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1. Consider the matching-hat-problem for n people with n hats. All the people throw their hats
into a container and then each of them picks one at random. Let F,(0) be the probahility

that no people get their own hats back. In class, it was derived that
1 1 Ly %&’Sﬁ
B(0y=1- F + 213 + - o (
Now let (%) be the probability of exactly & (k < n) people get their own hats back rove

that

| 111 _1y(n—h)
Fulk) = kl(l__+2 3!+"'+((n)——zs)!)'

(Hint: consider two groups of people separately, one with all people with matching hats and
the other with no people with matching hats.)
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2. A certain community copsi ) iligg” For ¢ 2,...r, let n; be the number of families

community.

If one of the families is randomly chosen, let X be the number of children in that family.
. Alternatively, if one of the children in the whole community is randomly chosen, let ¥ be the
total number of children in the family of that child.

Which of E(X) and E(Y) is bigger? Prove your statement rigorously, i.e. mathematically.

{Hint: simplify, expand, and compare terms.)
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3. In any given year, a male automobile policyholder will make a claim with probability pas
and a female automobile policyholder will make lmwthp obability pr. Let o be the
fraction of male policyholders (d(l o) be thfrt ffmlplyhld rs}. Now a
policyholder is randomly chosen and fixed for the following consideration. Let A; denote the
event that this person makes a claim during the i-th year.

P

(a) Suppose py # PF- Prove that P(Agl41) > P(A1). Are A; and Az independent?
(b) Suppose py > pr. Let M be the event that the policyholder is a male. Prove that
P(M|A;) > P(M). '
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4. Let X be a positive-integer-valued random variables, i.e. it takes values in {1,2,3,...}. X is
said to enjoy the memoryless property if for any positive integers m,n, it holds that

P(X >m+n|X >m)=P(X >n).

Prove that X enjoys the memoryless property if and only if X is a geometricira.ndom variable,
i.e. there is a p (with 0 < p < 1) such that P(X =) = p(1 —py L.

Note: you need to prove fwo separate statements: geometric implies memoryless and memo-
ryless implies geometrie. For simplicity, just ignore the “degenerate” case p=0or p=1.
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5. There are two types (i = 1,2) of coins in a bin, each with probability p; to give a head upon
tossing. Let o (0 < @ < 1) be the fraction of type 1 coins. A coin is randomly chosen and is
repea tdlyt sed. Suppose the first m tosses give all tails. What is the probability that the
next » tosses still give all tails.
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