Convergence to equilibrium for rough differential equations

Samy Tindel

Purdue University

Barcelona GSE Summer Forum - 2017

Joint work with Aurélien Deya (Nancy) and Fabien Panloup (Angers)

- Setting and main result
- Convergence to equilibrium for diffusion processes
 - Poincaré inequality
 - Coupling method
- Elements of proof

- Setting and main result
- Convergence to equilibrium for diffusion processes
 - Poincaré inequality
 - Coupling method
- Elements of proof

Definition of fBm

Definition 1.

A 1-d fBm is a continuous process $X=\{X_t;\ t\in\mathbb{R}\}$ such that $X_0=0$ and for $H\in(0,1)$:

• X is a centered Gaussian process

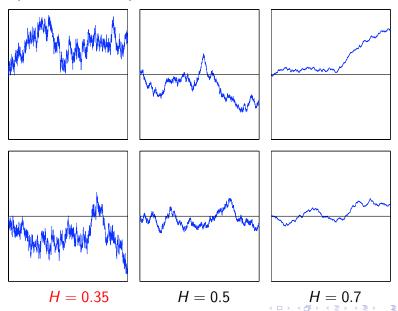
• $\mathbf{E}[X_tX_s]=\frac{1}{2}(|s|^{2H}+|t|^{2H}-|t-s|^{2H})$

d-dimensional fBm: $X = (X^1, \dots, X^d)$, with X^i independent 1-d fBm

Variance of increments:

$$\mathbf{E}[|\delta X_{st}^{j}|^{2}] \equiv \mathbf{E}[|X_{t}^{j} - X_{s}^{j}|^{2}] = |t - s|^{2H}$$

Examples of fBm paths



System under consideration

Equation:

$$dY_t = b(Y_t)dt + \sigma(Y_t) dX_t, \qquad t \ge 0$$
 (1)

Coefficients:

- $x \in \mathbb{R}^d \mapsto \sigma(x) \in \mathbb{R}^{d \times d}$ smooth enough
- $\sigma = (\sigma_1, \dots, \sigma_d) \in \mathbb{R}^{d \times d}$ invertible
- $\sigma^{-1}(x)$ bounded uniformly in x
- $X=(X^1,\ldots,X^d)$ is a d-dimensional fBm, with $H>\frac{1}{3}$

Resolution of the equation:

Illustration of ergodic behavior

Equation with damping: $dY_t = -\lambda Y_t dt + dX_t$

Simulation: For 2 values of the parameter λ

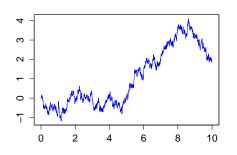


Figure: H = 0.7, d = 1, $\lambda = 0.1$

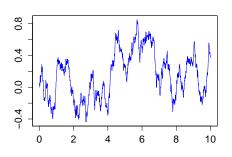
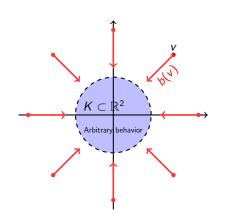


Figure: $H = 0.7, d = 1, \lambda = 3$

Coercivity assumption for b

Hypothesis: for every $v \in \mathbb{R}^d$, one has

$$\langle v, b(v) \rangle \leq C_1 - C_2 ||v||^2$$



Interpretation of the hypothesis:

Outside of a compact $K \subset \mathbb{R}^d$, $b(v) \simeq -\lambda v$ with $\lambda > 0$

Ergodic results for equation (1)

Brownian case: If X is a Brownian motion and b coercive

- ullet Exponential convergence of $\mathcal{L}(X_t)$ to invariant measure μ
- Markov methods are crucial
- See e.g Khashminskii, Bakry-Gentil-Ledoux

Fractional Brownian case: If X is a fBm and b coercive

- Markov methods not available
- Existence and uniqueness of invariant measure μ , when $H > \frac{1}{3}$ \hookrightarrow Series of papers by Hairer et al.
- Rate of convergence to μ :
 - When $\sigma \equiv \mathrm{Id}$: Hairer
 - ▶ When $H > \frac{1}{2}$ and further restrictions on σ : Fontbona–Panloup

Main result (loose formulation)

Theorem 2.

Let

- $H > \frac{1}{3}$, equation $dY_t = b(Y_t)dt + \sigma(Y_t)dX_t$
- ullet Y unique solution with initial condition μ_0
- ullet μ unique invariant measure

Then for all $\varepsilon > 0$ we have:

$$\|\mathcal{L}(Y_t^{\mu_0}) - \mu\|_{\mathrm{tv}} \leq c_{\varepsilon} t^{-(\frac{1}{8} - \varepsilon)}$$

Remark:

- Subexponential (non optimal) rate of convergence
- This might be due to the correlation of increments for X

- Setting and main result
- Convergence to equilibrium for diffusion processes
 - Poincaré inequality
 - Coupling method
- Elements of proof

- Setting and main result
- Convergence to equilibrium for diffusion processes
 - Poincaré inequality
 - Coupling method
- Elements of proof

Poincaré and convergence to equilibrium

Theorem 3.

Let X be a diffusion process. We assume:

- ullet μ is a symmetrizing measure, with Dirichlet form ${\mathcal E}$
- Poincaré inequality: $Var_{\mu}(f) \leq \alpha \, \mathcal{E}(f)$

Then the following inequality is satisfied:

$$\operatorname{Var}_{\mu}(P_t f) \leq \exp\left(-\frac{2t}{\alpha}\right) \operatorname{Var}_{\mu}(f)$$

Comments on the Poincaré approach

Remarks:

Theorem 3 asserts that

$$X_t \xrightarrow{(d)} \mu$$
, exponentially fast

- ② The proof relies on identity $\partial_t P_t = LP_t$ \hookrightarrow Hard to generalize to a non Markovian context

- Setting and main result
- Convergence to equilibrium for diffusion processes
 - Poincaré inequality
 - Coupling method
- Elements of proof

A general coupling result

Proposition 4.

Consider:

- Two processes $\{Z_t; t \geq 0\}$ and $\{Z'_t; t \geq 0\}$
- A coupling (\hat{Z}, \hat{Z}') of (Z, Z')

We set

$$au = \inf \left\{ t \geq 0; \ \hat{Z}_u = \hat{Z}_u' \ ext{for all} \ u \geq t
ight\}$$

Then we have:

$$\left\|\mathcal{L}(Z_t) - \mathcal{L}(Z_t')\right\|_{\mathrm{tv}} \leq 2\,\mathsf{P}\left(au > t
ight)$$

Comments on the coupling method

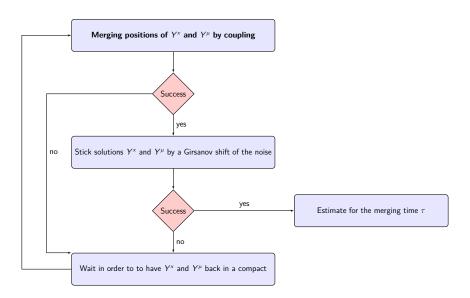
- ② In a Markovian setting→ Merging of paths a soon as they touch



- In our case
 - \hookrightarrow We have to merge both Y, Y' and the noise

- Setting and main result
- Convergence to equilibrium for diffusion processes
 - Poincaré inequality
 - Coupling method
- Elements of proof

Algorithmic view of the coupling



Merging positions (1)

Simplified setting:

We start at t = 0, and consider d = 1

Effective coupling: We wish to consider y^0, y^1 and h such that

We have

$$\begin{cases} dy_t^0 = b(y_t^0) dt + \sigma(y_t^0) dX_t \\ dy_t^1 = b(y_t^1) dt + \sigma(y_t^1) dX_t + h_t dt \end{cases}$$

• Merging condition: $y_0^0=a_0$, $y_0^1=a_1$ and $y_1^0=y_1^1$

Computation of the merging probability:

Through Girsanov's transform involving the shift h

Merging positions (2)

Generalization of the problem:

We wish to consider a family $\{y^{\xi}, h^{\xi}; \xi \in [0, 1]\}$ such that

We have

$$dy_t^{\xi} = b(y_t^{\xi}) dt + \sigma(y_t^{\xi}) dX_t + h_t^{\xi} dt$$

Merging condition:

$$y_0^{\xi} = a_0 + \xi(a_1 - a_0), \qquad y_1^0 = y_1^1, \qquad h^0 \equiv 0$$

Remark:

Here y has to be considered as a function of 2 variables t and ξ

Merging positions (3)

Solution of the problem: Consider a system with tangent process

$$\begin{cases} dy_t^{\xi} = \left[b(y_t^{\xi}) - \int_0^{\xi} d\eta \, j_t^{\eta}\right] dt + \sigma(y_t^{\xi}) \, dX_t \\ dj_t^{\xi} = b'(y_t^{\xi}) j_t^{\xi} \, dt + \sigma'(y_t^{\xi}) j_t^{\xi} \, dX_t \end{cases}$$

and initial condition $y_0^\xi=a_0+\xi(a_1-a_0)$, $j_0^\xi=a_1-a_0$

Heuristics: A simple integrating factor argument shows that

$$\partial_{\xi}y_{t}^{\xi}=j_{t}^{\xi}(1-t), \quad ext{and thus} \quad \partial_{\xi}y_{1}^{\xi}=0$$

Hence y^{ξ} solves the merging problem

Merging positions (4)

Rough system under consideration: for $t, \xi \in [0, 1]$

$$\begin{cases} dy_t^{\xi} = \left[b(y_t^{\xi}) - \int_0^{\xi} d\eta \, j_t^{\eta} \right] dt + \sigma(y_t^{\xi}) \, dX_t \\ dj_t^{\xi} = b'(y_t^{\xi}) j_t^{\xi} \, dt + \sigma'(y_t^{\xi}) j_t^{\xi} \, dX_t \end{cases}$$

Then y_1^{ξ} does not depend on ξ !

Difficulties related to the system:

- $\mathbf{0} \quad t \mapsto y_t$ is function-valued
- Unbounded coefficients, thus local solution only
- lacktriangledown Conditioning \Longrightarrow additional drift term with singularities
- Evaluation of probability related to Girsanov's transform