ,u,w (t) ≤ g′
1,u(�2)+ Ccmin(1,u) =: M̃ < 1, (29)

which establishes Assertion (2).
(3) Let us now prove Assertion (3). Assume that σw/σ ≤ c. By Assertions (1) and (2),

dσ,u,σw : t 
→ gσ,u,σw (t) − t is a decreasing function on [σ 2�2, σ
2 M] such that

dσ,u,σw (σ
2�2) > 0 and dσ,u,σw (σ

2 M) < 0. Then, there exists an unique number
t∗σ,w ∈ (σ 2�2, σ

2 M) such that gσ,u,σw (t
∗
σ,w) = t∗σ,w. Moreover, since gσ,u,σw

takes its values in [0, σ 2 M), t∗σ,w is the only fixed point for gσ,u,σw in [σ 2�2,∞).
Consider now the sequence {uwk ; k ≥ 0} defined by Eq. (15). Since gσ,u,σw is an
increasing function which admits as unique fixed point t∗σ,w in [σ 2�2,∞), it is
easily seen that {uwk ; k ≥ 0} is a decreasing sequence such that limk→∞ uwk =
t∗σ,w. Moreover, for any k ≥ 1, uwk ∈ [t∗σ,w, F2(σ 2 + σ 2

w)] ⊂ [σ 2�2, σ
2 M]. Then,

using that t∗σ,w ∈ (σ 2�2, σ
2 M) is a fixed point and Eq. (29), we get

|uwk+1 − t∗σ,w| ≤ M̃k |uw1 − t∗σ,w|

for any k ≥ 1. We can now bound trivially |uw1 − t∗σ,w| as follows:

|uw1 − t∗σ,w| = uw1 − t∗σ,w ≤ Mσ 2,

so that we end up with

|uwk+1 − t∗σ,w| ≤ Mσ 2 M̃k

for any k ≥ 1. This equation, which is Eq. (16) also holds for k = 0.
Consider now the sequence {uk; k ≥ 0} defined by Eq. (20). Using (13), (23),
(28) and the Mean Value Theorem, we get:

|uwk+1 − σ 2uk+1| = |gσ,u,σw (uwk )− σ 2g1,u(uk)|
≤ |gσ,u,σw (uwk )− gσ,u(uwk )| + σ 2|g1,u(uwk /σ

2)− g1,u(uk)|
≤ Cσ 2

(σw
σ

)min(1,u) + g′
1,u(�2)|uwk − σ 2uk |

since uwk /σ
2, uk ∈ [�2,∞) and uwk ≤ Mσ 2 for k ≥ 1. By iterating this procedure,

with C := C(M, F, u) that may change in each occurrence, we get:

|uwk+1 − σ 2uk+1| ≤ Cσ 2
(σw
σ

)min(1,u) k−1∑

n=0

g′
1,u(�2)

n + g′
1,u(�2)

k |uw1 − σ 2u1|

≤ Cσ 2
(σw
σ

)min(1,u) + F2σ 2
w g′

1,u(�2)
k

since g′
1,u(�2) < 1, uw1 = F2(σ 2+σ 2

w) and u1 = F2. Taking limits in the relation
above as k → ∞ we get (17), which ends the proof. �
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6 Appendix 2: Probabilistic analysis of the algorithm

6.1 Preliminaries: comparison noisy dynamics/ deterministic dynamics

As mentioned at Eq. (8), the exact dynamics governing the sequence {Uk; k ≥ 0} is
of the form Uk+1 = gN ,w(Uk)with gN ,w defined by (8). In order to compare this with
the deterministic dynamics (15), let us recast this relation into:

Uk+1 = gσ,u,σw (Uk)+ εk,N , where εk,N = gN ,w(Uk)− gσ,u,σw (Uk). (30)

Notice that the errors εk,N are far from being independent, which means that the
relation above does not define a Markov chain. However, a fairly simple expression is
available for Uk :

Proposition 6.1 Let Uk be defined by (7), gσ,u,σw by (10) and εk,N by (30). For k ≥ 0,
set g◦k

σ,u,σw for the kth iteration of gσ,u,σw . Then for k ≥ 0, we have:

Uk = g◦k
σ,u,σw (U0)+ Rk, with Rk =

k−1∑

p=0

εp,N

k−p∏

q=2

g′
σ,u,σw (C p+q),

where the random variable C j ( j ≥ 2) is a certain real number within the inter-

val [g◦( j−1)
σ,u,σw (U0); U j−1]. In the definition of Rk, we have also used the conventions∏1

q=2 aq = 1 and R0 = 0.

Proof It is easily seen inductively that R0 = 0, R1 = ε0,N and for k ≥ 1

Rk+1 = g′
σ,u,σw (Ck+1)Rk + εk,N .

Hence, by a backward induction, we obtain:

Rk =
k∑

j=1

εk− j,N

j−2∏

l=0

g′
σ,u,σw (Ck−l) =

k−1∑

p=0

εp,N

k−p∏

q=2

g′
σ,u,σw (C p+q),

which ends the proof. �

A useful property of the errors εp,N is that they concentrate exponentially fast (in

terms of N ) around 0. This can be quantified in the following:

Lemma 6.2 Assume that our signal z = x + w satisfies Hypothesis 1.1, and recall
that F is defined by Eq. (3). Set

ηu = min
(u

2
, 1
)

and γu = 1

2max(2ηu−1,0)F2ηu
min

(
βu

σ u
,

1

2σ 2
w

)
(31)
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where parameters u, σ, σw and β are defined at Hypothesis 1.1. Then for every 0 <
γ < γu, there exists a finite positive constant K > 0 such that for all N ≥ 1, for all
p ≥ 0 and for all λ ∈ [0, γ Nηu/2],

E

[
eλ|εp,N |ηu

]
≤ K . (32)

Moreover, for all N ≥ 1, p ≥ 0 and l > 0,

P
(∣∣εp,N

∣∣ ≥ l
) ≤ K e−γ lηu Nηu/2

. (33)

Proof Recall that εp,N is defined by:

εp,N = gN ,w(Up)− gσ,u,σw (Up) = 1

N

N∑

q=1

(
F2Y (q) 1{Y (q)<Up} − gσ,u,σw (Up)

)
,

for a collection {Y (q); q ≤ N } of i.i.d random variables, where Y (q) = z(q)2. More-
over, z(q) = x(q)+w(q), with x(q) a centered generalized Gaussian random variable
with parameter u > 0 [whose density is given by (5)] and w(q) ∼ N (0, σ 2

w). For a
fixed positive t , the fluctuations gN ,w(t)−gσ,u,σw (t) are easily controlled thanks to the
classical central limit theorem or large deviations principle. The difficulty in our case
arises from the fact that Up is itself a random variable, which rules out the possibility of
applying those classical results. However, uniform central limit theorems and deviation
inequalities have been thoroughly studied, and our result will be obtained by translating
our problem in terms of empirical processes like in Vaart and Wellner (1996).

In order to express εp,N in terms of empirical processes, consider t ∈ [0,∞] and
define ht : R+ → R+ by ht (v) = F2v 1{v<t}. Next, for f : R+ → R, set

GN f = 1√
N

N∑

q=1

[ f (Y (q))− E[ f (Y (q))]],

and with these notations in mind, observe that

GN ht = 1√
N

N∑

q=1

[
ht (Y (q))− gσ,u,σw (t)

]
.

It is now easily seen that

εp,N = GN hUp√
N

,

and the key to our result will be to get good control on GN ht in terms of N , uniformly
in t ∈ [0,∞].

Let us consider the class of functions G = {ht ; t ∈ [0,+∞]}. According to the ter-
minology of Vaart and Wellner (1996), the uniform central limit theorems are obtained
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when G is a Donsker class of functions. A typical example of Donsker setting is pro-
vided by some VC classes (see Vaart and Wellner 1996, Section 2.6.2). The VC classes
can be briefly described as sets of functions whose subgraphs can only shatter a finite
collection of points, with a finite maximal cardinality, in R

2. For instance, the collec-
tions of indicators

F = {
1[0,t); t ∈ [0,+∞]}.

is a VC class. Thanks to (Vaart and Wellner 1996, Lemma 2.6.18), G is also a VC class
since it can be written as

G = F · h = { f h; f ∈ F},

where h : R+ → R+ is defined by h(v) = h∞(v) = F2v.
In order to state our concentration result, we still need to introduce the envelope G

of G, which is the function G : R+ → R defined as

G(v) = sup{ f (v); f ∈ G}, v ∈ R+.

Note that in our particular example of application, we simply have G = h. Let us also
introduce the following notation:

N [GN ;G, λ,m] :=E
∗ [eλ sup f ∈G |GN f |m], and N [h; λ,m] :=E

[
eλ|h(Y )|m

]
, (34)

where E
∗ is the outer expectation (defined in Vaart and Wellner 1996 for measurability

issues), and Y can be decomposed as Y = (X + W )2 for a centered generalized
Gaussian random variable X with parameter u > 0 and an independent variable
W ∼ N (0, σ 2

w). In (34), we also assume λ > 0 and m ≥ 0.
Then, since G is a VC class with measurable envelope, G is a Donsker class and

(Vaart and Wellner 1996, Theorem 2.14.5 p. 244) leads to:

N [GN ;G, λ,m] ≤ c N [h; λ,m],

with c a finite positive constant which does not depend on N , λ and G. Furthermore,
since Y can be decomposed as Y = (X + W )2 and invoking the elementary inequality
(a+b)p ≤ 2max(p−1,0)(a p+bp), valid for a, b ≥ 0 and p > 0, it is readily checked that

N [h; λ,m] < ∞

for λ < γu with γu defined at (31), and where m = ηu := min
( u

2 , 1
)
. Recalling now

that εp,N = N−1/2
GN hUp , we have obtained:

E

[
eλ|N 1/2εp,N |ηu

]
≤ N [GN ;G, λ, ηu] ≤ cN [h; γ, ηu] =: K < ∞

for λ ≤ γ < γu , which easily implies our claim (32).
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Let l > 0. Then,

P
(|εp,N | ≥ l

) = P

(
eγ Nηu/2|εp,N |ηu ≥ eγ lηu Nηu/2

)
.

The concentration property (33) is thus an easy consequence of (32) and Markov’s
inequality. �


6.2 Proof of theorem 3.1

Observe first that, owing to Proposition 6.1 and inequality (16), we have

∣∣Uk − t∗σ,w
∣∣ =

∣∣∣g◦k
σ,u,σw (U0)− t∗σ,w + Rk

∣∣∣= ∣∣uwk − t∗σ,w + Rk
∣∣ ≤ M M̃k−1σ 2 + |Rk |,

for any k ≥ 1. Let then δ̂ > 0 and let us fix k ≥ 1 such that

M M̃k−1σ 2 ≤ δ̂

2
, (35)

i.e.

k ≥ 1 + log(δ̂/(2Mσ 2))/ log(M̃)· (36)

Then it is readily checked that:

P

(∣∣Uk − t∗σ,w
∣∣ ≥ δ̂

)
≤ P

(
|Rk | ≥ δ̂

2

)
, (37)

and we will now bound the probability in the right hand side of this inequality. To
this purpose, let us introduce a little more notation: recall that �2 has been defined at
Lemma 5.1 and for n ≥ 1, let 
n be the set defined by


n =
{
ω ∈ 
; inf

{
j ≥ 0 /U j (ω) ≤ σ 2�2

}
= n

}

and set also


̃k =
k⋃

n=1


n ∪
{

U1 > Mσ 2
}
.

Then we can decompose (37) into:

P

(∣∣Uk − t∗σ,w
∣∣ ≥ δ̂

)
≤ P

(

̃k

) + P

(

̃c

k ∩
{

|Rk | ≥ δ̂

2

})
. (38)

We will now control these two terms separately.
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Step 1: Upper bound for P(
̃k). Let us fix n ≥ 1 and first study P (
n). To this
purpose, observe first that


n ⊂
{

Un ≤ σ 2�2 < Un−1

}
.

Hence, since Un = gN ,w(Un−1) and invoking that gσ,u,σw is an increasing function,
the following relation holds true on 
n :

gN ,w(Un−1) = Un ≤ σ 2�2 and gσ,u,σw (σ
2�2) < gσ,u,σw (Un−1).

We have thus proved that


n ⊂
{

gN ,w(Un−1)− gσ,u,σw (Un−1) ≤ σ 2�2 − gσ,u,σw (σ
2�2)

}
,

where, by Assertion (1) of Proposition 2.3, σ 2�2 − gσ,u,σw (σ
2�2) =: −L1 < 0. Since

gN ,w(Un−1)− gσ,u,σw (Un−1) = εn−1,N by definition, we end up with:

P(
n) ≤ P
(∣∣εn−1,N

∣∣ ≥ L1
)
.

Moreover,

P(U1 > Mσ 2) ≤ P
(∣∣ε0,N

∣∣ > L2
)

with L2 = Mσ 2 − gσ,u,σw (+∞) > 0 by Assertion (1) of Proposition 2.3.
A direct application of Lemma 6.2 yields now the existence of γ, K ∈ (0,∞) such

that for all n ≥ 1 and all N ≥ 1

P(
n) ≤ K e−γ Lηu
1 Nηu/2

and P(U1 > Mσ 2) ≤ K e−γ Lηu
2 Nηu/2

with ηu = min
( u

2 , 1
)
. Hence

P(
̃k) ≤
k∑

n=1

P(
n)+ P(U1 > Mσ 2) ≤ (k + 1)K e−γ Lηu Nηu/2
(39)

where L := min(L1, L2) > 0.

Step 2: Upper bound for P(
̃c
k ∩ {|Rk | ≥ δ̂

2 }).We have constructed the set 
̃k so that,
for all 2 ≤ p ≤ k + 1, the random variables C p introduced at Proposition 6.1 satisfy
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0 ≤ g′
σ,u,σw

(
C p

) ≤ ρ := M̃ < 1 on 
̃c
k . Thus

P

(

̃c

k ∩
{

|Rk | ≥ δ̂

2

})
≤ P

⎛

⎝
k−1∑

p=0

∣∣εp,N
∣∣ ρk−1−p ≥ δ̂

2

⎞

⎠

≤ P

⎛

⎝
k−1∑

p=0

∣∣εp,N
∣∣ νp ≥ Lk,δ̂

⎞

⎠, (40)

where we have set

νp = ρk−1−p(1 − ρ)

1 − ρk
, and Lk,δ̂ = δ̂(1 − ρ)

2(1 − ρk)
,

so that {νp; 0 ≤ p ≤ k − 1} is a probability measure on {0, . . . , k − 1}.
We introduce now a convex non-decreasing function au which only depends on the

shape parameter u, and which behaves like exp(tηu ) at infinity. Observe that, setting
su = (1/ηu − 1)1/ηu , the function t 
→ exp(tηu ) is concave on [0, su] and convex on
[su,+∞) Then, we consider the convex function au defined by

au(t) = etηu
1[su ,∞)(t)+ esηu

u 1[0,su)(t). (41)

Observe that if u ≥ 2, au is the exponential map.
Since au is a non-decreasing function, for all λ > 0, relation (40) implies that:

P

(

̃c

k ∩
{

|Rk | ≥ δ̂

2

})
≤ P

⎛

⎝au

⎛

⎝λ
k−1∑

p=0

∣∣εp,N
∣∣ νp

⎞

⎠ ≥ au

(
λLk,δ̂

)
⎞

⎠

≤ 1

au

(
λLk,δ̂

)E

⎡

⎣au

⎛

⎝λ
k−1∑

p=0

|εp,N |νp

⎞

⎠

⎤

⎦,

where we have invoked Markov’s inequality for the second step. Hence, applying
Jensen’s inequality, for all λ > 0, we obtain:

P

(

̃c

k ∩
{

|Rk | ≥ δ̂

2

})
≤ 1

au

(
λLk,δ̂

)
k−1∑

p=0

νpE
(
au

(
λ|εp,N |)).

Furthermore, owing to the definition (41) of au ,

E
(
au

(
λ|εp,N |)) ≤ E

(
eλ

ηu |εp,N |ηu
)

+ e1/ηu−1

for all p ≥ 0, all N ≥ 1 and all λ > 0.
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Then, applying Lemma 6.2, we have:

P

(

̃c

k ∩
{

|Rk | ≥ δ̂

2

})
≤ K + e1/ηu−1

au

(
λLk,δ̂

) ,

for any λ ≤ γ 1/ηu N 1/2 with γ < γu . Since Lk,δ̂ ≥ (1 − ρ)δ̂/2 and since au is a

non-decreasing function, by choosing λ = γ 1/ηu N 1/2, we obtain:

P

(

̃c

k ∩
{

|Rk | ≥ δ̂

2

})
≤ K1

au

(
γ1δ̂N 1/2

) ,

with γ1 = (1 − ρ)γ 1/ηu/2 > 0 and K1 = K + e1/ηu−1.
Choose now δ̂ = N−α/2, with α < 1. Observe that for N large enough,

γ1δ̂N 1/2 > su and thus au

(
γ1δ̂N 1/2

)
= eγ

ηu
1 N (1−α)ηu/2

. Hence, there exists a finite

positive constant K ′ such that for all N ≥ 1

P

(

̃c

k ∩
{
|Rk | ≥ 1

2Nα/2

})
≤ K ′e−γ̃ N (1−α)ηu/2

(42)

with γ̃ = γ
ηu
1 .

Step 3: Conclusion. Putting together (38), (39) and (42), choosing δ̂ = N−α/2 with
α < 1, we end up with:

P

(∣∣Uk − t∗σ,w
∣∣ ≥ N−α/2) ≤ (k + 1)K e−γ Lηu Nηu/2 + K ′e−γ̃ N (1−α)ηu/2

, (43)

for any k satisfying (36). Choose now k = k(N ) := [Cα log(N )]+1. If the following
condition holds true:

lim
N→+∞

(
k + α

2
log(N )/ log(M̃)

)
= +∞,

i.e. if C > −1/(2 log(M̃)), then for N ≥ N0 with N0 large enough, (36) holds.
We thus choose C = −1/(2 log(M̃)) + η with η > 0. Then, for N ≥ N0 and
k = k(N ) := [Cα log(N )] + 1, we have (43). Therefore, since (1 − α)ηu/2 ≤ ηu/2
we have proved that there exists a positive finite constant A such that for all N ∈ N

∗,

P

(∣∣Uk − t∗σ,w
∣∣ ≥ N−α/2) ≤ Ae−γ̃ N (1−α)ηu/2

,

which is the desired result. �
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6.3 Proof of proposition 3.4

In the subcritical case, the following property holds true for the function g1,u defined
by (13): there exists a constant κ1 ∈ (0, 1) such that, for all t ≥ 0, 0 ≤ g1,u(t) ≤ κ1t .

Let us now fix κ2 ∈ (κ1, 1) and L ∈ (0,∞). Then, by (13) and (23), for σw/σ ≤ c
with c small enough,

∀t ∈ [0, L], 0 ≤ gσ,u,σw (t) ≤ κ2t.

Since gσ,u,σw is upper bounded by 2F2σ 2 (for σw/σ ≤ c with c small enough),
choosing L such that κ2L > 2F2σ 2, the previous equation holds on [0,∞). We thus
have the following relation for the noisy dynamics of Uk : for every k ≥ 2,

Uk = gσ,u,σw (Uk−1)+ εk−1,N ≤ κ2Uk−1 + εk−1,N .

Iterating this inequality, we have: for every k ≥ 2,

Uk ≤ κk−1
2 U1 +

k−1∑

j=1

κ
j−1

2 εk− j,N .

According to the fact that U1 = F2(σ 2 + σ 2
w)+ ε0,N , we end up with:

Uk ≤ κk−1
2 F2(σ 2 + σ 2

w)+
k∑

j=1

κ
j−1

2 εk− j,N , (44)

a relation which is valid for any k ≥ 1.
Consider now α < 1, assume that σw/σ ≤ c and choose C > −α/(2 log(κ2)).

Then there exists N0 ∈ N
∗ such that for any integers N ≥ N0 and k ≥ C log(N ),

κk−1
2 F2(σ 2 + σ 2

w) ≤ κk−1
2 F2σ 2(1 + c2) ≤ N−α/2

2
.

Hence, for any integers N ≥ N0 and k ≥ C log(N ), invoking (44), we have:

P

(
Uk ≥ N−α/2) ≤ P

⎛

⎝
k∑

j=1

κ
j−1

2 εk− j,N ≥ N−α/2

2

⎞

⎠.

We are thus back to the setting of the proof of Theorem 3.1, Step 2. Along the same
lines as in this proof (changing just the name of the constants there), the reader can
now easily check inequality (19). �
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