Rough paths methods 3: Second order structures

Samy Tindel

Purdue University

University of Aarhus 2016

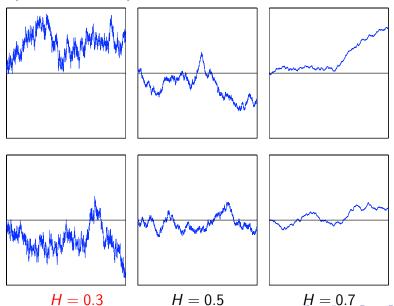
Outline

- 1 Heuristics
- 2 Controlled processes
- Oifferential equations
- Additional remarks
 - Other rough paths formalisms
 - Higher order structures

Outline

- Meuristics
- Controlled processes
- Oifferential equations
- 4 Additional remarks
 - Other rough paths formalisms
 - Higher order structures

Examples of fBm paths



General strategy

Aim: Define and solve an equation of the type:

$$y_t = a + \int_0^t \sigma(y_s) dB_s$$
, where B is fBm.

Properties of fBm:

Generally speaking, take advantage of two aspects of fBm:

- Gaussianity
- Regularity

Remark: For 1/3 < H < 1/2, Young integral isn't suficient

Levy area: We shall see that the following exists:

$$\mathbf{B}_{st}^{2,ij} = \int_{s}^{t} dB_{u}^{i} \int_{s}^{u} dB_{v}^{j} \in \mathcal{C}_{2}^{2\gamma} \text{ for } \gamma < H$$

Strategy: Given B and B^2 solve the equation in a pathwise manner

- 4 ロ ト 4 個 ト 4 差 ト 4 差 ト - 差 - 夕 Q (C)

Pathwise strategy

Aim: For $x \in C_1^{\gamma}$ con $1/3 < \gamma < 1/2$, define and solve an equation of the type:

$$y_t = a + \int_0^t \sigma(y_u) \, dx_u \tag{1}$$

Main steps:

- Define an integral $\int z_s dx_s$ for z: function whose increments are controlled by those of x
- Solve (1) by fixed point arguments in the class of controlled processes

Remark:

Like in the previous chapters, we treat a real case and $b\equiv 0$ for notational sake.

Caution: d-dimensional case really different here, because of x^2

6 / 49

Heuristics (1)

Hypothesis:

Solution y_t exists in a space $C_1^{\gamma}([0, T])$

A priori decomposition for y:

$$\delta y_{st} \equiv y_t - y_s = \int_s^t \sigma(y_v) dx_v$$

$$= \sigma(y_s) \, \delta x_{st} + \int_s^t [\sigma(y_v) - \sigma(y_s)] dx_v$$

$$= \zeta_s \, \delta x_{st} + r_{st}$$

Expected coefficients regularity:

$$\zeta = \sigma(y)$$
: bounded, γ -Hölder,

r: 2γ -Hölder

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

7 / 49

Samy T. (Purdue) Rough Paths 3 Aarhus 2016

Heuristics (2)

Start from controlled structure: Let z such that

$$\delta z_{st} = \zeta_s \, \delta x_{st} + r_{st}, \quad \text{with} \quad \zeta \in \mathcal{C}^{\gamma}, \ r \in \mathcal{C}^{2\gamma}$$
 (2)

Formally:

$$\int_{s}^{t} z_{v} dx_{v} = z_{s} \, \delta x_{st} + \int_{s}^{t} \delta z_{sv} \, dx_{v}$$

$$= z_{s} \, \delta x_{st} + \zeta_{s} \int_{s}^{t} \delta x_{sv} \, dx_{v} + \int_{s}^{t} r_{sv} \, dx_{v}$$

$$= z_{s} \, \delta x_{st} + \zeta_{s} \, \mathbf{x}_{st}^{2} + \int_{s}^{t} r_{sv} \, dx_{v}$$

Heuristics (3)

Formally, we have seen: z satisfies

$$\int_{s}^{t} z_{v} dx_{v} = z_{s} \delta x_{st} + \zeta_{s} \mathbf{x}_{st}^{2} + \int_{s}^{t} r_{sv} dx_{v}$$

Integral definition:

- $z_s \delta x_{st}$ trivially defined
- $\zeta_s \mathbf{x}_{st}^2$ well defined, if Levy area \mathbf{x}^2 provided
- $\int_s^t r_{sv} dB_v$ defined through operator Λ if $r \in \mathcal{C}_2^{2\gamma}$, $x \in \mathcal{C}_1^{\gamma}$ and $3\gamma > 1$

Remark:

- We shall define $\int_s^t z_v dx_v$ more rigorously
- Equation (1) solved within class of proc. with decomposition (2)

- 4 ロ ト 4 個 ト 4 種 ト 4 種 ト - 種 - り Q (C)

 Samy T. (Purdue)
 Rough Paths 3
 Aarhus 2016
 9 / 49

Outline

- Heuristics
- Controlled processes
- Oifferential equations
- 4 Additional remarks
 - Other rough paths formalisms
 - Higher order structures

Controlled processes

Definition 1.

Let

- $1/3 < \kappa \le \gamma$
- ullet $z\in\mathcal{C}_1^{\kappa}$

We say that z is a process controlled by x, if $z_0 = a \in \mathbb{R}$, and

$$\delta z = \zeta \delta x + r$$
, i.e. $\delta z_{st} = \zeta_s \, \delta x_{st} + r_{st}$, $s, t \in [0, T]$, (3)

with

- $\zeta \in \mathcal{C}_1^{\kappa}$
- ullet r is a remainder such that $r \in \mathcal{C}_2^{2\kappa}$

◆ロト ◆個ト ◆差ト ◆差ト を めなべ

Space of controlled processes

Definition 2.

Space of controlled processes:

- ullet Denoted by $\mathcal{Q}_{\kappa,a}$
- $z \in \mathcal{Q}_{\kappa,a}$ should be considered as a couple (z,ζ)

Natural semi-norm on $\mathcal{Q}_{\kappa,a}$:

$$\mathcal{N}[z; \mathcal{Q}_{\kappa, a}] = \mathcal{N}[z; \mathcal{C}_1^{\kappa}] + \mathcal{N}[\zeta; \mathcal{C}_1^{b}] + \mathcal{N}[\zeta; \mathcal{C}_1^{\kappa}] + \mathcal{N}[r; \mathcal{C}_2^{2\kappa}]$$

with

- $\bullet \ \mathcal{N}[g;\mathcal{C}_1^\kappa] = \|g\|_\kappa$
- $\bullet \ \mathcal{N}[\zeta; \mathcal{C}_1^b(V)] = \sup_{0 \le s \le T} |\zeta_s|_V$

- 4 ロ ト 4 個 ト 4 差 ト 4 差 ト - 差 - 夕 Q (C)

Operations on controlled processes

In order to solve equations, two preliminary steps:

- **1** Study of transformation $z \mapsto \varphi(z)$ for
 - Controlled process z
 - Smooth function φ
- $oldsymbol{0}$ Integrate controlled processes with respect to x

Composition of controlled processes

Proposition 3.

Consider $z \in \mathcal{Q}_{\kappa,a}$, $\varphi \in \mathcal{C}^2_b$. Define

$$\hat{\mathbf{z}} = \varphi(\mathbf{z}), \quad \hat{\mathbf{a}} = \varphi(\mathbf{a}).$$

Then $\hat{z} \in \mathcal{Q}_{\kappa,\hat{a}}$, and

$$\delta \hat{\mathbf{z}} = \hat{\zeta} \delta \mathbf{x} + \hat{\mathbf{r}},$$

with

$$\hat{\zeta} = \nabla \varphi(z) \zeta$$
 and $\hat{r} = \nabla \varphi(z) r + [\delta(\varphi(z)) - \nabla \varphi(z) \delta z]$.

Furthermore, $\mathcal{N}[\hat{z};\mathcal{Q}_{\kappa,\hat{a}}] \leq c_{\varphi,\mathcal{T}} \, (1 + \mathcal{N}^2[z;\mathcal{Q}_{\kappa,a}]).$

◆ロト ◆母 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q C ・

Proof

Algebraic part: Just write

$$\begin{split} &\delta \hat{z}_{st} = \varphi(z_t) - \varphi(z_s) \\ &= \nabla \varphi(z_s) \delta z_{st} + \varphi(z_t) - \varphi(z_s) - \nabla \varphi(z_s) \delta z_{st} \\ &= \nabla \varphi(z_s) \zeta_s \delta x_{st} + \nabla \varphi(z_s) r_{st} + \varphi(z_t) - \varphi(z_s) - \nabla \varphi(z_s) \delta z_{st} \\ &= \hat{\zeta}_s \delta x_{st} + \hat{r}_{st} \end{split}$$

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

Proof (2)

Bound for $\mathcal{N}[\hat{z}; \mathcal{Q}_{\kappa,\hat{a}}(\mathbb{R}^n)]$, strategy: get bound on

- $\mathcal{N}[\hat{z}; \mathcal{C}_1^{\kappa}(\mathbb{R}^n)]$
- $\mathcal{N}[\hat{\zeta}; \mathcal{C}_1^{\kappa} \mathcal{L}^{d,n}]$
- $\mathcal{N}[\hat{\zeta}; \mathcal{C}_1^b \mathcal{L}^{d,n}]$
- $\mathcal{N}[\hat{r}; \mathcal{C}_2^{2\kappa}(\mathbb{R}^n)]$

Decomposition for \hat{r} : We have

$$\hat{r} = \hat{r}^1 + \hat{r}^2$$

with

$$\hat{r}_{st}^1 = \nabla \varphi(z_s) r_{st}$$
 and $\hat{r}_{st}^2 = \varphi(z_t) - \varphi(z_s) - \nabla \varphi(z_s) (\delta z)_{st}$. (4)

- 4 ロ ト 4 個 ト 4 種 ト 4 種 ト - 種 - からで

16 / 49

Proof (3)

Bound for \hat{r}^1 : $\nabla \varphi$ is a bounded $\mathcal{L}^{k,n}$ -valued function. Therefore

$$\mathcal{N}[\hat{r}^1; \mathcal{C}_2^{2\kappa}(\mathbb{R}^n)] \le \|\nabla \varphi\|_{\infty} \mathcal{N}[r; \mathcal{C}_2^{2\kappa}(\mathbb{R}^k)]. \tag{5}$$

Bound for \hat{r}^2 :

$$|\hat{r}_{\mathsf{st}}^2| \leq \frac{1}{2} \|\nabla^2 \varphi\|_{\infty} |(\delta z)_{\mathsf{st}}|^2 \leq c_{\varphi} \mathcal{N}^2[z; \mathcal{C}_1^{\kappa}(\mathbb{R}^k)] |t - s|^{2\kappa},$$

which yields

$$\mathcal{N}[\hat{r}^2; \mathcal{C}_2^{2\kappa}(\mathbb{R}^n)] \le c_{\varphi} \mathcal{N}^2[r; \mathcal{C}_2^{2\kappa}(\mathbb{R}^k)], \tag{6}$$

Bound for \hat{r} : Since $\hat{r} = \hat{r}^1 + \hat{r}^2$, we get from (5) and (6)

$$\mathcal{N}[\hat{r};\mathcal{C}_2^{2\kappa}(\mathbb{R}^n)] \leq c_{\varphi}\left(1+\mathcal{N}^2[r;\mathcal{C}_2^{2\kappa}(\mathbb{R}^k)]\right)$$

Proof (4)

Other estimates: We still have to bound

- $\mathcal{N}[\hat{z}; \mathcal{C}_1^{\kappa}(\mathbb{R}^n)]$
- $\mathcal{N}[\hat{\zeta}; \mathcal{C}_1^{\kappa} \mathcal{L}^{d,n}]$
- $\mathcal{N}[\hat{\zeta}; \mathcal{C}_1^b \mathcal{L}^{d,n}]$

Done in the same way as for \hat{r}

Conclusion for the analytic part: We obtain

$$\mathcal{N}[\hat{\pmb{z}};\mathcal{Q}_{\kappa,\hat{\pmb{a}}}] \leq c_{arphi,\mathcal{T}} \left(1 + \mathcal{N}^2[\pmb{z};\mathcal{Q}_{\kappa,\pmb{a}}]
ight)$$

Composition of controlled processes (ctd)

Remark: In previous proposition

- Quadratic bound instead of linear as in the Young case
- Due to Taylor expansions of order 2

Next step: Define $\mathcal{J}(z dx)$ for a controlled process z:

- Start with smooth x, z
- Try to recast $\mathcal{J}(z\,dx)$ with expressions making sense for a controlled process $z\in\mathcal{C}_1^\kappa$

Integration of smooth controlled processes

Hypothesis:

- x, ζ smooth functions, r smooth increment
- ullet Smooth controlled process $z\in\mathcal{Q}_{1,a}$, namely $\delta z_{st}=\zeta_s\,\delta x_{st}+r_{st}$

Expression of the integral: $\mathcal{J}(z\,dx)$ defined as Riemann integral and

$$\int_{s}^{t} z_{u} dx_{u} = z_{s}[x_{t} - x_{s}] + \int_{s}^{t} [z_{u} - z_{s}] dx_{u}$$

Otherwise stated:

$$\mathcal{J}(z\,dx)=z\,\delta x+\mathcal{J}(\delta z\,dx).$$

Integration of smooth controlled processes (2)

Levy area shows up: if $\delta z_{st} = \zeta_s \, \delta x_{st} + r_{st}$,

$$\mathcal{J}(z\,dx) = z\,\delta x + \mathcal{J}(\zeta\delta x\,dx) + \mathcal{J}(r\,dx). \tag{7}$$

Transformation of $\mathcal{J}(\zeta \delta x dx)$:

$$\mathcal{J}_{st}(\zeta \delta x \, dx) = \int_{s}^{t} \zeta_{s} \left[\delta x_{su} dx_{u} \right] = \zeta_{s} \mathbf{x}_{st}^{2}$$

Plugging in (7) we get

$$\mathcal{J}(z\,dx) = z\,\delta x + \zeta\,\mathbf{x^2} + \mathcal{J}(r\,dx)$$

Multidimensional case:

$$\int_{s}^{t} \zeta_{s} \left[\delta x_{su} \, dx_{u} \right] \longleftrightarrow \int_{s}^{t} \zeta_{s}^{ij} \left[\delta x_{su}^{j} \, dx_{u}^{i} \right] = \zeta_{s}^{ij} \, \mathbf{x}_{st}^{2,ji}$$

Levy area

Recall:
$$\mathcal{J}(z dx) = z \delta x + \zeta \mathbf{x}^2 + \mathcal{J}(r dx)$$

 \hookrightarrow For $\gamma < 1/2$, \mathbf{x}^2 enters as an additional data

Hypothesis 4.

Path x is γ -Hölder with $\gamma > 1/3$, and admits a Levy area, i.e

$$\mathbf{x^2} \in \mathcal{C}_2^{2\gamma}(\mathbb{R}^{d,d}),$$
 formally defined as $\mathbf{x^2} = "\mathcal{J}(dxdx)",$

and satisfying:

$$\delta \mathbf{x^2} = \delta \mathbf{x} \otimes \delta \mathbf{x}$$
, i.e. $\delta \mathbf{x}_{sut}^{2,ij} = \delta x_{su}^i \delta x_{ut}^j$,

for any $s, u, t \in S_{3,T}$ and $i, j \in \{1, ..., d\}$.

◆ロト ◆問 ト ◆ 意 ト ◆ 意 ・ 夕 Q (*)

Levy area: particular cases

Levy area defined in following cases:

- x is a regular path
 - \hookrightarrow Levy area defined in the Riemann sense
- ② x is a fBm with $H > \frac{1}{4}$
 - \hookrightarrow Levy area defined in the Stratonovich sense

23 / 49

Samy T. (Purdue) Rough Paths 3 Aarhus 2016

Integration of smooth controlled processes (3)

Analysis of $\mathcal{J}(r dx)$: we have seen

$$\mathcal{J}(r\,dx) = \mathcal{J}(z\,dx) - z\,\delta x - \zeta\,\mathbf{x}^2$$

Apply δ on each side of the identity:

$$\begin{split} &[\delta(\mathcal{J}(r\,dx))]_{sut} \\ &= \delta z_{su}\,\delta x_{ut} + \delta \zeta_{su}\,\mathbf{x}_{ut}^2 - \zeta_s\,\delta \mathbf{x}_{sut}^2 \\ &= \zeta_s\,\delta x_{su}\,\delta x_{ut} + r_{su}\,\delta x_{ut} + \delta \zeta_{su}\,\mathbf{x}_{ut}^2 - \zeta_s\,\delta x_{su}\,\delta x_{ut} \\ &= r_{su}\,\delta x_{ut} + \delta \zeta_{su}\,\mathbf{x}_{ut}^2. \end{split}$$

Samy T. (Purdue) Rough Paths 3

24 / 49

Integration of smooth controlled processes (4)

Recall: We have found

$$\delta(\mathcal{J}(r\,dx)) = r\,\delta x + \delta\zeta\,\mathbf{x}^2$$

Regularities: We have

- \bullet $r \in \mathcal{C}_2^{2\kappa}$
- $\delta x \in \mathcal{C}_2^{\gamma}$
- $\delta\zeta\in\mathcal{C}_2^\kappa$
- $\mathbf{x^2} \in \mathcal{C}_2^{2\gamma}$

Since $\kappa + 2\gamma > 2\kappa + \gamma > 1$, Λ can be applied

Expression with Λ : We obtain

$$\delta(\mathcal{J}(r\,dx)) = r\,\delta x + \delta\zeta\,\mathbf{x}^2 \quad \Longrightarrow \quad \mathcal{J}(r\,dx) = \Lambda(r\,\delta x + \delta\zeta\,\mathbf{x}^2)$$

Integration of smooth controlled processes (5)

Conclusion: We have seen:

$$\mathcal{J}(z dx) = z \delta x + \zeta x^{2} + \mathcal{J}(r dx)$$

$$\mathcal{J}(r dx) = \Lambda(r \delta x + \delta \zeta x^{2})$$

Thus, if m, x are smooth paths:

$$\mathcal{J}(z\,dx) = z\,\delta x + \zeta\,\mathbf{x^2} + \Lambda(r\,\delta x + \delta\zeta\,\mathbf{x^2})$$

Substantial gain: This expression can be extended to irregular paths!

◆□▶◆□▶◆壹▶◆壹▶ 壹 めなぐ

Integration of controlled processes

Theorem 5.

Let

- $x \in \mathcal{C}_1^{\gamma}$, with $1/3 < \kappa < \gamma$
- x satisfies Hypothesis 4, with Levy area x^2
- ullet $z\in \mathcal{Q}_{\kappa,b}$, with decomposition $\delta z_{st}=\zeta_s\delta x_{st}+r_{st}$

Define ℓ by $z_0 = a \in \mathbb{R}$, and

$$\delta \ell \equiv \mathcal{J}(z \, dx) = z \, \delta x + \zeta \cdot \mathbf{x}^2 + \Lambda(r \, \delta x + \delta \zeta \cdot \mathbf{x}^2).$$

Then

- $oldsymbol{0}$ ℓ is an element of $\mathcal{Q}_{\kappa,a}$
- $\ell = \int z \, dx$ for smooth paths

→ロト→□ト→ミト→ミト ミ からの

Proof

Item 1: We have

•
$$\delta \ell = \zeta^{\ell} \delta x + r^{\ell}$$

•
$$\zeta^{\ell} = z$$

•
$$r^{\ell} = \zeta \mathbf{x^2} + \Lambda(r \delta x + \delta \zeta \mathbf{x^2})$$

Item 2:

Proved in preliminary computations

Properties of the integral

Proposition 6.

Let ℓ be defined as in Theorem 5. Then on an interval $[0,\tau]$:

1 The semi-norm of ℓ in $\mathcal{Q}_{\kappa,a}$ satisfies

$$\mathcal{N}[\ell; \mathcal{Q}_{\kappa,a}] \leq c_{x} \left(|a| + \tau^{\gamma-\kappa} \mathcal{N}[z; \mathcal{Q}_{\kappa,a}] \right)$$

We have

$$\mathcal{J}_{st}(z\,dx) = \lim_{|\pi_{st}|\to 0} \sum_{i=0}^{n} \left[z_{t_i} \delta x_{t_i,t_{i+1}} + \zeta_{t_i} \cdot \mathbf{x}_{t_i,t_{i+1}}^2 \right]$$

4□ > 4□ > 4 = > 4 = > = 90

Proof

Item 1: Elementary computations using decomposition

- $\delta \ell = \zeta^{\ell} \delta x + r^{\ell}$
- $\zeta^{\ell} = z$
- $r^{\ell} = \zeta \mathbf{x^2} + \Lambda(r \delta x + \delta \zeta \mathbf{x^2})$

Example of computation: Bound for $\zeta^{\ell} = z$. We have

$$|\delta z_{st}| \le \|\zeta\|_{\infty} \|x\|_{\gamma} |t-s|^{\gamma} + \|r\|_{2\gamma} |t-s|^{2\gamma}$$

Hence

$$\|z\|_{\kappa} \leq \tau^{\gamma-\kappa} \left[\|\zeta\|_{\infty} \|x\|_{\gamma} + \tau^{\gamma} \|r\|_{2\gamma} \right] \leq c_{x} \tau^{\gamma-\kappa} \mathcal{N}[z; \mathcal{Q}_{\kappa,a}]$$

and

$$\|z\|_{\infty} \leq |z_0| + \tau^{\kappa} \|z\|_{\kappa} \leq c_T (|a| + \mathcal{N}[z; \mathcal{Q}_{\kappa,a}])$$

Samy T. (Purdue) Rough Paths 3 Aarhus 2016 30 / 49

Proof (2)

Recall: Let $g \in \mathcal{C}_2$, such that $\delta g \in \mathcal{C}_3^{\mu}$ with $\mu > 1$. Define

$$k = (\mathrm{Id} - \Lambda \delta)g$$

Then

$$k_{st} = \lim_{|\Pi_{st}| \to 0} \sum_{i=0}^{n} g_{t_i t_{i+1}},$$

as $|\Pi_{st}| \to 0$, where Π_{st} is a partition of [s, t].

Proof (2)

Item 2: Let $g = z\delta x + \zeta \cdot \mathbf{x}^2$. Then

$$\bullet \ \delta g = -\left(r\,\delta x + \delta\zeta\,\mathbf{x^2}\right)$$

- $\delta g \in \mathcal{C}_3^{3\kappa}$
- $\mathcal{J}(z\,dx) = (\mathrm{Id} \Lambda\delta)g$

Therefore

$$\mathcal{J}_{st}(z\,dx) = \lim_{|\Pi_{st}|\to 0} \sum_{i=0}^n g_{t_i\,t_{i+1}},$$

which yields Item 2

Outline

- Heuristics
- Controlled processes
- Oifferential equations
- 4 Additional remarks
 - Other rough paths formalisms
 - Higher order structures

Pathwise strategy

Hypothesis: x is a function of C_1^{γ} with $1/3 < \gamma \le 1/2$. It admits a Levy area \mathbf{x}^2

Aim: We wish to define and solve an equation of the form:

$$y_t = a + \int_0^t \sigma(y_s) \, dx_s \tag{8}$$

Meaning of the equation: $y \in \mathcal{Q}_{a,\kappa}$, and

$$\delta y = \mathcal{J}(\sigma(y) \, dx)$$

Fixed point: strategy

A map on a small interval:

Samy T. (Purdue)

Consider an interval $[0, \tau]$, with τ to be determined later

Consider κ such that $1/2 < \kappa < \gamma < 1$

In this interval, consider $\Gamma: \mathcal{Q}_{a,\kappa}([0,\tau]) \to \mathcal{Q}_{a,\kappa}([0,\tau])$ defined by: $\Gamma(z) = \hat{z}$, with $\hat{z}_0 = a$, and for $s, t \in [0, \tau]$:

$$\delta \hat{z}_{st} = \int_{s}^{t} \sigma(z_r) dx_r = \mathcal{J}_{st}(\sigma(z) dx)$$

Aim: See that for a small enough τ , the map Γ is a contraction \hookrightarrow our equation admits a unique solution in $\mathcal{C}_1^{\kappa}([0,\tau])$

Remark: Same kind of computations as in the Young case → but requires more work (quadratic estimates, patching)!

Aarhus 2016

35 / 49

Existence-uniqueness theorem

Theorem 7.

Let $x \in C_1^{\gamma}$, with $1/3 < \kappa < \gamma$ and Levy area \mathbf{x}^2 . Let $\sigma : \mathbb{R} \to \mathbb{R}$ be a C_h^3 function. Then

- Equation $\delta y = \mathcal{J}(\sigma(y) dx)$ admits a unique solution y in $\mathcal{Q}_{\kappa,a}$ for any $1/3 < \kappa < \gamma$.
- **2** Application $(a, x, \mathbf{x}^2) \mapsto y$ is continuous from $\mathbb{R} \times \mathcal{C}_1^{\gamma} \times \mathcal{C}_2^{2\gamma}$ to $\mathcal{Q}_{\kappa, a}$.

Proof

Bound on Γ : Set $\hat{z} = \Gamma(z)$ and $\hat{a} = \sigma(a)$.

Then according to Proposition 6,

$$\mathcal{N}[\hat{\mathbf{z}}; \ \mathcal{Q}_{\kappa, \mathbf{a}}] \leq c_{\mathbf{x}} \left(|\hat{\mathbf{a}}| + \tau^{\gamma - \kappa} \mathcal{N}[\sigma(\mathbf{z}); \ \mathcal{Q}_{\kappa, \hat{\mathbf{a}}}] \right).$$

Now thanks to Proposition 3,

$$\mathcal{N}[\hat{z}; \mathcal{Q}_{\kappa,a}] \leq c_{x} \left[|\hat{a}| + c_{\sigma,T} \tau^{\gamma-\kappa} \left(1 + \mathcal{N}^{2}[z; \mathcal{Q}_{\kappa,a}] \right) \right],$$

and thus

$$\mathcal{N}[\hat{z}; \mathcal{Q}_{\kappa,a}] \le c_{\sigma,\kappa,T} \left(1 + \tau^{\gamma-\kappa} \mathcal{N}^2[z; \mathcal{Q}_{\kappa,a}] \right) \tag{9}$$

Samy T. (Purdue)

Rough Paths

Aarhus 2016

Proof (2)

Invariant set: For $\tau > 0$ set

Samy T. (Purdue)

$$\mathcal{A}_{ au} = \left\{ u \in \mathbb{R}_{+}^{*}: \; c_{\sigma,\mathsf{x}}(1 + au^{\gamma - \kappa}u^{2}) \leq u
ight\}$$

Then

- **1** If τ small enough, \mathcal{A}_{τ} is non empty
- ② In such case, consider $M \in \mathcal{A}_{\tau}$

Invariant ball: For τ_1 small enough and $M \in \mathcal{A}_{\tau_1}$, we have

$$B(0,M)\subset \mathcal{Q}_{\kappa,a}$$
 left invariant by Γ

Contraction within B(0, M): Similar to Young case \hookrightarrow Gives existence-uniqueness on $[0,\tau]$ with $\tau=\tau_1\wedge\tau_2$

Aarhus 2016

38 / 49

Proof (3)

Patching small intervals:

On $[\tau, \tau + \tau_1]$, the key estimate is

$$\mathcal{N}[\hat{z}; \mathcal{Q}_{\kappa,a}] \leq c_{\mathsf{x}} \left[|\hat{a}| + c_{\sigma,T} \tau_1^{\gamma-\kappa} \left(1 + \mathcal{N}^2[z; \mathcal{Q}_{\kappa,a}] \right) \right],$$

where now

$$\hat{a} = \sigma(y_{\tau}) \implies |\hat{a}| \leq \|\sigma\|_{\infty}$$

One can thus proceed as on $[0, \tau]$

Remark:

 σ with linear growth out of scope of rough paths theory

Outline

- Heuristics
- Controlled processes
- Oifferential equations
- 4 Additional remarks
 - Other rough paths formalisms
 - Higher order structures

Outline

- Heuristics
- Controlled processes
- Oifferential equations
- Additional remarks
 - Other rough paths formalisms
 - Higher order structures

Lyons theory: Geometrical structures

- Lie algebra: In general $(1, \mathbf{X}^1, \dots, \mathbf{X}^n) \in \mathbb{R} \oplus \mathbb{R}^d \oplus (\mathbb{R}^d)^n$
- \hookrightarrow Lie algebra structure and associated Lie group: $G^n(\mathbb{R}^d)$
- \hookrightarrow Structures introduced by Chen in the '50s

Rough path: γ -Hölder function with values in $G^n(\mathbb{R}^d)$

Two important relations:

- $(1, \mathbf{X^1}, \dots, \mathbf{X^n})$ determines all the iterated integrals if $n \geq \lfloor 1/\gamma \rfloor$
- ullet Any element of $G^n(\mathbb{R}^d)$ can be realized as iterated integrals of a smooth function

Solving equations: Two possibilities

- Show that (y, x) is a single rough path
- Approximations, due to the second important relation above

4□▶ 4□▶ 4□▶ 4□▶ 3□ 900

Lyons theory vs. algebraic integration

Advantages of Lyons' approach:

- Elegant formalism (mixing geometry, analysis, probability)
- Approximation in $G^n(\mathbb{R}^d)$ yields powerful estimates:
 - Moments of solution to RDEs
 - Differential of RDEs

Advantages of algebraic integration:

- Simpler formalism
- Controlled process can be adapted easily to many situations:
 - Evolution, Volterra, Delay equations
 - ▶ Integration in the plane, SPDEs, Regularity structures
- Some results are hard to express without controlled processes:
 - \hookrightarrow Norris type lemma

Friz-Hairer's formalism

A short comparison with Friz-Hairer:

- Friz-Hairer's formalism also based on controlled processes
 - → Reference to Gubinelli's derivative
- The use of δ , Λ is less explicit
 - \hookrightarrow In order to further simplify the theory
- Altogether, our presentation is very close to Friz-Hairer's book

Regularity structures

A brief summary of regularity structures:

Can be seen as a wide generalization of controlled rough paths

- Rough paths indexed by \mathbb{R}^n (instead of \mathbb{R}_+)
- ullet Richer rough paths structure indexed by trees (instead of $\mathbb N$)
- Product of distributions
- Additional group structure for renormalizations
- Evaluation of singularities

Typical example of equation related to regularity structures:

- Equation: $\partial_t Y_t(\xi) = \Delta Y_t(\xi) + (\partial_\xi Y_t(\xi))^2 + \dot{x}_t(\xi) \infty$
- $(t,\xi) \in [0,1] \times \mathbb{R}$
- $\dot{x} \equiv$ space-time white noise

Outline

- Heuristics
- Controlled processes
- Oifferential equations
- 4 Additional remarks
 - Other rough paths formalisms
 - Higher order structures

Rough path assumptions

Regularity of $X: X \in \mathcal{C}^{\gamma}(\mathbb{R}^d)$ with $\gamma > 0$.

Iterated integrals: X allows to define

$$\mathbf{X}_{st}^{\mathbf{n}}(i_1,\ldots,i_n) = \int_{s \leq u_1 < \cdots < u_n \leq t} dX_{u_1}(i_1) dX_{u_2}(i_2) \cdots dX_{u_n}(i_n),$$

for $0 \le s < t \le T$, $n \le \lfloor 1/\gamma \rfloor$ and $i_1, \ldots, i_n \in \{1, \ldots, d\}$.

Regularity of the iterated integrals: $\mathbf{X}^{\mathbf{n}} \in \mathcal{C}_2^{n\gamma}(\mathbb{R}^{d^n})$, where

$$\mathcal{N}[g; \, \mathcal{C}_2^{\kappa}] \equiv \sup_{0 \leq s < t \leq T} \frac{|g_{st}|}{|t - s|^{\kappa}}$$

Samy T. (Purdue)

Main rough paths result

Theorem (loose formulation): Under the assumption of the previous slide, plus regularity assumptions on σ , one can

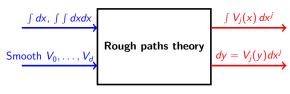
- Obtain change of variables formula of Itô's type
- ② Solve equations of the form $dY_t = \sigma(Y_t)dX_t$

Moreover, the application

$$F: \mathbb{R}^n \times \mathcal{C}_2^{\gamma}(\mathbb{R}^d) \times \cdots \times \mathcal{C}_2^{n\gamma}(\mathbb{R}^{d^n}) \longrightarrow \mathcal{C}^{\gamma}(\mathbb{R}^m)$$

$$(a, \mathbf{x}^1, \dots, \mathbf{x}^n) \mapsto Y$$

is a continuous map



Meaning of the n^{th} iterated integral

Definition: The n^{th} order iterated integral associated to X is an element $\{\mathbf{X}_{st}^{\mathbf{n}}(i_1,\ldots,i_n);\ s\leq t,\ 1\leq i_1,\ldots,i_n\leq d\}$ satisfying:

- (i) The regularity condition $\mathbf{X}^{\mathbf{n}} \in \mathcal{C}_2^{n\gamma}(\mathbb{R}^{d^n}).$
- (ii) The multiplicative property:

$$\delta \mathbf{X}_{sut}^{\mathbf{n}}(i_1,\ldots,i_n) = \sum_{n_1=1}^{n-1} \mathbf{X}_{su}^{\mathbf{n}_1}(i_1,\ldots,i_{n_1}) \mathbf{X}_{ut}^{\mathbf{n}-\mathbf{n}_1}(i_{n_1+1},\ldots,i_n).$$

(iii) The geometric relation: $\mathbf{X}_{st}^{\mathbf{n}}(i_1,\ldots,i_n)\mathbf{X}_{st}^{\mathbf{m}}(j_1,\ldots,j_m)$ can be expressed in terms of higher order integrals

Remark: The notion of controlled process is also more complicated for higher order rough paths.

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q Q