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Outline

@ Linear equations

e Separable equations

© Homogeneous equations

@ Modeling with first order differential equations

© Differences between linear and nonlinear equations
@ Autonomous equations

@ Exact equations and integrating factors

© Numerical approximation: Euler's method
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First order differential equations

General form of equation:

List of problems:
© Existence of solution
@ Uniqueness of solution
© Find exact solutions in simple cases
© Approximation of solution in complex cases

© Combine analytic, graphical and numerical methods
— to understand solutions
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@ Linear equations
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General form of 1st order linear equation

General form 1: J
y
— t)y = t
o +p(t)y = g(t)

General form 2: J
P(t) 5 + Q(t)y = G(t)

Remark:
2 forms are equivalent if P(t) # 0
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Example with direct integration

Equation:

4+ t? Q+2ty:4t
dt

Equivalent form:
d 2
E{(4+t>y] = 4t
General solution: For a constant ¢ € R,

2P+
YTy
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Method of integrating factor

General equation:
dy
o TPty =g(t) (1)
Recipe for the method:
@ Consider equation (1)
@ Multiply the equation by a function p

@ Try to choose p such that equation (1) is reduced to:

d(py)
1) (2)

@ Integrate directly equation (2)

Notation: If previous recipe works, 1 is called integrating factor
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Example of integrating factor

Equation:
dy 1 1 3

)/259

a2
Multiplication by p:

dy
wlt)

Integrating factor: Choose p such that p/ = % p, i.e pu(t) =

Solving the equation: We have, for c € R

d (et’?
B) = (dt Z :%
— y(t) = +c

U'|| w
w|n
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Solution for a given initial data: If we know y(0) = 1, then

Example of integrating factor (2)
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Direction fields and integral curves:
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General case with constant coefficient

,—[Proposition 1.]

Equation considered:

d
S =g, and y(0) =y (*)
Hypothesis:
acR, g : Ry — R continuous.

Then general solution to (4) is given by:

t
y(t) = e""t/ e” g(s)ds + ce?".

to

with tp > 0 and c € R.

\ J
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ial growth

Example with exponent
Equation:

General solution: for ¢ € R,

Direction fields and integral curves:

o Y

5
P
P e

First order equations

Samy T.



General first order linear case

,—[Proposition 2.]

Equation considered:

dy

= p(t)y = g(t),

Integrating factor:

() = exp ([ plr)dr )

Then general solution to (5) is given by:

with to > 0 and ¢ € R.

\.

y(0) = —— | [ (s g(s) ds + c| .
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Example with unbounded p

Equation considered:
ty +2y =412,  y(l)=2. (6)

Equivalent form:

2
y'—l—?y=4t, y(1) =2.

Integrating factor:

Solution:
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Example with unbounded p (2)

Some integral curves:

N2)1\\A

1,2)

w

1+

N

@ First example of solution which is not defined for all t > 0
@ Due to singularity of t — %

Comments:

© Integral curves for t < 0: not part of initial value problem
@ According to value of y(1), different asymptotics as t — 0
@ Boundary between 2 behaviors: function y(t) = t2
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Example with no analytic solution
Equation considered:

2y +ty =2, y(0) =1.

t2
p(t) = exp <Z> :
Solution:

y(t) = exp (—?) /Otexp (f) ds + ¢ exp (—%) )

Some integral curves obtained by approximation:

Integrating factor:

-1
-2

-3
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Outline

© Separable equations
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General form of separable equation

Notational change: y seen as function of x instead of t.
General form of first order equation:

dy
=f(x
o=y

General form of separable equation:

dy

I = 0.

M(x) + N(y) —

Heuristics to solve a separable equation:
@ Write equation as: M(x)dx = —N(y) dy.

@ Integrate in x on lL.h.s, integrate in y on r.h.s
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Example of separable equation

Equation considered:

dy . x? 2 o\ dy .
Chain rule: 4 () J
y / y
— f'(y) 2
dx ) dx

Application of chain rule:

dy d y3 d (x3
(L-y )dx dx (y 3)’ and - x dx (3
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Example of separable equation (2)

Equation for integral curves: We have, for ¢ € R,

3

—-x*+3y—y’=c

0 <=

"
SIS —— S —— =y

e ——t

P T

\\\\\ §f === A )

Some integral curves obtained by approximation:
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General solution for separable equations

,—[Proposition 3.}

Equation considered:

dy

M(x) + N(y) 2 =

0. (8)
Antiderivatives: let H;, H, such that
Hi(x) = M(x) and Hy(y) = N().
Then general solution to (8) is given by:
Hi(x) + Ha(y) = c,

with ¢ € R.

\ J
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Solvable example of separable equation

Equation considered:

dy_3x2+4x+2

& Ay 1) and y(0)=-1. (9)

Integration: for a constant ¢ € R,

9) = 2(y—1)dy:(3x2+4x—|—2)dx
— y?2y=x3+2x* +2x+c

Solving the equation: if y(0) = —1, we have ¢ = 3 and

y:1:|:(X?'—i-2x2—i-2x—|—4)l/2
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Solvable example of separable equation (2)

Determination of sign: Using y(0)

y=1-— (X3+2X2+2X—|—4)1/2=1— ((x—l—2)(x2+2))1

= —1 again, we get

Interval of definition: x € (—2,00)
— boundary corresponds to vertical tangent on graph below

Integral curves:

¥y

Z

-2,1)

A\

(

(0,-1)

-
=
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Example of equation with implicit solution

Equation considered:

dy 4x—x

dx 4+ y3’
General solution: for a constant ¢ € R,

y*+16y +x* —8x*=c¢

Initial value problem: if y(0) =1, we get

y* 4+ 16y + x* —8x* =17
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Example of equation with implicit solution (2)

Integral curves:

Interval of definition:
— boundary corresponds to vertical tangent on graph
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Implicit equations with Matlab

Preliminary remark:
@ Most of equations in HW will be solved explicitly

@ To plot functions: use ezplot

Implicit equation:
e Of the form Hy(y) = ¢

@ Use function solve

Implicit function:
o Of the form Hy(y) = Hi(x)
@ Loop on values of x
@ For each value of x, use function solve

o Easier: use ezplot
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Homework hints

Problem 2.2-11:
e Equation: x dx + y exp(—x) dy = 0, with y(0) =1
@ Solution: y(x) = (2exp(x) — 2x exp(—x) — 1)

@ Radical vanishes for x; ~ —1.7 and x, ~ 0.77

Problem 2.2-22:
e Equation: (3y? — 4)dy = 3x%dx, with y(1) =0
@ Solution: y* —4y =x3 -1
e From equation, y’ — oo when y — j:%
@ This corresponds to x; ~ —1.276 and x, ~ 1.598

Samy T. First order equations Differential equations 26 / 103



Outline

© Homogeneous equations
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General form of homogeneous equation

Recall: y seen as function of x instead of t.

General form of first order equation:

dy
& - f(X7y)

General form of homogeneous equation:

dy _ (y)
dx pr‘

Heuristics to solve homogeneous equations:

@ Go back to a separable equation
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Solving homogeneous equations

Equation:

" o)

Q Set y(x) = x v(x), and express y’ in terms of x, v, V.

General method:
@ Replace in equation (10) — separable equation in v.

© Solve the separable equation in v.

© Go back to y recalling y = x v.
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Example of homogeneous equation

Equation:
dy y—4x
dx x—y
Equation for v:
1—vdv 1

v2—4dx  x
Solution for the v equation: for ¢ € R,

C

x|

lv — 24y 4234 =
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Example of homogeneous equation (2)
Solution for the y equation: for ¢ € R,

ly = 2x["4y +2x¥* = ¢

Graph for the implicit equation: observe symmetry w.r.t origin

(abs(y-2 x))¥* (abs(y+2 x))**-1=0
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Homework hints

Problem 2.2-32:

2xy

2+3y2
@ Solution for the v equation: v

e Equation: y' ==

+(cx — 1)1/2

+x(cx —1)1/2

@ Solution for the y equation: y
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Homework hints (2)
Problem 2.2-B:
e Equation: y' = (y + x)?
@ Setu=x+y
e Equation in u:

ul

uz+1

=1, of the form

Problem 2.2-C:
e Equation: y2y’ + é =3

@ Setu=1y3
e Equation in u: of the form
voou
3 + x X2

Samy T. First order equations
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Outline

@ Modeling with first order differential equations
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Global strategy

Interest of modeling:
Numerical predictions replace costly experiments

Basic steps:
© Translate physical principles into equations

» Variations involved — 1st order equation
» Simplifications can often be useful

© Analyze the system

» Solve equation
» Otherwise try to analyze behavior of system
» Possible linearization of the system

© Comparison with experimental data
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Salt concentration example

Description of experiment:
o At t =0, Qo Ib of salt dissolved in 100 gal of water
o Water containing } Ib salt/gal entering, with rate r gal/min
@ Well-stirred mixture draining from tank, rate r

rgal/min,% Ib/gal

rgal/min
n
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Salt concentration example (2)
Notation: Q(t) = quantity of salt at time t

Hypothesis: Variations of Q due to flows in and out,

@ = rate in — rate out
dt
Equation:
dQ r rQ B
w =4 w0 AO=®
Equation, standard form:
dQ@ r r
Q=-, Q(0) = Qo

a9t T100Y " 4
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Salt concentration example (3)

rt

Integrating factor: p(t) = eiwo

Solution: )
Q(t) =25+ (Qo — 25) e 100

Integral curves:
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Salt concentration example (4)

Expression for Q:

Q(t) =25 + (Qy — 25) e~ 1

Question: time to reach q € (Qp,25)?

Answer: We find

B 100 (Q —25
Q(t)=q <<= t= I<q_25>

r

Application: If r =3, @y = 50 and g = 25.5, then:

t = 130.4 min
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Chemical pollution example
Description of experiment:
e At t =0, 107 gal of fresh water
@ Water containing unwanted chemical component entering
< with rate 5 - 10° gal/year
@ Water flows out, same rate 5 - 10° gal /year
@ Concentration of chemical in incoming water:

~(t) = 2 +sin(2t) g/gal

rgalimin, 5 b/gal
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Chemical pollution example (2)

Notation: Q(t) = quantity of chemical comp. at time ¢t
— measured in grams

Remark: Volume is constant

Hypothesis: Variations of @ due to flows in and out,

—— = rate in — rate out

dt

Equation:

d@ 6 6
— =5.10 t) —5-10°-
™ v(t)

Q
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Chemical pollution example (3

Equation, standard form: We set Q = 10°q and get
dq

1
o T3 =1045sin(2t),  q(0)=0

2
Integrating factor: p(t) = ez

Solution:
40 10 300
t) =20 - — 2t) + —sin(2t) — ——e" 2
q(t) T, cos(2t) + 17 sin(2t) 17 ¢
Integral curve:
2 JaNla

Differential equations 42 /103



Cooling cup example

Description of experiment:
@ Cup of coffee cooling in a room

Notation:
e T(t) = temperature of cup

@ 7 = temperature of room

Newton's law for thermic exchange:
Variations of temperature proportional to difference between T and 7

Equation:
dT

= —k(T-7), T0O)=T
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Escape velocity example

Notation:
o x = altitude
@ x = 0: surface of earth

Description of experiment:
@ Body with mass m
@ Initial velocity vy, upward
@ Air resistance negligible
@ Newton's constant g depends on altitude
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Escape velocity example (2)

Gravitational force: given by

k
w(x) = TR and w(0) = —mg.
Hence: 2
mg

Equation: according to Newton's law,

v mgR?

m— = TR v(0) = . (11)
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Escape velocity example (3)
Elimination of variable: We have (chain rule)

dv B dv dx dv

dt  dx dt ' dx

Therefore we get a separable equation:

v mgR? dv

Samy T. First order equations
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Escape velocity example (4)

Solution: with v(0) = vy we get

2gR2 )1/2

v—j:<v02—2gR—i—R+X

and sign according to direction of velocity.

Question: maximal altitude that body reaches?
— We seek £ such that v = 0 whenever x = ¢ in (12)

Answer: We find
ng

€:2gR—v02

Escape velocity: in order to have £ = oo
< take vp = (2gR)Y? = 11.1 km s !
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Problem 20, section 2.3

Experiment:
e Ball with mass m thrown with velocity v
@ Initial height: xg
@ Air resistance neglected

Equation:

!/

vV =—g

Solution:
v =y — gt.

Maximal height: when v =0, that is t = ?
Equation for height:

gt?

x(t )—X0+/ v(s)ds = xo + vot — Z— 5
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Problem 21, section 2.3

Experiment:
e Ball with mass m thrown with velocity vy
@ Initial height: xg
@ Air resistance: —y v

Equation: linear 1st order equation of the form

vV =—mg—v

Solution:

m m
v=-"84 <v0 + _g) e mt,
Y Y

Maximal height: when v = 0, that is

Y mg
Samy T. First order equations
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Problem 22, section 2.3

Experiment:
o Ball with mass m thrown with velocity vy
@ Initial height: xg

@ Air resistance: —v v

Equation: whenever v > 0, separable equation of the form

Y- —g — l V2
m
Solution: recalling | %5 = Ltan~!(%), we get

e\ 12 e\ 12
v:<—g> tan c—(—g> t],
v v
with ¢ = tan_l((mig)l/zvo)
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© Differences between linear and nonlinear equations
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Existence and uniqueness results: why?

Interest of existence and uniqueness results:
©@ Mathematical interest

© Before studying a physical system represented by an equation
— know if it admits solutions

© If a solution to en equation is exhibited
— know if it is the only one
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Existence and uniqueness: linear case

—~ Theorem 4. \

General linear equation:

Yy +p(t)y =g(t), ylt)=weR (13)

Hypothesis:
e ty € I, where | = (a, B).
@ p and g continuous on /.

Conclusion:
There exists a unique function y satisfying equation (13) on /.

\ J

Remark: According to Theorem
— Solution fails to exists only when p or g are discontinuous
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Existence and uniqueness: nonlinear case

—~ Theorem 5. \

General nonlinear equation:

y'=f(t,y),  y(0)=y €R. (14)
Hypothesis:
o (to,)0) € R, where R = («, ) x (7, 9).
@ f and g—; continuous on R.
Conclusion:

One can find h > 0 such that there exists a unique function y
— satisfying equation (14) on (t, — h, to + h).

\ J

Remark: If f is continuous, we still get existence of a solution.
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Maximal interval in a linear case

Equation considered: back to equation (6), namely
ty' 42y = 4t? y(1) =2.

Equivalent form:

2
M+;y=4n y(1)=2.

Application of Theorem 4:
e g(t) = 4t continuous on R
e p(t) = 2 continuous on (—o0,0) U (0, c0) only
e 1€ (0,00)

We thus get unique solution on (0, c0)
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Maximal interval in a linear case (2)
Comparison with explicit solution: We have seen that
, 2 > 1
y +?y=4t, y(1)=2 = y(t)=t +§.
This is defined on (0, 00) as predicted by Theorem 4.

Changing initial condition: consider

2
y+ly=4t y(-1) =2
Then:
@ Solution defined on (—o0,0)
@ On (—00,0) we have y(t) = t? + .
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Maximal interval in a linear case (3)

Interval of definition on integral curves:
&/
1,2)

NT7

Comments:
@ Interval of definition delimited by asymptotes
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Maximal interval in a nonlinear case

Equation considered: back to equation (9), namely

, 3X7+4x+2

y 20— 1) and y(0) =—1.
Application of Theorem 5: we have
f(x,y) = M’ g(x,y) — _M
2(y - 1) Oy 2(y -1y
Therefore:

@ There exists rectangle R such that
> (0,-1) € R
» f and g—; continuous on R
@ According to Theorem 5 there is unique solution on interval
(—h, h), with h >0
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Maximal interval in a nonlinear case (2)

Comparison with explicit solution: We have seen that

y=1-((x+2)(+2)"

Interval of definition: x € (—2,00)
< much larger than predicted by Theorem 5

Changing initial condition: consider y(0) =1, on line y = 1. Then:
@ Theorem 5: nothing about possible solutions
© Direct integration:
» We find y = 1+ (x3 + 2x2 + 2x)1/?
» 2 possible solutions defined for x > 0
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Maximal interval in a nonlinear case (3)

Interval of definition on integral curves:

—All

@ Interval of definition delimited by vertical tangents

Comments:
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Example with non-uniqueness
Equation considered:

y'=y"? and y(0)=0.
Application of Theorem 5: f(y) = y*/3. Hence,

o f: R — R continuous on R, differentiable on R*

@ Theorem b: gives existence, not uniqueness

Solving the problem: Separable equation, thus

3/2
@ General solution: for c € R, y = [%(t + c)] /
e With initial condition y(0) = 0,

2t 3/2
r=(3)
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Example with non-uniqueness (2)
3 solutions to the equation:

a0 =(2)" wm--(3)". ww-o

Family of solutions: For any t; > 0,

( ) ( ) for0<t< to
X(t) = Xult) = _ 3\ 3/2
’ + (A0 for ¢ > 1
Integral curves:
! 2)
! 0,(2)
(e
T 2 ;
-1k 0,(8) 4l
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Comparison linear/nonlinear equations

Nice properties of linear equations:
@ All solutions expressed in terms of a constant c.
© General formula for solution, involving integrations.

@ Discontinuities/singularities deduced from properties of p and g.

Problems with nonlinear equations:

@ Solutions in terms of a constant ¢
— possibility of other solutions too.

@ No general formula for solutions.
© Often implicit solution only.

@ Singularities depend on particular equation and initial condition.
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Bernoulli equations (HW 2-4 27 and 28)

Equation: For n > 2,

n

y' +p(t)y = q(t)y".

Interest of Bernoulli equations:
Nonlinear equations which can be turned into linear equations.

Alternative form:

Change of variable: Set v = 5. We get

v — (n—1)p(t)v = —(n—1)q(t) — Linear equation
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@ Autonomous equations
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Introduction

General form of autonomous equations:

dy
dr = f(y) (15)

Solving autonomous equations:
This is a special case of separable equation

Aim of the section:

@ Information on equation (15) with graphical methods
@ Applications to population growth models
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Exponential growth

Hypothesis:
Rate of change proportional to value of population

Equation: for r € R and yg > 0,

dy
_— = 0 =

Solution:
y = yo exp(rt)
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Exponential growth (2)

Integral curves:

=
=)
T

oo
T

(03]
T

|
1r 2r 3ir 4rt

Limitation of model:

@ Cannot be valid for large time t.
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Logistic growth
Hypothesis:

@ Growth rate depends on population

o Related equation: 2 = h(y)y

Specifications for h:
@ h(y) ~ r > 0 for small values of y
@ y — h(y) decreases for larger values of y
@ h(y) < 0 for large values of y

Possibility: h(y) =r — ay

Verhulst equation: for r, K > 0

dy . Yy

L = f(y), with f(y)= (1 - ) 16

g = (), with f(y)=r )Y (16)
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Logistic growth (2)

Vocabulary:
@ r: Intrinsic growth.
@ K: Saturation level.

@ Solutions to f(y) = 0: critical points.

Equilibrium solutions:
@ Defined as y = /¢, where /¢ critical point
@ Here 2 equilibrium: y =0and y = K
o If we have:
> y(0) =0o0ry(0) =K
» y satisfies (16),
then y stays constant
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Logistic growth (3)

Graphical interpretation 1:
e Draw y — f(y).
@ Here f parabola, intercepts (0,0) and (K, 0).
o We have 2 > 0 if y € (0, K)
oWehave%<0ify>K
@ Vocabulary: y-axis is called phase line

fly)
rKi4

(K/2, rK/4)

T

— | — = -—

K2 K\ ¥
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Logistic growth (4)
Graphical interpretation 2: behavior of t — y(t)
@ Draw liney =0and y = K
@ Other curves:
» Increasing if y < K
» Decreasing if y > K
» Flattensoutasy - 0ory — K
@ Curves do not intersect
@ Possibility of a convexity/concavity analysis (threshold £)

y ¥y

4 #,(t) = K

o]

t
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Logistic growth (5)

Stable and unstable equilibrium:

© We have seen (phase diagram):

» yincreases if y < K
» y decreases if y > K

Thus K stable equilibrium
@ We have seen (phase diagram):
» y increases as long as y > 0 (and y < K)
Thus 0 unstable equilibrium

Remark:
See also the notion of semi-stable equilibrium
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Logistic growth (6)
Solving the equation: Equation (16) can be written as

1 1/K ]
—+———|dy=rdt
ly 1-y/K
Solution is given by:

y = yoK
Yo+ (K —yo)e

Equilibrium revisited: For all yy > 0 we have:
tingoy(t) =K.
Thus K stable equilibrium.
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Critical threshold example

Equation considered: for r, T >0

:I’); = f(y), with f(y)=—r (1 - y) y (17)

Critical points:
fly)=0 <= y=0 o y=T

This corresponds to 2 equilibrium.
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Critical threshold example (2)
Graphical interpretation 1:
@ Here f parabola, intercepts (0,0) and (T,0).
o We have & < 0if y € (0, T)
o Wehave 2 > 0ify > T

¥

-rT/4 [~
(T2, =T/4)

Conclusion for equilibrium:
@ T unstable equilibrium

@ 0 stable equilibrium

Samy T. First order equations Differential equations
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Critical threshold example (3)

Graphical interpretation 2: behavior of t — y(t)
@ Draw liney =0and y =T
@ Other curves:
» Increasing if y > T
» Decreasing if y < T
» Flattens out as y — 0
@ Curves do not intersect
o Possibility of a convexity/concavity analysis (threshold 1)

y1r y / 0,0=T

T T

T/2

t
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Critical threshold example (4)

Solving the equation: Like for equation (16) we get

(t) yoT

N Yo+ (T — yo)e (18)

Limiting behavior: according to (18),
Q If0<y < T, we have lim;,, y(t) =0.
@ If yo > T, we have lim;_ y(t) = 0o, where

1
t*:_|n< Yo )
r _yo—T

This behavior could not be inferred from graphic representation.
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HW 12, Section 2.5

Equation:
y' =y (4-y")=1y)
Graph of f: Intercepts for x € {—2,0,2}

xt@a-x?)
s
e

u \,//\

s

0

s

20 \
\

2 \

a0 /

™

“

@ —2 and 2 are stable

Equilibrium:

@ 0 is unstable

Samy T. First order equations
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Outline

@ Exact equations and integrating factors

=] & = E DA
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Example of exact equation
Equation considered:
2x + y? + 2xyy' =0 (19)

Remark: equation (19) neither linear nor separable

Additional function: Set ¥(x,y) = x? + xy?. Then:

g—qﬁ=2x+y2, and @:xy.
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Example of exact equation (2)

Expression of (19) in terms of ¢: we have

o Opdy
(19) «— 8x+8ydx_0

Solving the equation: We assume y = y(x). Then
(19) = Dly=0 = vy =c
for a constant ¢ € R.
Conclusion: equation solved under implicit form
x? + xy2 = C.
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General exact equation
,—[Proposition 6.] \

Equation considered:

M(x,y) + N(x,y) Zﬁ =0. (20)

Hypothesis: there exists ¢ : R — R such that

oy _ W _
a_M(va) and ay_N(X>y)

Conclusion: general solution to (20) is given by:

U(x,y) =c, with c€eR,

provided this relation defines y = y(x) implicitely.

\.
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Criterion for exact equations

Notation: For f : R? — R, set f, = &£ and f, = %

—~ Theorem 7. \

Let:
o R={(x,y);a<x<p,and y<y<d}
e M, N, M,, N, continuous on R.

Then there exists 1) such that:

Ye=M, and ¢, =N onR,
if and only if M and N satisfy:

M, =N, onR
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Computation of function

Aim: If M, = N,, find % such that ¢, = M and ¢, = N.

Recipe in order to get v:
© Write ¢ as antiderivative of M with respect to x:

V(xy) = aley) + h(y), where a(x,y) = [ M(x,y) dx
@ Get an equation for h by differentiating with respect to y:

W(y) = N(x,y) — a,(x,y)

© Finally we get:
U(x,y) = alx,y) + h(y).
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Computation of : example

Equation considered:

y cos(x) + 2xe’ + (sin(x) + x%e¥ — 1) y' =0. (21)
M N

Step 1: verify that M, = N, on R2.
Step 2: compute 1) according to recipe. We find
Y(x,y) = ysin(x) +x%¢ —y

Solution to equation (21):

ysin(x) + x?¢’ —y =c.
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Computation of v: counter-example

Equation considered:

3xy +y*+ (X2 + xy) y'=0. (22)
M v
N

Step 1: verify that M, # Ni,.
Step 2: compute v according to recipe. We find

X2

H(y) = T still depends on x!

Conclusion: Condition M, = N, necessary.
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Solving an exact equation: example

Equation considered:

2x—y+Qy—x)y'=0, y(1)=3. (23)
— N

Step 1: verify that M, = N, on R?.

Step 2: compute 1) according to recipe. We find
U(x,y) =x* = xy +y2

Solution to equation (23): recalling y(1) = 3, we get

X2 —xy+y*=T.
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Solving an exact equation: example (2)

Expressing y in terms of x: we get

N X

y:

Recalling y(1) = 3, we end up with:

X 3x? 1/2
= — 7 - — .
=5 (%)

Interval of definition:

2 1/2
4 (7 _ 3i> .
4

x € (—2\/; 2\/;) ~ (—3.05; 3.05)
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HW 16, Section 2.6

Equation considered:

ye* + x + <bxezxy) y'=0, beR (24)
M N

Step 1: We have M, = N, iff b = 1.

Step 2: When b = 1, compute % according to recipe. We find
_ 1 2xy 2
¢(X7y)_§<e +X)

Solution to equation (24): , we get

e + x% = c.
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Outline

© Numerical approximation: Euler's method

=] & = E DA
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Approximations of first order equations: why?

Generic first order equation: back to equation (14), that is

dy
— = f(t, th) =
= fy) () =y

General facts about (14):
@ If f is continuous, equation can be solved in neighborhood of t,.

@ Solution y cannot be computed explicitly.

Conclusion:
We need approximations in order to understand behavior of y.
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Starting from direction fields

Equation considered:

(25)

2t — 0.5y

3

Y

b
dt

Direction fields for (25)

ARG PSS
SIS
e
a i

e e e
P
B e
P s
S I
R A 2R
P R 23
P A A adad
P A
AL LIS

SOLLLS S0P

ALALLRANRNRN
ARRRRAR R R R R R R RN
AR

& =

Linking the tangent lines on the graph

Basic idea

< we get an approximation of solution.
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Questions about approximation methods

Basic issues:
@ Method to link tangent lines.
© Do we get an approximation of real solution?

© Rate of convergence for approximation.
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First steps of approximation

Equation considered: equation (14), that is

dy
E - f(tvy)v y(tO) = Y-

Approximation near ty:

@ Solution passes through (to, yo)

e Slope at (to, yo) is f(to, o)
@ Consider t; close to ty

Then linear approximation of y(t;) is given by:

vi=Yo+ f(to, %) (t1 — to) .
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First steps of approximation (2)

Approximation near t:
@ Solution passes through (t1, y(t1))
@ Problem: we don't know the exact value of y(t)
e We approximate y(t1) by y1
@ Approximate slope at (ti, y1) is given by f(ti, 1)
@ Consider t, close to t;

Then linear approximation of y(t,) is given by:

va=y1+f(ti,yn) (o —t1).
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Euler scheme

,—[Proposition 8.} \
Equation considered: equation (14), that is

dy
dt ( ,}/), y( 0) Yo

Hypothesis: constant step in time,
tl'H‘l - tn = h

Notation: f, = f(t,, ¥»), ¥ = Euler's approximation.

Conclusion: Recursive formula for Euler's scheme,

Yn+1 = yn+fnh
)/}(t) - yn+fn(t_tn)7 forte[t0+nhat0+(n+1)h)

J

Samy T. First order equations Differential equations 97 / 103



Example of Euler scheme

Equation considered: back to equation (25), that is

d f(t.y)

y  —

— =3-2t—-0.5 0)=1
pm Y, y(0)

Exact solution: we find
t
y = ¢(t) =14 — 4t — 13exp (—§>

Euler scheme, step 1: with h = 0.2 we have
o fp=17(0,1)=25
e y(t) =1+ 25t for t €(0,0.2)
ey =15
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Example of Euler scheme (2)

Euler scheme, step 2: with h = 0.2 we have
e 1 =1(0.2,15)=1.85
e y(t)=1.5+1.85(t —0.2) for t € (0.2,0.4)

Q@ Y = 1. 87
Numerical results:
Euler

t Exact with A =02 Tangent line
0.0 1.00000 1.00000 y=1+425t
02 1.43711 1.50000 y=113+1.85
0.4 1.75650 1.87000 ¥y =1.364 + 1.265¢
0.6 1.96936 2.12300 y =1.6799 + 0.7385¢
0.8 2.08584 2.27070 y = 2.05898 + 0.26465¢
1.0 2.11510 2.32363

Remark: about 10% error at t =1
— Approximation not accurate enough, smaller h needed.

Samy T. First order equations Differential equations 99 /103



Example of Euler scheme (3)

Numerical results with varying h:

t Exact h=0.1 h=0.05 h=0.025 h=0.01
0.0 1.0000 1.0000 1.0000 1.0000 1.0000
1.0 2.1151 2.2164 2.1651 2.1399 2.1250
2.0 1.2176 1.3397 1.2780 1.2476 1.2295
3.0 —0.9007 —0.7903 —0.8459 —0.8734 —0.8898
4.0 —3.7594 —3.6707 —3.7152 —3.7373 —3.7506
5.0 —7.0671 —7.0003 —7.0337 —7.0504 —17.0604

Comments:
@ Error decreases with time step.

@ Error could possibly be of order h.
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Example of Euler scheme (4)

Graphical comparison for h = 0.2:

241

Remark: y >y
— Due to the fact that y concave = tangent above graph
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Euler scheme for fast increasing solution

Equation considered:

d
T —a-t+2,  y0)=1 (26)
dt
Exact solution: we find
7 t 11
y=o(t) = =5 =5+ ep(2)

Thus exponential growth for y.

Samy T. First order equations Differential equations 102 / 103



Euler scheme for fast increasing solution (2)

Numerical results with varying h:

t Exact h=01 h=0.05 h=0025 h=0.01
0.0 1.000000 1.000000 1.000000 1.000000 1.000000
1.0 19.06990 15.77728 17.25062 18.10997 18.67278
2.0 149.3949 104.6784 123.7130 135.5440 143.5835
30 1109.179 652.5349 837.0745 959.2580 1045.395
4.0 8197.884 4042.122 5633.351 6755.175 7575577
50 60573.53 25026.95 37897.43 47555.35 54881.32

Comments:

@ Error still decreases with h

@ Worse performance than for (25).
Explanation of difference:

e For (25) all solutions converge to ¢(t) = 14 — 14t
— successive errors are not propagating

@ For (26) solutions diverge exponentially
< strong propagation of successive errors
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