Higher order linear equations

Samy Tindel

Purdue University

Differential equations - MA 26600

Taken from *Elementary differential equations* by Boyce and DiPrima

Outline

э

4 E b

Outline

2 Homogeneous equations

3 Method of undetermined coefficients

э

A D N A B N A B N A B N

General form of *n*th order linear equation

General form:

$$L[y] = \frac{d^{n}y}{dt^{n}} + p_{1}(t)\frac{d^{n-1}y}{dt^{n-1}} + \dots + p_{n-1}(t)\frac{dy}{dt} + p_{n}(t)y = g(t)$$

Initial condition:

• Given by:

$$y(t_0) = y_0, \quad y'(t_0) = y'_0, \quad \cdots \quad , \quad y^{(n-1)}(t_0) = y_0^{(n-1)}.$$

• Necessity of *n* conditions because *n* integrations performed.

Image: Image:

Existence and uniqueness theorem

Theorem 1.

General linear equation:

 $y^{(n)} + p_1(t)y^{(n-1)} + \cdots + p_{n-1}(t)y' + p_n(t)y = g(t).$ (1)

Initial condition:

$$y(t_0) = y_0, \quad y'(t_0) = y'_0, \quad \cdots \quad , \quad y^{(n-1)}(t_0) = y_0^{(n-1)}.$$
 (2)

Hypothesis:

•
$$t_0 \in I$$
, where $I = (\alpha, \beta)$.

• p_1, \ldots, p_n continuous on I.

Conclusion:

There exists a unique function y satisfying (1)-(2) on I.

Wronskian of homogeneous equation

Definition 2.

Consider:

- Equation $y^{(n)} + p_1(t)y^{(n-1)} + \cdots + p_{n-1}(t)y' + p_n(t)y = 0.$
- *n* solutions y_1, y_2, \ldots, y_n on interval *I*.

•
$$t_0 \in I$$
.

The Wronskian $W = W[y_1, \ldots, y_n](t_0)$ for y_1, \ldots, y_n at t_0 is:

$$W = \begin{vmatrix} y_1(t_0) & y_2(t_0) & \dots & y_n(t_0) \\ y'_1(t_0) & y'_2(t_0) & \dots & y'_n(t_0) \\ \vdots & \vdots & & \vdots \\ y_1^{(n-1)}(t_0) & y_2^{(n-1)}(t_0) & \dots & y_n^{(n-1)}(t_0) \end{vmatrix}$$

Wronskian and determination of solutions

Theorem 3.

Equation:

 $y^{(n)} + p_1(t)y^{(n-1)} + \cdots + p_{n-1}(t)y' + p_n(t)y = 0.$ (3)

Hypothesis:

- Existence of *n* solutions y_1, \ldots, y_n .
- Initial condition $y(t_0) = y_0, \ldots, y^{(n-1)}(t_0)$ assigned.

Conclusion: One can find c_1, \ldots, c_n such that

$$y = c_1 y_1 + c_2 y_2 + \cdots + c_n y_n$$

satisfies (3) with initial condition iff

$$W[y_1,\ldots,y_n](t_0)\neq 0$$

Wronskian and uniqueness of solutions

Theorem 4.

Equation: back to (3) that is $L[y] = y^{(n)} + p_1(t)y^{(n-1)} + \cdots + p_{n-1}(t)y' + p_n(t)y = 0.$ Hypothesis: • Existence of *n* solutions y_1, \ldots, y_n . Conclusion: The general solution $y = c_1 y_1 + c_2 y_2 + \dots + c_n y_n$, with $c_1, \dots, c_n \in \mathbb{R}$ includes all solutions to (3) iff: there exists $t_0 \in I$ such that $W[y_1, \ldots, y_n](t_0) \neq 0$.

Outline

3 Method of undetermined coefficients

э

< □ > < 同 > < 回 > < 回 > < 回 >

Setting

Equation considered: for $a_0, \ldots, a_n \in \mathbb{R}$,

$$a_0 y^{(n)} + \dots + a_n y = 0.$$
 (4)

Image: Image:

Characteristic polynomial:

$$Z(r) = a_0r^n + a_1r^{n-1} + \cdots + a_{n-1}r + a_n.$$

Facts about *Z*:

- **1** Z has *n* roots (real, complex or repeated) r_1, \ldots, r_n .
- 2 factorizes as: $Z(r) = a_0(r r_1) \cdots (r r_n)$.

Construction of solutions

Equation: Homogeneous with constant coefficients (4).

Roots of characteristic polynomial: r_1, \ldots, r_n .

Rules to find solutions: separate 3 cases, **1** If $r_i \in \mathbb{R}$ non repeated root, $\exp(r_i t)$ solution to equation (4). **2** If $r_i = \lambda + i\mu$ and $r_{i+1} = \lambda - i\mu$ conjugate complex roots, $\exp(\lambda t)\cos(\mu t), \exp(\lambda t)\sin(\mu t)$ solutions to equation (4). **If** $r_i \in \mathbb{R}$ repeated root of order *s*, $\exp(r_i t), t \exp(r_i t), \ldots, t^{s-1} \exp(r_i t)$ solutions to equation (4).

Example of application

Equation:

$$y^{(4)} + y^{(3)} - 7y^{(2)} - y' + 6y = 0.$$
 (5)

Characteristic polynomial:

$$Z(r) = r^4 + r^3 - 7r^2 - r + 6 = 0.$$

Method to find roots: for roots of Z of the form $\frac{p}{q} \in \mathbb{Q}$:

- p is a factor of a_n .
- q is a factor of a_0 .

Application: We seek

•
$$p \in \{\pm 1, \pm 2, \pm 3, \pm 6\}$$
 and $q \in \{\pm 1\}$.

3 × < 3 ×

Example of application (2)

Roots of *Z*: We find

$$r_1 = 1,$$
 $r_2 = -1,$ $r_3 = 2,$ $r_4 = -3.$
General solution to (5):

$$y = c_1 e^t + c_2 e^{-t} + c_3 e^{2t} + c_4 e^{-3t}$$

э

A D N A B N A B N A B N

Example of application (3)

Example of initial condition:

$$y(0) = 1,$$
 $y'(0) = 0,$ $y''(0) = -2,$ $y^{(3)}(0) = -1.$

Related system:

$$\left\{egin{array}{ll} c_1+c_2+c_3+c_4&=1\ c_1-c_2+2c_3-3c_4&=0\ c_1+c_2+4c_3+9c_4&=-2\ c_1-c_2+8c_3-27c_4&=-1 \end{array}
ight.$$

э

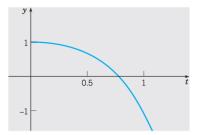
< □ > < 同 >

Example of application (4)

Solution to initial value problem:

$$y = \frac{11}{8}e^{t} + \frac{5}{12}e^{-t} - \frac{2}{3}e^{2t} - \frac{1}{8}e^{-3t}$$

Graph of solution:



Example with complex roots

Equation:

$$y^{(4)} - y = 0. (6)$$

Characteristic polynomial:

$$r^4-1=0.$$

Roots of Z: We find

$$r_1 = 1,$$
 $r_2 = i,$ $r_3 = -1,$ $r_4 = -i.$

General solution to (6):

$$y = c_1 e^t + c_2 e^{-t} + c_3 \cos(t) + c_4 \sin(t)$$

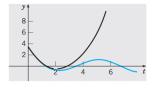
Example with complex roots (2) Example of initial condition:

$$y(0) = \frac{7}{2}, \qquad y'(0) = -4, \qquad y''(0) = \frac{5}{2}, \qquad y^{(3)}(0) = -2.$$

Solution to initial value problem:

$$y = 3e^{-t} + \frac{1}{2}\cos(t) - \sin(t)$$

Graph of solution: with 2 slightly \neq initial conditions



Outline

э

A D N A B N A B N A B N

Method of undetermined coefficients

Nonhomogeneous linear equation with constant coefficients:

$$a_0y^{(n)}+\cdots+a_ny=g(t).$$

Aim: Find a particular solution Y to the equation.

Table of possible guess: restricted to a limited number of cases,

Function g	Guess
$\alpha \exp(at)$	$A \exp(at)$
$lpha \sin(\omega t) + eta \cos(\omega t)$	$A\sin(\omega t) + B\cos(\omega t)$
$\alpha_n t^n + \dots + \alpha_0$	$A_n t^n + \cdots + A_0$
$(\alpha_n t^n + \cdots + \alpha_0) \exp(at)$	$(A_n t^n + \cdots + A_0) \exp(at)$
$(\alpha \sin(\omega t) + \beta \cos(\omega t)) \exp(at)$	$(A\sin(\omega t) + B\cos(\omega t))\exp(at)$

Elaboration of the guess

Situation:

- Equation: $a_0 y^{(n)} + \cdots + a_n y = g(t)$
- g solution to homogeneous equation $\implies g = c \exp(rt)$, where r root of Z.
- Let $s \equiv$ multiplicity of r.

Particular solution: of the form

 $Y(t) = t^s \exp(rt).$

Example of application

Equation:

$$y^{(3)} - 3y^{(2)} + 3y' - y = 4e^t.$$

Characteristic polynomial:

$$Z(r)=(r-1)^3.$$

Solution to homogeneous equation: for $c_1, c_2, c_3 \in \mathbb{R}$,

$$y_c = c_1 e^t + c_2 t e^t + c_3 t^2 e^t.$$

Example of application (2)

Guess for particular solution:

$$Y(t) = At^3 e^t$$

General solution:

$$y = c_1 e^t + c_2 t e^t + c_3 t^2 e^t + \frac{2}{3} t^3 e^t.$$

Example with superposition

Equation:

$$y^{(3)} - 4y' = t + 3\cos(t) + e^{-2t}$$
.

Characteristic polynomial:

$$Z(r) = r(r-2)(r+2).$$

Solution to homogeneous equation: for $c_1, c_2, c_3 \in \mathbb{R}$,

$$y_c = c_1 + c_2 e^{2t} + c_3 e^{-2t}.$$

Example with superposition (2)

Sub-equation 1:

$$y^{(3)}-4y'=t.$$

Guess for particular solution 1:

$$Y_1(t) = t(A_0t + A_1) \implies A_0 = -\frac{1}{8}, \ A_1 = 0.$$

Sub-equation 2:

$$y^{(3)}-4y'=\cos(t).$$

Guess for particular solution 2:

$$Y_2(t) = B\cos(t) + C\sin(t) \implies B = 0, \ C = -\frac{3}{5}$$

Example with superposition (3)

Sub-equation 3:

$$y^{(3)} - 4y' = e^{-2t}.$$

Guess for particular solution 3:

$$Y_3(t) = Dte^{-2t} \implies D = \frac{1}{8}.$$

General solution:

$$y = c_1 + c_2 e^{2t} + c_3 e^{-2t} - \frac{t^2}{8} - \frac{3}{5} \sin(t) + \frac{t}{8} e^{-2t}.$$