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First order differential equations

General form of equation:

dy
dt = f (t, y)

List of problems:
1 Existence of solution
2 Uniqueness of solution
3 Find exact solutions in simple cases
4 Approximation of solution in complex cases
5 Combine analytic, graphical and numerical methods
↪→ to understand solutions

Samy T. First order equations Differential equations 3 / 103



Outline

1 Linear equations

2 Separable equations

3 Homogeneous equations

4 Modeling with first order differential equations

5 Differences between linear and nonlinear equations

6 Autonomous equations

7 Exact equations and integrating factors

8 Numerical approximation: Euler’s method

Samy T. First order equations Differential equations 4 / 103



General form of 1st order linear equation

General form 1:
dy
dt + p(t)y = g(t)

General form 2:
P(t)dydt + Q(t)y = G(t)

Remark:
2 forms are equivalent if P(t) 6= 0
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Example with direct integration

Equation: (
4 + t2

) dy
dt + 2t y = 4t

Equivalent form:
d
dt
[(
4 + t2

)
y
]

= 4t

General solution: For a constant c ∈ R,

y = 2t2 + c
4 + t2
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Method of integrating factor
General equation:

dy
dt + p(t)y = g(t) (1)

Recipe for the method:
1 Consider equation (1)
2 Multiply the equation by a function µ
3 Try to choose µ such that equation (1) is reduced to:

d (µ y)
dt = a(t) (2)

4 Integrate directly equation (2)

Notation: If previous recipe works, µ is called integrating factor
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Example of integrating factor
Equation:

dy
dt + 1

2 y = 1
2 et/3 (3)

Multiplication by µ:

µ(t)dydt + 1
2 µ(t) y = 1

2 µ(t) et/3

Integrating factor: Choose µ such that µ′ = 1
2 µ, i.e µ(t) = et/2

Solving the equation: We have, for c ∈ R

(3) ⇐⇒
d
(
et/2y

)
dt = 1

2 e 5t
6

⇐⇒ y(t) = 3
5 e t

3 + c e− t
2
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Example of integrating factor (2)
Solution for a given initial data: If we know y(0) = 1, then

y(t) = 3
5 e t

3 + 2
5 e− t

2

Direction fields and integral curves:
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General case with constant coefficient

Equation considered:

dy
dt + ay = g(t), and y(0) = y0. (4)

Hypothesis:

a ∈ R, g : R+ −→ R continuous.

Then general solution to (4) is given by:

y(t) = e−at
∫ t

t0
eas g(s) ds + c e−at .

with t0 ≥ 0 and c ∈ R.

Proposition 1.
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Example with exponential growth
Equation:

dy
dt − 2y = 4− t

General solution: for c ∈ R,

y(t) = −7
4 + t

2 + c e2t

Direction fields and integral curves:
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General first order linear case

Equation considered:

dy
dt + p(t)y = g(t), (5)

Integrating factor:

µ(t) = exp
(∫

p(r) dr
)
.

Then general solution to (5) is given by:

y(t) = 1
µ(t)

[∫ t

t0
µ(s) g(s) ds + c

]
.

with t0 ≥ 0 and c ∈ R.

Proposition 2.
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Example with unbounded p

Equation considered:

t y ′ + 2y = 4t2, y(1) = 2. (6)

Equivalent form:

y ′ + 2
t y = 4t, y(1) = 2.

Integrating factor:
µ(t) = t2.

Solution:
y(t) = t2 + 1

t2
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Example with unbounded p (2)
Some integral curves:

Comments:
1 First example of solution which is not defined for all t ≥ 0
2 Due to singularity of t 7→ 1

t
3 Integral curves for t < 0: not part of initial value problem
4 According to value of y(1), different asymptotics as t → 0
5 Boundary between 2 behaviors: function y(t) = t2
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Example with no analytic solution
Equation considered:

2y ′ + t y = 2, y(0) = 1.
Integrating factor:

µ(t) = exp
(
t2
4

)
.

Solution:

y(t) = exp
(
−t2

4

)∫ t

0
exp

(
s2
4

)
ds + c exp

(
−t2

4

)
.

Some integral curves obtained by approximation:
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General form of separable equation

Notational change: y seen as function of x instead of t.
General form of first order equation:

dy
dx = f (x , y)

General form of separable equation:

M(x) + N(y) dydx = 0.

Heuristics to solve a separable equation:
Write equation as: M(x) dx = −N(y) dy .
Integrate in x on l.h.s, integrate in y on r.h.s
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Example of separable equation

Equation considered:

dy
dx = x2

1− y 2 ⇐⇒ −x
2 + (1− y 2)dydx = 0. (7)

Chain rule:
df (y)
dx = f ′(y) dydx

Application of chain rule:

(1− y 2)dydx = d
dx

(
y − y 3

3

)
, and x2 = d

dx

(
x3
3

)
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Example of separable equation (2)
Equation for integral curves: We have, for c ∈ R,

(7)⇐⇒ d
dx

(
−x3

3 + y − y 3
3

)
= 0⇐⇒ −x3 + 3y − y 3 = c

Some integral curves obtained by approximation:
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General solution for separable equations

Equation considered:

M(x) + N(y) dydx = 0. (8)

Antiderivatives: let H1,H2 such that

H ′1(x) = M(x) and H ′2(y) = N(y).

Then general solution to (8) is given by:

H1(x) + H2(y) = c ,

with c ∈ R.

Proposition 3.
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Solvable example of separable equation
Equation considered:

dy
dx = 3x2 + 4x + 2

2(y − 1) , and y(0) = −1. (9)

Integration: for a constant c ∈ R,

(9) ⇐⇒ 2(y − 1) dy =
(
3x2 + 4x + 2

)
dx

⇐⇒ y 2 − 2y = x3 + 2x2 + 2x + c

Solving the equation: if y(0) = −1, we have c = 3 and

y = 1±
(
x3 + 2x2 + 2x + 4

)1/2
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Solvable example of separable equation (2)
Determination of sign: Using y(0) = −1 again, we get

y = 1−
(
x3 + 2x2 + 2x + 4

)1/2
= 1−

(
(x + 2)(x2 + 2)

)1/2
Interval of definition: x ∈ (−2,∞)
↪→ boundary corresponds to vertical tangent on graph below
Integral curves:
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Example of equation with implicit solution

Equation considered:
dy
dx = 4x − x3

4 + y 3 .

General solution: for a constant c ∈ R,

y 4 + 16y + x4 − 8x2 = c

Initial value problem: if y(0) = 1, we get

y 4 + 16y + x4 − 8x2 = 17
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Example of equation with implicit solution (2)

Integral curves:

Interval of definition:
↪→ boundary corresponds to vertical tangent on graph
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Implicit equations with Matlab
Preliminary remark:

Most of equations in HW will be solved explicitly
To plot functions: use ezplot

Implicit equation:
Of the form H2(y) = c
Use function solve

Implicit function:
Of the form H2(y) = H1(x)
Loop on values of x
For each value of x , use function solve
Easier: use ezplot
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Homework hints

Problem 2.2-11:
Equation: x dx + y exp(−x) dy = 0, with y(0) = 1
Solution: y(x) = (2 exp(x)− 2x exp(−x)− 1)
Radical vanishes for x1 ' −1.7 and x2 ' 0.77

Problem 2.2-22:
Equation: (3y 2 − 4)dy = 3x2dx , with y(1) = 0
Solution: y 3 − 4y = x3 − 1
From equation, y ′ →∞ when y → ± 2√

3
This corresponds to x1 ' −1.276 and x2 ' 1.598
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General form of homogeneous equation

Recall: y seen as function of x instead of t.
General form of first order equation:

dy
dx = f (x , y)

General form of homogeneous equation:

dy
dx = ϕ

(y
x

)
.

Heuristics to solve homogeneous equations:
Go back to a separable equation
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Solving homogeneous equations

Equation:
dy
dx = ϕ

(y
x

)
. (10)

General method:
1 Set y(x) = x v(x), and express y ′ in terms of x , v , v ′.
2 Replace in equation (10) −→ separable equation in v .
3 Solve the separable equation in v .
4 Go back to y recalling y = x v .
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Example of homogeneous equation

Equation:
dy
dx = y − 4x

x − y

Equation for v :
1− v
v 2 − 4

dv
dx = 1

x

Solution for the v equation: for c ∈ R,

|v − 2|1/4|v + 2|3/4 = c
|x |
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Example of homogeneous equation (2)
Solution for the y equation: for c ∈ R,

|y − 2x |1/4|y + 2x |3/4 = c
Graph for the implicit equation: observe symmetry w.r.t origin

(abs(y-2 x))1/4 (abs(y+2 x))3/4-1 = 0

x
-6 -4 -2 0 2 4 6

y

-6

-4

-2

0

2

4

6
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Homework hints

Problem 2.2-32:
Equation: y ′ = x2+3y2

2xy

Solution for the v equation: v = ±(cx − 1)1/2

Solution for the y equation: y = ±x(cx − 1)1/2
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Homework hints (2)
Problem 2.2-B:

Equation: y ′ = (y + x)2

Set u = x + y
Equation in u:

u′
u2 + 1 = 1, of the form u′

f (u) = g(u)

Problem 2.2-C:
Equation: y 2y ′ + y3

x = 2
x2

Set u = y 3

Equation in u: of the form

u′
3 + u

x = 2
x2 of the form u′ + p(x)u = g(u)
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Global strategy

Interest of modeling:
Numerical predictions replace costly experiments

Basic steps:
1 Translate physical principles into equations

I Variations involved −→ 1st order equation
I Simplifications can often be useful

2 Analyze the system
I Solve equation
I Otherwise try to analyze behavior of system
I Possible linearization of the system

3 Comparison with experimental data
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Salt concentration example
Description of experiment:

At t = 0, Q0 lb of salt dissolved in 100 gal of water
Water containing 1

4 lb salt/gal entering, with rate r gal/min
Well-stirred mixture draining from tank, rate r
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Salt concentration example (2)
Notation: Q(t) ≡ quantity of salt at time t

Hypothesis: Variations of Q due to flows in and out,

dQ
dt = rate in− rate out

Equation:
dQ
dt = r

4 −
rQ
100 , Q(0) = Q0

Equation, standard form:

dQ
dt + r

100 Q = r
4 , Q(0) = Q0
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Salt concentration example (3)
Integrating factor: µ(t) = e rt

100

Solution:
Q(t) = 25 + (Q0 − 25) e− rt

100

Integral curves:
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Salt concentration example (4)
Expression for Q:

Q(t) = 25 + (Q0 − 25) e− rt
100

Question: time to reach q ∈ (Q0, 25)?

Answer: We find

Q(t) = q ⇐⇒ t = 100
r ln

(
Q0 − 25
q − 25

)

Application: If r = 3, Q0 = 50 and q = 25.5, then:

t = 130.4 min
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Chemical pollution example
Description of experiment:

At t = 0, 107 gal of fresh water
Water containing unwanted chemical component entering
↪→ with rate 5 · 106 gal/year
Water flows out, same rate 5 · 106 gal/year
Concentration of chemical in incoming water:

γ(t) = 2 + sin(2t) g/gal
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Chemical pollution example (2)
Notation: Q(t) ≡ quantity of chemical comp. at time t
↪→ measured in grams

Remark: Volume is constant

Hypothesis: Variations of Q due to flows in and out,

dQ
dt = rate in− rate out

Equation:

dQ
dt = 5 · 106 γ(t)− 5 · 106 · Q

107 , Q(0) = 0
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Chemical pollution example (3)
Equation, standard form: We set Q = 106q and get

dq
dt + 1

2 q = 10 + 5 sin(2t), q(0) = 0

Integrating factor: µ(t) = e t
2

Solution:

q(t) = 20− 40
17 cos(2t) + 10

17 sin(2t)− 300
17 e− t

2

Integral curve:
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Cooling cup example
Description of experiment:

Cup of coffee cooling in a room

Notation:
T (t) ≡ temperature of cup
τ ≡ temperature of room

Newton’s law for thermic exchange:
Variations of temperature proportional to difference between T and τ

Equation:
dT
dt = −k (T − τ) , T (0) = T0.
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Escape velocity example
Notation:

x ≡ altitude
x = 0: surface of earth

Description of experiment:
Body with mass m
Initial velocity v0, upward
Air resistance negligible
Newton’s constant g depends on altitude
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Escape velocity example (2)

Gravitational force: given by

w(x) = − k
(R + x)2 , and w(0) = −mg .

Hence:
w(x) = − mgR2

(R + x)2 .

Equation: according to Newton’s law,

mdv
dt = − mgR2

(R + x)2 , v(0) = v0. (11)
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Escape velocity example (3)
Elimination of variable: We have (chain rule)

dv
dt = dv

dx
dx
dt = v dv

dx .

Therefore we get a separable equation:

mdv
dt = − mgR2

(R + x)2 ⇐⇒ v dv
dx = − gR2

(R + x)2

Integration of equation: for c ∈ R,

v 2
2 = gR2

R + x + c
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Escape velocity example (4)
Solution: with v(0) = v0 we get

v = ±
(
v 20 − 2gR + 2gR2

R + x

)1/2

, (12)

and sign according to direction of velocity.

Question: maximal altitude that body reaches?
↪→ We seek ξ such that v = 0 whenever x = ξ in (12)

Answer: We find
ξ = v 20R

2gR − v 20

Escape velocity: in order to have ξ =∞
↪→ take v0 = (2gR)1/2 = 11.1 km s−1
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Problem 20, section 2.3
Experiment:

Ball with mass m thrown with velocity v0
Initial height: x0
Air resistance neglected

Equation:
v ′ = −g

Solution:
v = v0 − gt.

Maximal height: when v = 0, that is t = v0
g

Equation for height:

x(t) = x0 +
∫ t

0
v(s)ds = x0 + v0t −

gt2
2
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Problem 21, section 2.3
Experiment:

Ball with mass m thrown with velocity v0
Initial height: x0
Air resistance: −γ v

Equation: linear 1st order equation of the form

v ′ = −mg − γv

Solution:
v = −mg

γ
+
(
v0 + mg

γ

)
e−

γ
m t .

Maximal height: when v = 0, that is

t = m
γ
ln
(
1 + v0γ

mg

)
γ small
' v0

g
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Problem 22, section 2.3
Experiment:

Ball with mass m thrown with velocity v0
Initial height: x0
Air resistance: −γ v 2

Equation: whenever v ≥ 0, separable equation of the form

v ′ = −g − γ

m v 2

Solution: recalling
∫ dx

x2+a2 = 1
a tan

−1( x
a ), we get

v =
(
mg
γ

)1/2

tan
c − (mg

γ

)1/2

t
 ,

with c = tan−1(( γ
mg )1/2v0)

Samy T. First order equations Differential equations 50 / 103



Outline

1 Linear equations

2 Separable equations

3 Homogeneous equations

4 Modeling with first order differential equations

5 Differences between linear and nonlinear equations

6 Autonomous equations

7 Exact equations and integrating factors

8 Numerical approximation: Euler’s method

Samy T. First order equations Differential equations 51 / 103



Existence and uniqueness results: why?

Interest of existence and uniqueness results:
1 Mathematical interest
2 Before studying a physical system represented by an equation
↪→ know if it admits solutions

3 If a solution to en equation is exhibited
↪→ know if it is the only one
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Existence and uniqueness: linear case

General linear equation:

y ′ + p(t)y = g(t), y(t0) = y0 ∈ R. (13)

Hypothesis:
t0 ∈ I , where I = (α, β).
p and g continuous on I .

Conclusion:
There exists a unique function y satisfying equation (13) on I .

Theorem 4.

Remark: According to Theorem
↪→ Solution fails to exists only when p or g are discontinuous
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Existence and uniqueness: nonlinear case

General nonlinear equation:

y ′ = f (t, y), y(0) = y0 ∈ R. (14)

Hypothesis:
(t0, y0) ∈ R , where R = (α, β)× (γ, δ).
f and ∂f

∂y continuous on R .

Conclusion:
One can find h > 0 such that there exists a unique function y
↪→ satisfying equation (14) on (t0 − h, t0 + h).

Theorem 5.

Remark: If f is continuous, we still get existence of a solution.
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Maximal interval in a linear case
Equation considered: back to equation (6), namely

t y ′ + 2y = 4t2, y(1) = 2.

Equivalent form:

y ′ + 2
t y = 4t, y(1) = 2.

Application of Theorem 4:
g(t) = 4t continuous on R
p(t) = 2

t continuous on (−∞, 0) ∪ (0,∞) only
1 ∈ (0,∞)

We thus get unique solution on (0,∞)
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Maximal interval in a linear case (2)

Comparison with explicit solution: We have seen that

y ′ + 2
t y = 4t, y(1) = 2 =⇒ y(t) = t2 + 1

t2 .

This is defined on (0,∞) as predicted by Theorem 4.

Changing initial condition: consider

y ′ + 2
t y = 4t, y(−1) = 2.

Then:
Solution defined on (−∞, 0)
On (−∞, 0) we have y(t) = t2 + 1

t2 .
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Maximal interval in a linear case (3)

Interval of definition on integral curves:

Comments:
Interval of definition delimited by asymptotes
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Maximal interval in a nonlinear case
Equation considered: back to equation (9), namely

y ′ = 3x2 + 4x + 2
2(y − 1) , and y(0) = −1.

Application of Theorem 5: we have

f (x , y) = 3x2 + 4x + 2
2(y − 1) ,

∂f
∂y (x , y) = −3x2 + 4x + 2

2(y − 1)2

Therefore:
1 There exists rectangle R such that

I (0,−1) ∈ R
I f and ∂f

∂y continuous on R
2 According to Theorem 5 there is unique solution on interval

(−h, h), with h > 0
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Maximal interval in a nonlinear case (2)

Comparison with explicit solution: We have seen that

y = 1−
(
(x + 2)(x2 + 2)

)1/2

Interval of definition: x ∈ (−2,∞)
↪→ much larger than predicted by Theorem 5

Changing initial condition: consider y(0) = 1, on line y = 1. Then:
1 Theorem 5: nothing about possible solutions
2 Direct integration:

I We find y = 1± (x3 + 2x2 + 2x)1/2
I 2 possible solutions defined for x > 0
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Maximal interval in a nonlinear case (3)
Interval of definition on integral curves:

Comments:
Interval of definition delimited by vertical tangents
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Example with non-uniqueness
Equation considered:

y ′ = y 1/3, and y(0) = 0.

Application of Theorem 5: f (y) = y 1/3. Hence,
f : R→ R continuous on R, differentiable on R∗

Theorem 5: gives existence, not uniqueness

Solving the problem: Separable equation, thus

General solution: for c ∈ R, y =
[
2
3(t + c)

]3/2
With initial condition y(0) = 0,

y =
(2t
3

)3/2
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Example with non-uniqueness (2)
3 solutions to the equation:

φ1(t) =
(2t
3

)3/2
, φ2(t) = −

(2t
3

)3/2
, ψ(t) = 0.

Family of solutions: For any t0 ≥ 0,

χ(t) = χt0(t) =

0 for 0 ≤ t < t0
±
(
2(t−t0)

3

)3/2
for t ≥ t0

Integral curves:
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Comparison linear/nonlinear equations

Nice properties of linear equations:
1 All solutions expressed in terms of a constant c .
2 General formula for solution, involving integrations.
3 Discontinuities/singularities deduced from properties of p and g .

Problems with nonlinear equations:
1 Solutions in terms of a constant c
↪→ possibility of other solutions too.

2 No general formula for solutions.
3 Often implicit solution only.
4 Singularities depend on particular equation and initial condition.
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Bernoulli equations (HW 2-4 27 and 28)
Equation: For n ≥ 2,

y ′ + p(t)y = q(t)yn.

Interest of Bernoulli equations:
Nonlinear equations which can be turned into linear equations.

Alternative form:
y ′
yn + p(t)

yn−1 = q(t)

Change of variable: Set v = 1
yn−1 . We get

v ′ − (n − 1)p(t)v = −(n − 1)q(t) −→ Linear equation
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Introduction

General form of autonomous equations:

dy
dt = f (y) (15)

Solving autonomous equations:
This is a special case of separable equation

Aim of the section:
1 Information on equation (15) with graphical methods
2 Applications to population growth models
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Exponential growth

Hypothesis:
Rate of change proportional to value of population

Equation: for r ∈ R and y0 ≥ 0,

dy
dt = ry , y(0) = y0

Solution:
y = y0 exp(rt)
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Exponential growth (2)

Integral curves:

Limitation of model:
Cannot be valid for large time t.
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Logistic growth
Hypothesis:

Growth rate depends on population
Related equation: dy

dt = h(y)y

Specifications for h:
h(y) ' r > 0 for small values of y
y 7→ h(y) decreases for larger values of y
h(y) < 0 for large values of y

Possibility: h(y) = r − ay

Verhulst equation: for r ,K > 0

dy
dt = f (y), with f (y) = r

(
1− y

K

)
y (16)
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Logistic growth (2)

Vocabulary:
r : Intrinsic growth.
K : Saturation level.
Solutions to f (y) = 0: critical points.

Equilibrium solutions:
Defined as y ≡ `, where ` critical point
Here 2 equilibrium: y = 0 and y = K
If we have:

I y(0) = 0 or y(0) = K
I y satisfies (16),

then y stays constant
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Logistic growth (3)
Graphical interpretation 1:

Draw y 7→ f (y).
Here f parabola, intercepts (0, 0) and (K , 0).
We have dy

dt > 0 if y ∈ (0,K )
We have dy

dt < 0 if y > K
Vocabulary: y -axis is called phase line
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Logistic growth (4)
Graphical interpretation 2: behavior of t 7→ y(t)

Draw line y = 0 and y = K
Other curves:

I Increasing if y < K
I Decreasing if y > K
I Flattens out as y → 0 or y → K

Curves do not intersect
Possibility of a convexity/concavity analysis (threshold K

2 )
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Logistic growth (5)

Stable and unstable equilibrium:
1 We have seen (phase diagram):

I y increases if y < K
I y decreases if y > K

Thus K stable equilibrium
2 We have seen (phase diagram):

I y increases as long as y > 0 (and y < K )
Thus 0 unstable equilibrium

Remark:
See also the notion of semi-stable equilibrium
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Logistic growth (6)
Solving the equation: Equation (16) can be written as[

1
y + 1/K

1− y/K

]
dy = r dt

Solution is given by:

y = y0K
y0 + (K − y0)e−rt

Equilibrium revisited: For all y0 > 0 we have:

lim
t→∞

y(t) = K .

Thus K stable equilibrium.
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Critical threshold example

Equation considered: for r ,T > 0

dy
dt = f (y), with f (y) = −r

(
1− y

T

)
y (17)

Critical points:

f (y) = 0 ⇐⇒ y = 0 or y = T

This corresponds to 2 equilibrium.
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Critical threshold example (2)
Graphical interpretation 1:

Here f parabola, intercepts (0, 0) and (T , 0).
We have dy

dt < 0 if y ∈ (0,T )
We have dy

dt > 0 if y > T

Conclusion for equilibrium:
T unstable equilibrium
0 stable equilibrium
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Critical threshold example (3)
Graphical interpretation 2: behavior of t 7→ y(t)

Draw line y = 0 and y = T
Other curves:

I Increasing if y > T
I Decreasing if y < T
I Flattens out as y → 0

Curves do not intersect
Possibility of a convexity/concavity analysis (threshold T

2 )
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Critical threshold example (4)

Solving the equation: Like for equation (16) we get

y(t) = y0T
y0 + (T − y0)ert (18)

Limiting behavior: according to (18),
1 If 0 < y0 < T , we have limt→∞ y(t) = 0.
2 If y0 > T , we have limt→t∗ y(t) =∞, where

t∗ = 1
r ln

(
y0

y0 − T

)

This behavior could not be inferred from graphic representation.
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HW 12, Section 2.5
Equation:

y ′ = y 2(4− y 2) ≡ f (y)

Graph of f : Intercepts for x ∈ {−2, 0, 2}

Equilibrium:
−2 and 2 are stable
0 is unstable
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Outline

1 Linear equations

2 Separable equations

3 Homogeneous equations

4 Modeling with first order differential equations

5 Differences between linear and nonlinear equations

6 Autonomous equations

7 Exact equations and integrating factors

8 Numerical approximation: Euler’s method
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Example of exact equation

Equation considered:

2x + y 2 + 2xyy ′ = 0 (19)

Remark: equation (19) neither linear nor separable

Additional function: Set ψ(x , y) = x2 + xy 2. Then:

∂ψ

∂x = 2x + y 2, and ∂ψ

∂y = xy .
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Example of exact equation (2)
Expression of (19) in terms of ψ: we have

(19) ⇐⇒ ∂ψ

∂x + ∂ψ

∂y
dy
dx = 0

Solving the equation: We assume y = y(x). Then

(19) ⇐⇒ dψ
dx (x , y) = 0 ⇐⇒ ψ(x , y) = c ,

for a constant c ∈ R.

Conclusion: equation solved under implicit form

x2 + xy 2 = c .
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General exact equation

Equation considered:

M(x , y) + N(x , y) dydx = 0. (20)

Hypothesis: there exists ψ : R2 → R such that

∂ψ

∂x = M(x , y) and ∂ψ

∂y = N(x , y).

Conclusion: general solution to (20) is given by:

ψ(x , y) = c , with c ∈ R,

provided this relation defines y = y(x) implicitely.

Proposition 6.
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Criterion for exact equations
Notation: For f : R2 → R, set fx = ∂f

∂x and fy = ∂f
∂y

Let:
R = {(x , y); α < x < β, and γ < y < δ}.
M, N , My , Nx continuous on R .

Then there exists ψ such that:

ψx = M, and ψy = N on R ,

if and only if M and N satisfy:

My = Nx on R

Theorem 7.
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Computation of function ψ

Aim: If My = Nx , find ψ such that ψx = M and ψy = N .

Recipe in order to get ψ:
1 Write ψ as antiderivative of M with respect to x :

ψ(x , y) = a(x , y) + h(y), where a(x , y) =
∫

M(x , y) dx

2 Get an equation for h by differentiating with respect to y :

h′(y) = N(x , y)− ay(x , y)

3 Finally we get:
ψ(x , y) = a(x , y) + h(y).
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Computation of ψ: example
Equation considered:

y cos(x) + 2xey︸ ︷︷ ︸
M

+
(
sin(x) + x2ey − 1

)
︸ ︷︷ ︸

N

y ′ = 0. (21)

Step 1: verify that My = Nx on R2.

Step 2: compute ψ according to recipe. We find

ψ(x , y) = y sin(x) + x2ey − y

Solution to equation (21):

y sin(x) + x2ey − y = c .
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Computation of ψ: counter-example

Equation considered:

3xy + y 2︸ ︷︷ ︸
M

+
(
x2 + xy

)
︸ ︷︷ ︸

N

y ′ = 0. (22)

Step 1: verify that My 6= Nx .

Step 2: compute ψ according to recipe. We find

h′(y) = −x2
2 − xy −→ still depends on x !

Conclusion: Condition My = Nx necessary.

Samy T. First order equations Differential equations 87 / 103



Solving an exact equation: example
Equation considered:

2x − y︸ ︷︷ ︸
M

+ (2y − x)︸ ︷︷ ︸
N

y ′ = 0, y(1) = 3. (23)

Step 1: verify that My = Nx on R2.

Step 2: compute ψ according to recipe. We find

ψ(x , y) = x2 − xy + y 2.

Solution to equation (23): recalling y(1) = 3, we get

x2 − xy + y 2 = 7.

Samy T. First order equations Differential equations 88 / 103



Solving an exact equation: example (2)
Expressing y in terms of x : we get

y = x
2 ±

(
7− 3x2

4

)1/2

.

Recalling y(1) = 3, we end up with:

y = x
2 +

(
7− 3x2

4

)1/2

.

Interval of definition:

x ∈
−2

√
7
4 ; 2

√
7
4

 ' (−3.05 ; 3.05)
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HW 16, Section 2.6
Equation considered:

ye2xy + x︸ ︷︷ ︸
M

+
(
bxe2xy

)
︸ ︷︷ ︸

N

y ′ = 0, b ∈ R. (24)

Step 1: We have My = Nx iff b = 1.

Step 2: When b = 1, compute ψ according to recipe. We find

ψ(x , y) = 1
2
(
e2xy + x2

)
.

Solution to equation (24): , we get

e2xy + x2 = c .
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Outline

1 Linear equations

2 Separable equations

3 Homogeneous equations

4 Modeling with first order differential equations

5 Differences between linear and nonlinear equations

6 Autonomous equations

7 Exact equations and integrating factors

8 Numerical approximation: Euler’s method
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Approximations of first order equations: why?

Generic first order equation: back to equation (14), that is

dy
dt = f (t, y), y(t0) = y0

General facts about (14):
1 If f is continuous, equation can be solved in neighborhood of t0.
2 Solution y cannot be computed explicitly.

Conclusion:
We need approximations in order to understand behavior of y .
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Starting from direction fields
Equation considered:

dy
dt = 3− 2t − 0.5y (25)

Direction fields for (25):

Basic idea: Linking the tangent lines on the graph
↪→ we get an approximation of solution.
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Questions about approximation methods

Basic issues:
1 Method to link tangent lines.
2 Do we get an approximation of real solution?
3 Rate of convergence for approximation.
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First steps of approximation

Equation considered: equation (14), that is

dy
dt = f (t, y), y(t0) = y0.

Approximation near t0:
Solution passes through (t0, y0)
Slope at (t0, y0) is f (t0, y0)
Consider t1 close to t0

Then linear approximation of y(t1) is given by:

y1 = y0 + f (t0, y0) (t1 − t0) .
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First steps of approximation (2)

Approximation near t1:
Solution passes through (t1, y(t1))
Problem: we don’t know the exact value of y(t1)
We approximate y(t1) by y1
Approximate slope at (t1, y1) is given by f (t1, y1)
Consider t2 close to t1

Then linear approximation of y(t2) is given by:

y2 = y1 + f (t1, y1) (t2 − t1) .
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Euler scheme

Equation considered: equation (14), that is

dy
dt = f (t, y), y(t0) = y0.

Hypothesis: constant step in time,

tn+1 − tn = h.

Notation: fn = f (tn, yn), ŷ = Euler’s approximation.
Conclusion: Recursive formula for Euler’s scheme,

yn+1 = yn + fn h
ŷ(t) = yn + fn (t − tn) , for t ∈ [t0 + nh, t0 + (n + 1)h)

Proposition 8.
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Example of Euler scheme
Equation considered: back to equation (25), that is

dy
dt =

f (t,y)︷ ︸︸ ︷
3− 2t − 0.5y , y(0) = 1

Exact solution: we find

y = φ(t) = 14− 4t − 13 exp
(
− t
2

)
Euler scheme, step 1: with h = 0.2 we have

f0 = f (0, 1) = 2.5
ŷ(t) = 1 + 2.5t for t ∈ (0, 0.2)
y1 = 1.5
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Example of Euler scheme (2)
Euler scheme, step 2: with h = 0.2 we have

f1 = f (0.2, 1.5) = 1.85
ŷ(t) = 1.5 + 1.85(t − 0.2) for t ∈ (0.2, 0.4)
y2 = 1.87

Numerical results:

Remark: about 10% error at t = 1
↪→ Approximation not accurate enough, smaller h needed.
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Example of Euler scheme (3)

Numerical results with varying h:

Comments:
Error decreases with time step.
Error could possibly be of order h.
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Example of Euler scheme (4)

Graphical comparison for h = 0.2:

Remark: ŷ ≥ y
↪→ Due to the fact that y concave =⇒ tangent above graph
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Euler scheme for fast increasing solution

Equation considered:

dy
dt = 4− t + 2y , y(0) = 1 (26)

Exact solution: we find

y = φ(t) = −7
4 −

t
2 + 11

4 exp (2t)

Thus exponential growth for y .
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Euler scheme for fast increasing solution (2)
Numerical results with varying h:

Comments:
Error still decreases with h
Worse performance than for (25).

Explanation of difference:
For (25) all solutions converge to φ(t) = 14− 14t
↪→ successive errors are not propagating
For (26) solutions diverge exponentially
↪→ strong propagation of successive errors
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