Outline

1 Introduction

1.1 Basic probability structures

- 1.2 Buffon's needle
- 1.3 Convergence of functions

2 Modes of convergence

- 2.1 Reviewing the modes of convergence
- 2.2 Results for P and L^p convergences
- 2.3 Results for almost sure convergence
- 2.4 Cases of inverse relations for modes of convergence
- 2.5 Inverse method for simulation
- 2.6 Results for convergence in distribution

< □ > < □ > < □ > < □ > < □ > < □ >

Probability space

Probability space: $(\Omega, \mathcal{F}, \mathbf{P})$ with

- Ω set
- $\mathcal{F} = \sigma$ -algebra or τ -field
- P probability measure

3

(日)

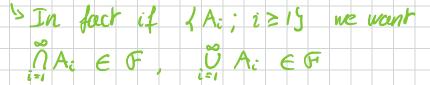
Prob space: (2, F, P)

F: σ-algebra, i·e F is a collection of xubsets of JZ s.r.

$(i) \mathcal{L} \in \mathcal{F}, \quad \phi \in \mathcal{D} \quad \text{or} \overline{A}$

(α) If $A \in F$, then $A^{c} \in F$

(ill) If A, B E F, then A NB E F



About P: P is a probability measure, $\mathcal{P}: \mathcal{F} \longrightarrow \mathcal{I}O_{i}\mathcal{I} \qquad s.r.$ (i) $P(\phi) = O$ $P(\chi) = I$ (ii) If $\{A_i; i \ge 1\}$ are disjoint, $\mathbb{P}(\bigcup_{i=1}^{\infty}A_{i}) = \sum_{i=1}^{\infty}\mathbb{P}(A_{i})$ (iii) $\mathcal{P}(A^{\circ}) = 1 - \mathcal{P}(A) + A \in \mathcal{F}$ Rml If AEF, we say that A is measurable

Example 1 Tossing 2 dice. Then

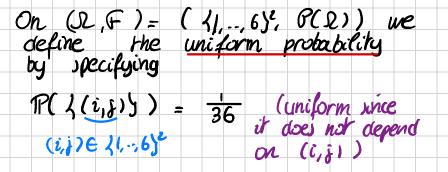
$\Omega = \{1, ..., 6\} \times \{1, ..., 6\} = \{1, ..., 6\}^2$

Since I is finite (or countable), we can take

F=P(I)=Lall rubies of ly

$= \langle \emptyset, \langle (1,1) \rangle, \langle 0,2 \rangle \dots \langle (1,1), (1,2) \rangle \dots \}$

Question: $|\mathcal{X}| = #$ elements in $\mathcal{R} = 36$ $|\mathcal{F}| = 2^{36}$



+ properties (i)-(ii))

F= Borel J-algebra, i.e. we declare that any internal (a,6) c [0,1] belongs to F

+ properties (i)-(ii)-(iii)

Uniform prob measure: If A = (a,b) Then

P(A)= b-a

Then use (i)-(ic)-(iii)

<u>Rma</u> It is important to consider only caustable unions. Otherwise one could write

$\mathbb{P}(\{t\}) = \mathbb{P}([t,t]) = O$

$I = P([0,1]) = P(\bigcup \{t\})$ $= Z P(\{t\}) = O$ $= C P(\{t\}) = O$

Complete probability space

Hypothesis: We assume that **P** is complete, i.e

$$A \in \mathcal{F}$$
 such that $\mathbf{P}(A) = 0$, and $B \subset A$
 \Longrightarrow
 $B \in \mathcal{F}$ and $\mathbf{P}(B) = 0$.

Remark: A probability can always be completed

Image: Image:

∃ ⇒

Simple examples (1)

Tossing 2 dice:

Ω = {1, 2, 3, 4, 5, 6}²
F = P(Ω)
P(A) = |A|/36

Uniform distribution on [0, 1]:

- $\Omega = [0, 1]$
- $\mathcal{F} = \mathcal{B}([0,1])$
- $\mathbf{P} = \lambda$, Lebesgue measure

3