Filtration

$F_{a} = \sigma(X_{1}, ..., X_{n})$

= information up to the present

Next aim: Define a 5-algebra of the future We set $F_n = \sigma(X_k; k > n)$ This Pn is in fact a limit. That is set Knij = J (Xnoi , ..., Xnoj) not a s-algebra in general Then Fr = J U Kni

Side remark.

F. F. J-algebras #> F. UFz J-algebra

Counter example. Take 2= {a, b, c}

$F_{1} = \{ \emptyset, \{a\}, \{b,c\}, \mathcal{P} \} = \sigma(\{a\})$ $F_{2} = \{ \emptyset, \{b\}, \{a,c\}, \mathcal{P} \}$

Then n= 1c3 & F.UFZ

F, UF2 = 1 \$\$, 1a3, 165, 1a, c3, 16, c3, 25

Tail σ -field

Definition 9.

We consider

•
$$\{X_n; n \ge 1\}$$
 sequence of random variables

•
$$\mathcal{F}'_n = \sigma(X_k; k > n)$$

We set

$$\mathcal{T}=\bigcap_{n\geq 1}\mathcal{F}'_n$$

The σ -field \mathcal{T} is called Tail σ -field

Interpretation: We have

 $A \in \mathcal{T}$ if changing a finite number of X_n 's does not change the occurence of A.

- (日)

Examples of events in \mathcal{T}

General setting: We consider

- $\{X_n; n \ge 1\}$ sequence of random variables
- Then we have 7 = linzup A_n , with $A_n = (x_n > 0)$

- $(\mathbf{X}_n > 0 \text{ i.o}) \in \mathcal{T}$
- 2 $(\lim_{n\to\infty} S_n \text{ exists}) \in \mathcal{T}$
- (lim sup_{n \to \infty} X_n > 0) \in \mathcal{T}
- (lim sup $_{n \to \infty} S_n > 0) \notin \mathcal{T}$
- (lim sup_{n\to\infty} \frac{1}{2}S_n > 0) \in \mathcal{T} if $\lim_{n\to\infty} a_n = \infty$

< 日 > < 同 > < 三 > < 三 >

Claim: Set $A = (limsup \times n > 0)$. Then $A \in \mathcal{B}$ Proof $A = \bigcup_{m \ge 1} \left(\lim x_p \times_n \ge \frac{1}{m} \right)$ $= \bigcup_{m \ge 1} \bigcap_{n \ge 1} \bigcup_{k \ge n} \left(X_k \ge \frac{1}{m} \right)$ EFn

(lain: Set B=(limsup Sn >0) Then B & B

Setting: $X_1 \sim \mathcal{B}(\frac{1}{2})$, then $X_n = 0$ for $n \ge 2$ $if \quad S_n = \sum_{k=1}^n X_k \quad (=$ Then $(\limsup S_n > 0) = (X_1 > 0) \in \mathcal{F}_1$

Note: For $\frac{1}{n}$, (linxup $\frac{1}{n}$ >0) E

Kolmogorov's 0-1 law

Theorem 10.

We consider

- $\{X_n; n \ge 1\}$ sequence of independent random variables
- The tail σ -field \mathcal{T} Bunk : Bevered B-C is

Then ${\mathcal T}$ is trivial, that is:

• If $A \in \mathcal{T}$ we have

 $\textbf{P}(A) \in \{0,1\}$

a special case, with A= lum sup A.

2 If $Y \in \mathcal{T}$, there exists $k \in [-\infty, \infty]$ such that

 $\mathbf{P}(Y=k)=1$

Strateyy: Based on the 11 of the sequence Xn.

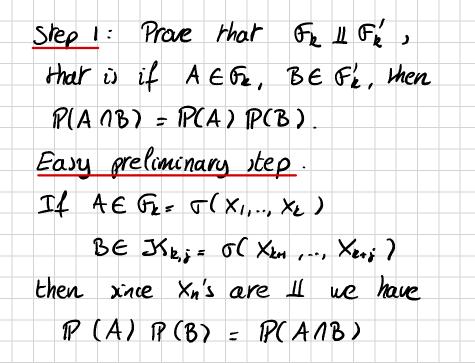
Claim: If AEB, then

Then

ALLA

$\mathcal{P}(A) = \mathcal{P}(A \cap A) = \mathcal{P}(A)^2$

- $\Rightarrow \mathbb{R}(A) = (\mathbb{R}(A))^{e}$
- => P(A) E {0,13



AE GE= (X1, Xe) => AIB BE JSE, = O(Xen , ..., Xer;) Linch? We have AILB if BE UKE,

T-JUSTEM P: If A,BEP, ANBEP

λ - system \mathcal{I} : $SZ \in \mathcal{L}$, $A \in \mathcal{L} => A^{c} \in \mathcal{I}$ $A_{i} \in \mathcal{I}, I \neq A_{i} \land A_{i} = \emptyset$ when $i \neq j$ then

UA: EL

AE G = T(X1, X2) => A # B BE JARIE OC Xen ..., Xeri) Linch? We have AIB if BE UKE, Take P= Uiz, Kei If A, E KLi, A, E Keie, de > di then E Keine A, NA, E Kkine Thus P stable by n => T - system

AE GE= J(X1,..., XL) -> A 1 B (*) BE JXE, = O(Xer, ..., Xer;) We have ALB if BE UKE, d-system: Take AEF and $z = \langle B; P(A \cap B) = P(A) P(B) \rangle$ > check that this is a 1- system and $(*) \Rightarrow$ any $B \in \bigcup_{12} K_{Li}$ is in \mathcal{L} Dynkon Z D J (U Ke, j) = Fk Partial conclusion: Fr 11 Fr

 $\frac{Claim 2}{B \in \mathscr{C}} : If A \in \sigma(X, ...,) \Rightarrow A \parallel B$

If this is true then take AEE.

A ∈ σ(x,...,), A ∈ °

$\Rightarrow A \perp A$ $\Rightarrow P(A) \in \{0,1\}$

Eary to prove: If $A \in F_{\ell}$ $B \in \mathcal{C} = \bigcap_{n \ge 1} F'_n$, in particular, $B \in F'_{\ell} = A \perp B$ We obtain : A I B if AE UFR BE8 SIL we want to have AIB with $A \in \sigma(X_1, X_2, \dots)$, BE ° we we TI-systems and I-systems

Recalling π -systems and λ -systems

 π -system: Let \mathcal{P} family of subsets of Ω . \mathcal{P} is a π -system if:

 $A, B \in \mathcal{P} \implies A \cap B \in \mathcal{P}$

 λ -system: Let \mathcal{L} family of subsets of Ω . \mathcal{L} is a λ -system if:

- ${\color{black} \bullet} \ \Omega \in \mathcal{L}$
- **2** If $A \in \mathcal{L}$, then $A^c \in \mathcal{L}$
- 3 If for $j \ge 1$ we have:

• $A_j \in \mathcal{L}$ • $A_j \cap A_i = \emptyset$ if $j \neq i$

Then $\cup_{j\geq 1}A_j \in \mathcal{L}$

3

- ∢ 🗗 ▶

Recalling Dynkin's π - λ lemma

Proposition 11.

Let \mathcal{P} et \mathcal{L} such that:

- \mathcal{P} is a π -system
- \mathcal{L} is a λ -system
- $\mathcal{P} \subset \mathcal{L}$

Then $\sigma(\mathcal{P}) \subset \mathcal{L}$

э

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

- (日)

Proof of Theorem 10 (1)

Strategy: For $A \in \mathcal{T}$,

- We will prove $A \perp \!\!\perp A$
- If $A \perp \!\!\!\perp A$, then

 $\mathbf{P}(A)^2 = \mathbf{P}(A),$ thus $\mathbf{P}(A) \in \{0,1\}$

3

イロト 不得 トイヨト イヨト

Proof of Theorem 10 (2)

Step 1: We will prove that

 $A \in \sigma(X_1, \ldots, X_k), \ B \in \sigma(X_{k+1}, \ldots) \implies A \perp B$

amv	

3

イロト 不得 トイヨト イヨト

Proof of Theorem 10 (3)

Proof of Step 1: We have

• Let $\mathcal{K}_{k,j} = \sigma(X_{k+1}, \dots, X_{k+j})$. Then $\cup_{j \ge 0} \mathcal{K}_{k,j}$ is a π -system

• Let
$$A \in \sigma(X_1, \ldots, X_k)$$
 and

$$\mathcal{L} = \{B; \mathbf{P}(A \cap B) = \mathbf{P}(A) \mathbf{P}(B)\}$$

Then \mathcal{L} is a λ -system such that $\mathcal{L} \supset (\cup_{j \ge 0} \mathcal{K}_{k,j})$

Thus

$$\mathcal{L} \supset \sigma\left(\cup_{j\geq 0}\mathcal{K}_{k,j}\right) = \sigma(X_{k+1},\ldots)$$

э

イロト イポト イヨト イヨト

Proof of Theorem 10 (4)

Step 2: We will prove that

 $A \in \sigma(X_1, \ldots), \text{ and } B \in \mathcal{T} \implies A \perp\!\!\!\perp B$

Conclusion: If $A \in \mathcal{T}$ we have

 $A \in \sigma(X_1, \ldots)$, and $A \in \mathcal{T}$. Thus $A \perp \!\!\!\perp A$

イロト 不得下 イヨト イヨト 二日

Proof of Theorem 10 (5)

Proof of Step 2: We have

- Let $\mathcal{F}_k = \sigma(X_1, \dots, X_k)$. Then $\cup_{k \ge 1} \mathcal{F}_k$ is a π -system
- Let $A \in \mathcal{T}$ and

$$\mathcal{L} = \{B; \mathbf{P}(A \cap B) = \mathbf{P}(A) \mathbf{P}(B)\}$$

Then \mathcal{L} is a λ -system such that $\mathcal{L} \supset (\cup_{k \ge 1} \mathcal{F}_k)$

Thus

$$\mathcal{L} \supset \sigma\left(\cup_{j\geq 0}\mathcal{K}_j\right) = \sigma(X_1,\ldots)$$

Proof that $\mathcal{L} \supset (\bigcup_{k \ge 1} \mathcal{F}_k)$: If $B \in \mathcal{F}_k$ and $A \in \mathcal{T}$, then

 $A \in \mathcal{K}_{k+1}$, and thus $A \perp\!\!\!\perp B$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Application to law of large numbers

Theorem 12. We consider • $\{X_n; n \ge 1\}$ sequence of independent random variables 2- measurable • $S_n = \sum_{i=1}^n X_i$ = X_n • $Z_1 = \liminf_{n \to \infty} \left(\frac{1}{n} S_n \right)$ and $Z_2 = \limsup_{n \to \infty} \frac{1}{n} S_n$ Then the following holds true: **1** There exists $k_1, k_2 \in [-\infty, \infty]$ such that $Z_1 = k_1$, and $Z_2 = k_2$ a.s 2 If $A \equiv (\lim_{n \to \infty} \frac{1}{n} S_n \text{ exists})$, we have $P(A) \in \{0, 1\}$

4 E b

Outline

1 Ancillary results

1.1 Reviewing results on random variables

2 Laws of large numbers

3 The strong law

4 Law of iterated logarithm

э

イロト イポト イヨト イヨト

Statement of the problem

General problem: We consider

- $\{X_n; n \ge 1\}$ sequence of random variables
- $S_n = \sum_{i=1}^n X_i$

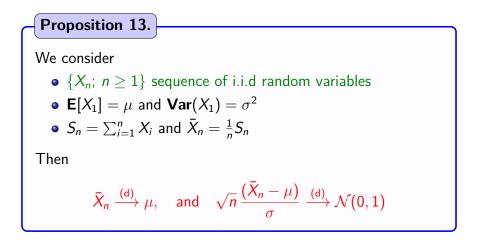
Then we wish to investigate a convergence of the form

$$\frac{S_n}{n} - a_n \longrightarrow S$$

To be specified:

- Constants a_n, b_n
- Pandom variable S
- Mode of convergence

Reviewing old results



38 / 72

• • = • • = •

Proof of CLT: with characteristic functions.

LLN can also be obtained using char. functions

Compute $\phi_n(t) = E[e^{it X_n}]$ $= (\phi(\xi_1))^n$ = E[eⁱt^z Xⁱ] with # TEL ei hxi] $\phi(u) = E I e^{iu \times 7}$ $\stackrel{i.d}{=} (E[e^{i\frac{\pi}{2}x_i}])^n$ -> Taylor a pansion