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Outline

@ Homogeneous equations with constant coefficients
e Homogeneous equations and Wronskian

© Complex roots of the characteristic equation

@ Repeated roots, reduction of order

© Nonhomogeneous equations

@ Variation of parameters

e Mechanical vibrations

© Forced vibrations
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Second order differential equations

General form of equation:
d’y dy
—~ —=flt 7
dt? ( ) dt>

Importance of second order equations:
@ Instructive methods of resolution
@ Crucial for modeling in physics:

» Fluid mechanics
» Heat transfer

» Wave motion

» Electromagnetism
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Outline

@ Homogeneous equations with constant coefficients
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General form of 2nd order linear equation

General form 1:
y' 4+ p(t)y" + q(t)y = g(t)

General form 2:
P(t)y” + Q(t)y' + R(t)y = G(t)

Remark:
2 forms are equivalent if P(t) #0

Initial condition:

o Given by y(to) = yo and y'(to) = yg
@ Two conditions necessary because two integrations performed
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Homogeneous linear equations

Homogeneous equations: When g = 0, that is
y"+p(t)y' +q(t)y =0

Remark:
Nonhomogeneous solutions can be deduced from homogeneous ones

Homogeneous equations with constant coefficients:
ay” +by' +cy =0,

for a, b, c € R.
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Simple example

Equation:
y" —y=0. (1)

Initial condition:
y(0)=2, and y'(0)=-1.
Two simple functions satisfying (1):
y =exp(t), and y =exp(—t).
Using linear form of (1): for ¢1, € R,

y = crexp(t) + crexp(—t).

is solution to the equation.
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Simple example (2)

First conclusion:
We obtain an infinite family of solutions indexed by ci, c,.

Initial value problem: with y(0) =2 and y’(0) = —1 we find

a+ o =2
aqg—c =-1

Solution: ¢; = 3 and ¢, = 3.

Solution to initial value problem:

1

3
y = 5 exp(t) + 5 exp(—t).
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Generalization
,—[Proposition 1.] \

Equation considered: for a, b, c € R,
ay” + by’ + cy = 0. (2)
Characteristic equation:
ar’ + br + c = 0.

Hypothesis:
Characteristic equation has 2 distinct real roots ry, r».
Conclusion: general solution to (2) given by:

y =crexp(nt)+ caexp(nt). (3)

\. J
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Generalization: initial value

Initial value problem: under assumptions of Proposition 1,
ay’+by' +cy =0, y(t) =y, y'(to)=y (4)
Solution to (4): given by
y = crexp(nt)+ cexp(nt),
with

/ /
Yo — Yoo Yo — Yo
C = —eXP(—flfo); OQ=—— eXP(—fzto)
n—n rh—n
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Example 1

Equation considered:

y'+5y +6y=0 y(0)=2, y'(0)=3. (5)

Solution: given by
y = 9exp(—2t) — 7exp(—3t)

Graph of solution:

y=9e 2 -T7e3t
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Example 2

Equation considered:

4y" —8y'+3y =0 y(0)=2, y'(0)=

Solution: given by

Graph of solution:
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Asymptotic behavior of solutions

3 cases: under assumptions of Proposition 1,
Q If both r1,r» <0, then lim;_,o, y(t) =0
Q If n >0o0rrn >0, exponential growth for y
Q@ Ifn<0and rn=0, then lim;,, y(t) =¢ €R
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Outline

© Homogeneous equations and Wronskian
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Definition of an operator

— Definition 2. | ‘

Let
o | =(a,p), that is

I={teR, —o<a<t<f<x}.

@ ¢ : | — R twice differentiable.
e pg:l—R

We define L[¢] : I — R by:

Li¢] = ¢" + p¢' + q¢
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Homogeneous equation in terms of L

Equation considered: Under conditions of Definition 2,

Ly]=0 <= y'+py/+qy=0
Initial conditions: for ty € /,

y(to) =yo, and y'(to) =y
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Existence and uniqueness theorem

—~ Theorem 3. N

General linear equation:

Y '+ p(t)y +aq(t)y = g(t), y(to) =y, Y'(to)=y (6)

Hypothesis:
® ty €/, where | = (o, ).
@ p, g and g continuous on /.

Conclusion:
There exists a unique function y satisfying equation (6) on /.

\ J
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Existence and uniqueness theorem (2)

Important conclusions of the theorem:
@ There exists a solution to (6).
@ There is only one solution.
© The solution y is defined and twice differentiable on /.

Back to equation (5):
@ We had existence part.

@ Uniqueness is harder to see.

Major difference with first order equations:

@ No general formula for solution to (6).
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Example of maximal interval
Equation considered:
(2 =3t)y"+ty = (t+3)y =0, y(1)=2, y(1)=1
Equivalent form:
1 t+3

7 / —
Y +t—3y +t(t—3)y

Application of Theorem 3:
e g(t) = 0 continuous on R
e p(t) = 745 continuous on (—oo,3) U (3,00)
e q(t) = t(t::33) continuous on (—o0,0) U (0,3) U (3, 00)
e 1€(0,3)
We thus get unique solution on (0, 3)
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A trivial example of equation

Equation considered:
Y'+p(t)y' +q(t)y =0, y(t)=0, y'(to)=0

Hypothesis:
@ p and g continuous on /
e tgel

Application of Theorem 3:
© y = 0 solves equation.

@ According to Theorem 3 it is the unique solution.
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Principle of superposition

—~ Theorem 4. \

Equation considered:

y" +p(t)y 4+ q(t)y = 0. (7)

Hypothesis:
@ y; and y; are 2 solutions to equation (7).

@ ¢y and ¢, are 2 constants.

Conclusion:
y = cay1 + ¢y also solves (7).

\ J

Additional question:
Are all the solutions of the form y = ci1y1 + ¢ y»?
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Proof of Theorem 4

Step 1: prove that

Llay: + cy] = a Liyi] + o Lys].

Step 2: We obtain

Liy1] =0, L] =0 = Llay + cy]=0.
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Wronskian

—~ Definition 5.

Consider:
e Equation y” + p(t)y’ + q(t)y = 0.
@ Two solutions y1, y» on interval /.
@ty el

The Wronskian for yi, y» at ty is:

W = Wiy, y»](to) = ' y}Eg o8 |
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Wronskian and determination of solutions

—~ Theorem 6. N

Equation: back to (6) that is

Lyl = y" + p(t)y" + q(t)y = 0.
Hypothesis:
o Existence of two solutions y;, y».
o Initial condition y(tg) = yo and y'(ty) = y{ assigned.

Conclusion: One can find ¢, ¢ such that
y=ay+ oy

satisfies (6) with initial condition iff

Wiy, y2)(to) # 0

\ J
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Complement to Theorem 6

Expression for ¢, c;: Under assumptions of Theorem 6 we have

Yo Ya(to) yi(to)  ¥o

‘yl(fo) y2(to) yi(to) ya(to) |
yi(to) ys(to) yi(to) ys(to)

|YO y(to) |yl(to) Yo

, and c2:|

Justification: ¢y, ¢, are solution to the system

ayi(to) + aya(to) =y
ayi(to) + ays(t) =y
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Example 1

Equation considered: back to (5), that is
y" + 5y + 6y =0.
2 solutions: given by
y1 =exp(—2t), and y, = exp(—3t)
Expression of Wronskian: for t € R,

Wy1, y2](t) = exp(—5t).

Solving the equation: W(yi, y»](t) # 0 for all t € R
— initial value problem can be solved at any t € R.
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Wronskian and uniqueness of solutions

~ Theorem 7. \

Equation: back to (6) that is

Lyl =y" + p(t)y’ + q(t)y = 0.
Hypothesis:

@ Existence of two solutions y;, y».
Conclusion: The general solution
y=ayi+ oy, with ¢,oelR

includes all solutions to (6) iff:

there exists ty €  such that W{y1, y»|(to) # 0.

\. J
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Example: equations with constant coefficients

Equation considered: for a, b, c € R,
ay" + by’ + cy =0. (8)
Characteristic equation:
ar* + br +c = 0.

Hypothesis:
Characteristic equation has 2 real roots ry, r>.

2 solutions:

yi=exp(nt), and y, =exp(nt).
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Example: equations with constant coefficients (2)

Wronskian:

Wiy, yol(t) = (o — nn) exp ((n + r2)t)

Conclusion: The general solution

y=ocayi+ oy, with c,oecR

includes all solutions to (8) iff r; # r,.

Notation:

In this context the functions y1, y» are called fundamental solutions
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Summary

Homogeneous linear second order equation:
Lyl = y" + p(t)y" + q(t)y = 0.

Recipe to solve the equation:
© Find 2 solutions y; and y»
@ Find a point ty such that W(y1, y»](to) # 0

© Then y; and y, are fundamental solutions
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Outline

© Complex roots of the characteristic equation
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General situation

Linear equation with constant coefficients: for a, b, c € R,
ay" + by’ + cy = 0. (9)
Characteristic equation:
ar’ + br +c =0.

Situation considered up to now:
2 real roots, that is b — 4ac > 0.

Situation considered in this section:
2 complex roots, that is b?> — 4ac < 0.
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Complex roots case: general solution

,—[Proposition 8.]

Equation considered: for a, b, c € R,
ay” + by’ + cy = 0.
Characteristic equation:
ar’ + br + c = 0.

Hypothesis: Characteristic equation has 2 complex roots
—rn=A+wwand n=X\—u.

Conclusion: general solution to (10) given by:

y =crexp(nt)+ cexp(nt).

\.

(11)
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Complex exponential

Aim: understand meaning of expression
yi(t) = exp (A 4 op)t) .
Example: if A\ = —1, u =2 and t = 3, y;(t) = e 3%

Definition 9. ;
For t € R we set:

e’ = cos(t) + ¢sin(t).
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Properties of complex exponential

Q ForteR,
exp(—ut) = cos(t) — usin(t) = exp(st).
Q@ Forz=a+15€C,
exp(z) = exp(a) cos(f) + vexp(a) sin(p).
@ For z1,2 € C,
exp (21 + 22) = exp (z1) exp ().

Q Forze(C,

d
p exp(zt) = z exp(zt).
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Example of differential equation

Equation:
y" 4+ y' +9.25y = 0. (12)

Characteristic equation:

r’+r+9.25=0.

Roots of characteristic equation:
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Example of differential equation (2)

Fundamental solutions for (12):

yi(t) = e(=343)t = ei]
w(t) = el-273)t = =3 [cos(3t) — 2sin(3t)]

Wronskian:
W(y1, y2](t) = —62e™" # 0.

Thus all solutions of (12) are of the form:

Yy = cayr + oys.
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Example of differential equation (3)

Real valued fundamental solutions:

u = e 2 cos(3t), v = e 2 sin(3t).

Wronskian for u, v:

Wlu, v](t) =3e" #0.

Thus all solutions of (12) are of the form:

y =qu-+ cv.
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Example of differential equation (4)

Initial value problem: equation (12) with
y(0)=2, and y'(0)=38.
Solution: )
y = e 2[2cos(3t) 4 3sin(3t)].

Graph: decaying oscillations

W=

AANNI

\/2 \/ —% 8 10t
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Complex roots case: real valued solutions

,—[Proposition 10.] \

Equation considered: for a, b, c € R,

ay" + by’ + cy = 0. (13)

Hypothesis: Characteristic equation has 2 complex roots
—n=Atand n=X\—pu.

Conclusion: fundamental solutions to (13) given by:

y1 = exp (At) cos(ut), yo = exp (At) sin(ut). (14)
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Example of application

Equation:
16y” — 8y’ + 145y = 0. (15)

Roots of characteristic equation:
We have A = —9216 = —(96)?, thus

r1:Z+32, r2:1—3z

Real valued fundamental solutions:

y1 = e cos(3t), y2 = ef sin(3t).
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Example of application (2)

Initial value problem: equation (15) with

y(0)=-2, and y'(0)=1.

Solution: )
y=ei [—2 cos(3t) + 5 sin(3t)} :

Graph: increasing oscillations

_10F
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Outline

@ Repeated roots, reduction of order
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General situation

Linear equation with constant coefficients: for a, b, c € R,

ay" + by’ + cy = 0. (16)
Characteristic equation:

ax®> + bx + c=0.

Situation considered up to now:
@ 2 distinct real roots, that is b> — 4ac > 0.
@ 2 distinct complex roots, that is b> — 4ac < 0.

Situation considered in this section:
Only one root, that is b> — 4ac = 0.
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D’'Alembert

Some facts about d'Alembert:

@ Abandoned after birth

@ Mathematician

@ Contribution in fluid dynamics

@ Philosopher

@ Participation in 1st Encyclopedia
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Problem with double root

Expression for the root: if b2 — 4ac = 0 then

b

ax®>+bx+c=a(x—r), with r=-—s.
a

Consequence on equation (16): only one fundamental solution,
n(t) =exp(rt).

D’Alembert’'s method in order to get 2 fundamental solutions:
@ Look for solutions under the form y(t) = v(t)exp(rt).
@ We will see: v(t) of the form v(t) = cit + c.
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Example of d'Alembert’s method

Equation:
y" +4y" +4y = 0. (17)

Double root of characteristic equation: r = —2.

Applying d'Alembert’s method:
@ Look for solutions under the form y(t) = v(t)exp(rt).
@ We find: v/ =0, thus v(t) = a1t + c.
© Fundamental solutions: y; = exp(—2t) and y, = texp(—2t).
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Example of d'Alembert’s method (2)

Wronskian:
Wy, y2](t) = e * #0.

Thus all solutions of (20) are of the form:

Yy =ay1+ Gys.
Graph of a typical solution:

y

2

1

05 1 15 t
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Double root case: generalization

,—[Proposition 11.]

Equation considered: for a, b, c € R,

Hypothesis: Characteristic equation has 1 double root
b

;)r:—z.

Conclusion: fundamental solutions to (18) given by:

ay" + by’ + cy = 0. (18)

y1 = exp(rt), y2 = texp(rt). (19)

Samy T. Second order equations Differential equations
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Example of application

Equation:
y" —y 4+ 0.25y = 0. (20)

Roots of characteristic equation:

Fundamental solutions:

=
I
()]
Nl
s
I
~
D
Nl
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Example of application (2)

Initial value problem: equation (20) with
1
y(0)=2, and y'(0)=z.

Solution:

Graph:

V() =2: y=2e + tet?

H0) = L. y=Det?2 — 2gtl2
YO =1 y=2e2 - 2t
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Example of application (3)

Modification of initial value: equation (20) with

y(0)=2, and y'(0)=2.

Solution:

Nle+

y=2+t)ez.

Question:

Separation between increasing and decreasing behavior of y
— according to value of y’(0).
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Equations with constant coefficients: summary
Equation: for a, b, c € R,

ay” + by’ +cy =0.

3 cases:

@ 2 real roots ry, r;: fundamental solutions given by
yi(t) = exp(nt), and y(t) = exp(rt)
@ 1 double root r: fundamental solutions given by
yi(t) = exp(rt), and yo(t) = texp(rt)
© 2 complex roots r; = A+ 1, b = A — 1 fund. sol. given by
y1(t) = exp(At) cos(put), and y»(t) = exp(At)sin(ut)
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Reduction of order method

Equation: General linear 2nd order,

y"+p(t)y’ + q(t)y = 0. (21)
Hypothesis: we know 1 solution y; to equation (21).
Method: find 2nd solution y, given by

Y2 =V

Equation for w = v/ we find

yiw' + (2y; + py1) w = 0.
This is a first order equation.
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Example of application

Equation: for t > 0,
2t2y" + 3ty —y = 0. (22)
An elementary solution:
(0=
yilt) = e
Reduction of order: find 2nd solution y, given by
Y2=Vvy.
Equation for w = v': we find

2tw’ — w = 0.
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Example of application (2)

Solving equation for w: we find

w(t) =ctt? — v(t)=at’’+o

Fundamental solutions for (22): we obtain

1
n(t) = o and  y(t) = £1/2

Wronskian: 3
Wiy, yo](t) = 5132

Thus y1, y» fundamental solutions for t > 0.
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Outline

© Nonhomogeneous equations
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Setting

General linear equation:
Y+ p(t)y' +a(t)y = g(t). (23)
Corresponding homogeneous equation:
y" + p(t)y" + q(t)y =0. (24)

Aim:
Deduce solutions to (23) from solutions to (24).
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From nonhomogeneous to homogeneous

r—[Theorem 12.] \

Consider:

@ Y, Y, solutions to nonhomogeneous equation (23).

@ y1,y» fund. solts. to homogeneous equation (24).
Then

Q@ Yi — Y, solves homogeneous equation (24).

Q@ Y; — Y5 can be written, for ¢;, ¢, € R, as:

Yi— Yo =can + .
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General form of solutions: nonhomogeneous case

r—[Theorem 13.] \

Equation: nonhomogeneous (23), that is

y'+p(t)y' + q(t)y = g(t).

Consider:
Q )1,y fund. solts. to homogeneous equation (24).
@ Specific solution Y to nonhomogeneous equation (23).

Conclusion: all solutions to nonhomogeneous equation (23)
— can be written as:

y=Y +an+ oy

\ J
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Summary

Nonhomogeneous linear second order equation:
Lyl =y" + p(t)y" + q(t)y = g(1).

Recipe to solve the equation:

@ Find 2 fundamental solutions y; and y» to homogeneous
equation.
@ Find a particular solution Y to nonhomogeneous equation

© Then general solution has the form

y=Y +an+ oy
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Method of undetermined coefficients

Nonhomogeneous linear equation with constant coefficients:
Lyl = ay" + by’ + cy = g(1).
Aim: Find a particular solution Y to the equation.

Table of possible guess: restricted to a limited number of cases,

Function g Guess
aexp(at) Aexp(at)
asin(yt) 4+ 3 cos(yt) Asin(vyt) + Bcos(vt)
Ckntn—i-"'—i—Oéo Antn+"'+A0
(aunt™ + -+ - + ap) exp(at) (Apt" 4+ -+ + Ag) exp(at)
(asin(vt) + B cos(vt)) exp(at) | (Asin(vt) + Bcos(vt)) exp(at)
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Example of application

Equation:
y" —3y" — 4y = 2sin(t) (25)

Guess for particular solution:

Y (t) = Asin(t) + Bcos(t)

Equation for A, B: plugging into (25) we get

—bA+3B=2, and —-3A-5B=0.

Particular solution:
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Example of application (2)
Homogeneous equation:
y' =3y —4y=0

Solution of homogeneous equation:
y =ce '+ e
General solution of nonhomogeneous equation (25):
y=ce t+ et - > sin(t) + 3 cos(t).

17 17
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Second example of application

Equation:
y" — 3y’ — 4y = —8e' cos(2t) (26)

Guess for particular solution:
Y (t) = Ae’ cos(2t) + Be'sin(2t)
Equation for A, B: plugging into (26) we get
10A+2B =8, and 2A—-10B=0.
Particular solution:

10, 2 ..
Y(t) = 3¢ cos(2t) + 3¢ sin(2t)
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Second example of application (2)
Homogeneous equation:
y' =3y —4y=0

Solution of homogeneous equation:
y =ce '+ e
General solution of nonhomogeneous equation (26):
10 2
y=oce "+ et + 3 cos(2t) + 3 sin(2t).
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Sums of particular solutions

,—[Proposition 14.]
Consider the 2 equations:
ay’ + by +cy = aft)
ay" +by' +coy = gft)

Let
@ Y] particular solution of equation (27).

@ Y, particular solution of equation (28).

Now consider the following equation:

\

ay” + by' + cy = gi(t) + g(t).

Then Y = Y; + Y, particular solution of (29).

(27)
(28)

(29)

J
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Example of application
Equation:

y" —3y' — 4y = 2sin(t) — 8e' cos(2t) (30)
Splitting the equation: into (25) and (26).

Recalling previous results:
particular solutions to (25) and (26) are given by

5 . 3
Yi(t) = ~17 sm(t)—l-ﬁcos(t)
Ya(t) = —Eet cos(2t) + Eet sin(2t)
2713 13

Particular solution for (30):

1 2
Y(t) = —% sin(t) + 13—7 cos(t) — %et cos(2t) + Eet sin(2t).

Samy T. Second order equations
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Elaboration of the guess
Equation:
Lyl =y" =3y’ 4y =2e"" (31)
Initial guess for particular solution: Y(t) = Ae™".
Problem: e~* solution of homogeneous equation = L[Y] = 0.

Second guess: Y(t) = Ate™!

Particular solution: 5
Y(t) = —5 te "
Generalization:

©@ When initial guess is solution to homogeneous equation
— multiply initial guess by t

@ Sometimes initial guess has to be multiplied by t?
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Outline

@ Variation of parameters
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Introduction

Equation:
ay" + by’ + ¢ = g(t).

Hypothesis:
©@ We have fundamental solutions y;, y» to homogeneous equation.

@ g has not a simple form allowing a guess for particular solution.
Method: find solution under the form

y = ui(t) y1 + ua(t) yo.

Comments:
@ Advantage: very general method.

@ Problem: involves nontrivial integration steps.
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Generalization

General equation:
y"+p(t)y' +a(t)y = g(t) (32)

Hypothesis:
@ p, g, g continuous functions on interval /.

@ We know yy, y» fundamental solutions to

y"+ p(t)y' + q(t)y =0,

with non vanishing Wronskian.

Aim: find general solution to (32)
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Generalization (2)

r—[Theorem 15.] \

Under previous assumptions, general solution to (32) is:

y=ayntaon+y,

where Y is given as:

- ya(s)s(s) <
v=n W[yl,Y2] d+y/W[Y1>Y2] o

\. J

Main difficulties of application:
e Find y;, y» for non constant coefficients p, q.

@ Integration step.
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Variation of parameters: example

Equation:
y" + 4y = 3csc(t) (33)

Solution to homogeneous equation:

c1 cos(2t) + o sin(2t).
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Variation of parameters: example (2)

Wronskian: W(yy, yo|(t) = 2

Integrals:
y2(s) g(s) s:§ sin(2t) an .
W[Y1,)/2](s)d 2/sin(t) dt = 3sin(t) + o
and
yi(s) g(s) < cos(2t)
W[Y1,Y2](S)d /sin(t)
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Variation of parameters: example (3)

Particular solution of equation (33):

Y = —3sin(t) cos(2t) + g In (Jesc(t) — cot(t)]) sin(2t)
+ 3 cos(t) sin(2t)

General solution to equation (33):

y = c1 cos(2t) + ¢ sin(2t) — 3sin(t) cos(2t)

+3 In (Jesc(t) — cot(t)|) sin(2t) + 3 cos(t) sin(2t)
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Some trigonometric formulae

Functions secant, cosecant:

1 1
sec(t) = cos()’ csc(t) = (D)

Integral of csc:

/csc(t) dt = In (Jesc(t) — cot(t)]) + ¢

Double angles:

cos(2t) = cos*(t) —sin?(t) = 1 — 2sin(t)
sin(2t) = 2sin(t) cos(t)
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HW 3.6 exercice 10

Equation:
t

"_ oy _ s
Y yty 1+ ¢?
Fundamental solutions: y; = ef and y, = te'.
Wronskian: W[y, y»](t) = €*

Integrals:

y2(s) g(s) ds
Wly1, y2)(s)
ACEON
Wiy, yo|(s)

= %In(l—i—tz)—kcl

arctan(t) + ¢

Samy T. Second order equations Differential equations 78 / 115



HW 3.6 exercice 10 (2)

Particular solution:

t

Y(t) = —% In (1 + t2) + te' arctan(t)

General solution:

t
y(t) = cie’ + opte’ — % In (1 + t2) + te arctan(t)
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Outline

@ Mechanical vibrations
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Mass on a spring

Situation:
@ Mass m hanging at rest on end of vertical spring.
@ Original length of spring: ¢.
@ Elongation of spring due to mass: L.

Forces:
e Gravitational: mg.
e Spring: F; = —kL.
@ At equilibrium: mg = kL — can be used to compute k.

-
T =
1 =
|y S: l+L+u

T k)

AAARARAAAR
LAAAAA AL C
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Mass on a spring dynamics

Situation 2: we have either
@ Force applied to spring.

@ Initial displacement.

Forces: if u = displacement from equilibrium position,
@ Gravitational: mg.
@ Spring: Fs = —k(L + u).
© Resistive or damping: Fy = —vyu'.
© Applied external force F, often periodic.

Remark:
Expressions for Fs and F, are approximate.
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Equation for dynamics

Newton's law:

mu" =mg — k(L+u) —~vyu' + F

Simplification: since mg = kL, we get

mu" +~yu' + ku = F. (34)

Solution: With initial condition u(0), v/(0) and continuous F
— according to Theorem 3 there exists a unique solution to (34).
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Numerical example

Situation:
@ A mass weighing 4lb stretches a spring 2in.
@ Additional 6in displacement given, then released.

@ Viscous resistance of medium is 6lb when velocity is 3 ft/s.

Model: equation (34)
— determination of m,~, k
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Numerical example (2)

Constants: we have

w 4b 1lbs’

M= e T 30fs? 8 ft
~ 6b _lbs
7T 3Rel TTH
g — mg _w_4lb_ 4 _, b

L L 2in 1/6ft ~ ft

Initial condition: 1
U(O) = 6 in = 5 ft.
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Undamped free vibration
Particular situation: F =0 and v = 0.

Resulting equation:
mu” + ku = 0.

General solution:

. . o\ 2
u = ¢y cos(wpt) + casin(wpt), with wy= [ —
m
Other expression for solution:

u= Rcos(wot —9), where R = (cl2 + c22)1/2, tan(d) = %
1
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Undamped free vibration (2)

Vocabulary: we call

@ wp: natural frequency (does not depend on initial condition).

@ R: amplitude of motion (does depend on initial condition).
@ J: phase.

Period of motion: T =27 (%)1/2

— Larger mass vibrates more slowly.

u

4LR7 ”””””””””””

Rcosé

|
) v 8+ 2m gt
R e e
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Numerical example

Situation:
@ A mass weighing 10lb stretches a spring 2in.
e Additional 2in displacement given.

@ Mass released with upward velocity 1ft/s
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Numerical example (2)

Constants: we have
w 10 Ib 5 Ibs?

m —= _— = —_2 = _—
g 32fts 16 ft

mg w 10lb 101Ib Ib

k — —_— — = = = -

L L 2in 1/6ft 0%

Initial condition:

1
u(0) =2in= 6 ft, u'(0) = —1fts™.
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Numerical example (3)

Equation:
u" +192u = 0.

Solution: taking initial condition into account,

= 6 cos (8\/—t> \/§ sin (8\/_t)
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Numerical example (4)

Quantities of interest:
o Natural frequency' wo = V192 = 13.85 rad s~ *.

@ Period: T =2 =045s.

e Amplitude: R = (c? + 2)Y? =0.182 ft.

@ Phase: § = —arctan(;%5) = —0.41 rad.
OZ— R:o,lggw u = 0.182 cos(8V3 ¢ + 0.409)
NAVAAVIRY, VARV
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Damped free vibrations

Equation:
mu" + yu' + ku = 0.
Roots:
1/2
y 4km
= — |-1x(1——
nn = g |-re (1-47) ]
_ (v* — 4/<m)1/2
 2m 2m '
Remark:

R(r), R(r,) < 0, thus exponentially decreasing amplitude
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Damped free vibrations (2)

3 cases:
Q If v> — 4km > 0, then:

u=crexp(nt)+ cexp(nt).

Q If v2 — 4km = 0, then:
t
u=[c + ct] exp (—;—m) :
@ If 42 — 4km < 0, then:

u = [cy cos(put) + cpsin(put)] exp (—%) , (35)

_2\1/2
where p = Gk 5 g,

2m
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Small damping case

Case under consideration:
If v small, we have v> — 4km < 0 = motion governed by (35).

Expression for u:

u= R exp (—;{;) cos (ut — 0).

\J—Vﬁ#z:—\i;_/

_\Rerm

=
[+]
o
(=1
)
!
I}
N
‘F
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Small damping (2)

Quasi-frequency: when 72 — 4km < 0, given by . We have

1/2
[ (4km—’y2)1/2 (m>1/2: (1 2 >/ L ~2

wWo 2m

k

N  4km 8km’

Conclusion:
Small damping = smaller frequency for oscillations.
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Critical and over

Critically damped case

damping

: when 42 — 4km =0

— mass passes through equilibrium at most once.

u
2

u(0) = % 7] =%
u= (% + 2t) i

8 10 t

\{u(ou =1 wio)=-1

—(L_ 342
uf(z 2t)e

Overdamped case: when 72 — 4km > 0
— mass passes through equilibrium at most once.
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Outline

© Forced vibrations
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Introduction

Situation:
External force applied to a spring mass.

Equation:
mu" +~yu' + ku = F. (36)

Samy T. Second order equations
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Example of forced vibration

Equation:
u" + u' + 1.25u = 3cos(t) (37)

Guess for particular solution:

U(t) = Acos(t) + Bsin(t)

Equation for A, B: plugging into (37) we get

0.256A+B=3, and —-A+4+025B=0.

Particular solution:

U(t) = == cos(t) + 18 sin(t)
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Example of forced vibration (2)

Homogeneous equation:

U +u +1250=0

Solution of homogeneous equation:

u = cre”2 cos(t) + cre 2 sin(t).

General solution of nonhomogeneous equation (37):

12 4
— cos(t) + 18 sin(t).

_ _t ¢ _t ¢
u=cre 2cos(t)+ ce 2sin(t) + 17 7
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Example of forced vibration (3)

Initial conditions: we assume

u(0)=2 and J'(0)=23.

Expression for u:

Transient part Steady state

22 _: 14 12 48
u:1—7e_§cos(t)+ﬁe sm(t)+—cos(t)+1 sin(t).

7
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Example of forced vibration (4)

Observation on graph:
Solution to (37) gets quickly close to steady state.
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Generalization
Equation with sinusoidal forcing:
mu” + yu' + ku = Fy cos(wt). (38)

Solution of homogeneous equation:

uc = cre” " cos(ut) + e " sin(ut).

Transience of u.: we have

Jlim uc(t) =0, exponentially fast.
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Generalization (2)

Particular solution: of the form

U(t) = Acos(wt) + Bsin(wt) = R cos(wt — §).

General solution to (38): given by

Transient part Steady state

u=cre "cos(ut) + coe " sin(ut) + Rcos(wt — §) .
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Resonance phenomenon
Equation with sinusoidal forcing: back to (38), that is
mu" + yu' + ku = Fy cos(wt).

Quantity of interest:

() Rk Amplitude
W)= — =
v Fo Displacement due to Fy at equilibrium

Expression for ¢:

plw) = [(1—5—;)2””—2

Wo

—1/2 )
Y

h r=—-—.

,  where p
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Resonance phenomenon (2)

,—[Proposition 16.] \

Let us assume
e [ small (small damping case)

Then we have

1 mk)/2
Wmax =~ wWo, and  o(wmax) = ke ( ’Y) :
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Resonance phenomenon (3)

Interpretation of Proposition 16:
@ Amplitude can get high if v small and w close to wy.

@ This has to be taken into account in real situations.

RE/F,

02 04 06 08 1 12 14 16 18 2 ol

Samy T. Second order equations Differential equations 107 / 115



Proof of Proposition 16
Differentiating ¢: we find

-3/2
w2 T w?\? w?
/
©'(w 2<1————> <1——> +I—
() = wi 2 wh wh
Optimizing ¢: if [ < 2 we have
172
Wmax = Wo (1 - 5) s
and recalling ' = %ik

= () (2) i)™
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Proof of Proposition 16 (2)

Behavior of ¢: if [ < 2 we have
Q@ ¢(0) =1 — corresponds to equilibrium.

Q Whmax = Wo (1 — 5)1/2 and p(Wmax) = [r (1 — %)]_1/2.
Q lim, 0 p(w) = 0.

Behavior of ¢, small damping case: if [ small we have

1 mk)1/2
Wmax =~ Wo,  and  @(Wmax) ~ iz = ( 7) .
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Forced vibration without damping
,—[Proposition 17.] \

Equation with sinusoidal forcing and no damping:
mu” + ku = Fycos(wt). (39)
Interesting initial condition: mass at rest, that is

u(0)=0, and o'(0)=0.

Then we get a useful expression for u:

Slowly oscillating term Fast oscillating term
2F, . [ (wo—w)t) . [(wo+w)t
= OTER) . (40
u (@R — o) sin ( 5 sin 5 (40)

\. J
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Interpretation of Proposition 17

Amplitude modulation: according to formula (41) we have
@ A fast oscillating motion.
@ A periodic slow variation of amplitude.

u=277778sin 0.1¢
3 / u =2.777785in 0.1¢ sin 0.9¢

1//\ (\\ //\ [\\
3 S

- u= 2777785|n01t ~e -

|k

Remark: This type of wave is observed in reality
— guitar almost tuned.
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Proof of Proposition 17

Equation with sinusoidal forcing and no damping:
Recall equation (39)

mu” + ku = Fycos(wt).

Solution of homogeneous equation:

O\ 12
uc = ¢ cos(wot) + csin(wot), where wy = <—> :
m

Particular solution, case w # wy:

Fo
m(w§ — w?)

Uu(t) =

cos(wt).
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Proof of Proposition 17 (2)

General solution to (39): given by

Fo

m COS(CL)t).

u = ¢ cos(wot) + ¢ sin(wot) +

Interesting initial condition: mass at rest, that is

u(0) =0, and '(0)=0.

Solution to initial value problem:

Fo

R o [eoslwt) — cos(int)].

u =
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Proof of Proposition 17 (3)

Elementary trigonometric formula:

cos(a+ b) — cos(a — b) = —2sin(a) sin(b).

Another expression for u:

Slowly oscillating term Fast oscillating term
2F, . [ (wo—w)t) . [(wo+w)t
u= (2 — ) sin ( 5 sin | ———— |- (41)
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Resonance case

Equation in resonance case:

mu” + ku = Fycos(wot). (42)

General solution to (42): given by

. Fo
= (7 COS t C S t
u 1 (wo ) + & m(wo ) + ST

t sin(wot).
0

Remarks: (1) Unbounded response is not physically realistic.
(2) Response remains bounded when damping is considered.

u =0.25¢ si t
=025£

-5

-10

umv\/\/\/“
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