
Reviewing old results

We consider

{Xn; n → 1} sequence of i.i.d random variables

E[X1] = µ and Var(X1) = ω2

Sn =
∑n

i=1
Xi and X̄n =

1

nSn

Then

X̄n
(d)↑↓ µ, and

↔
n (X̄n ↑ µ)

ω
(d)↑↓ N (0, 1)

Proposition 13.
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Interpretation of CCT: En=M + 0



Proof of LLN in (d) ·
Consider

q(u) = Eleiux]

Then

PuIt) = ElentEn] = Ele]

IELT = P

Aim : Take limits in In (t)
Then apply convergence of c .f

=> convergence in (d)



Recall : u(t) = P()
= exp)n(n(0(t)))

Recall : If X, EL'(r) , then for
small u. M = E[x,]

&)(u) = 1 + iMu + o(u)

=> In (p(1) = int + 0(m)
=> n(n(P(z))= int + 0(1)

=>mexp(n) = ent



&n(t)= El eint[n]

Summary : We have proved that

(i) himdult) = ent Ft ERR

Recall . If En In sequence of r. r.
Sit.

ofof Em
↑

(i)ult) (t) pointwise

(ii)& is continuous at o

(d)
Then En > Z

,
where I has

Cf.0



N(M ,
02) < $(t)= either

Here we get :

In " Y
,
where

#[city] = eitu

=> Yv(u(X=Ma ..)

Conclusion

In 13 e

CT : With Taylor expansions of
order 2



Proof of Proposition 13 (1)

Characteristic functions: For t, u → R set

ω(u) = E [exp (ıuX1)] , and ωn(t) = E
[
exp

(
ıtX̄n

)]
,

Then we have

ωn(t) =

[
ω

( t
n

)]n

Expansion for ωn: We get

ωn(t) =

(
1 + ı

µ t
n + o

(
1

n
))n
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Proof of Proposition 13 (2)

Limit for ωn: By Taylor expansions arguments, for all t → R we have

limn→↑
ωn(t) = exp (ıµt)

Conclusion: By characteristic function method,

X̄n
(d)↑↓ µ

Method for CLT part:

ε↓ Expansions of order 2 for characteristic functions
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A first improvement: weak LLN

We consider

{Xn; n ↔ 1} sequence of i.i.d random variables

Hyp: X1 → L1
(!) and E[X1] = µ

Sn =
∑n

i=1
Xi and X̄n =

1

nSn

Then

X̄n
P↑↓ µ,

Proposition 14.
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Recall : We have seen

(zni ) = (zu * )

Here

Inu (constant

=> In Psu



Proof of Proposition 14

Quick proof: The result stems from

X̄n
(d)→↑ µ

µ is a constant
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Strong LLN under L2 conditions

We consider

{Xn; n ↓ 1} sequence of i.i.d random variables

Hyp: X1 ↔ L2
(!) and E[X1] = µ, Var(X1) = ω2

Sn =
∑n

i=1
Xi and X̄n =

1

nSn

Then

X̄n
a.s→↑ µ, and X̄n

L2

→↑ µ

Proposition 15.
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L-convergence : We want to prove

EIEn-u(2]n
+

0

Computation EIEn-M)<]

=Eli -u)<]# centered r. r.

= El (Xi-)(<]
Conclusion :

= Var(xi) In M
# in Var(x)

= t Var(X, ) = ne



Recall : We have seen that

En > u

m
Enn a.S

; M

Here
, using L2-norms , we can construct

a specific Un I.U.20,

(Ana(2)) <0 Ann(s) = (Enn-M(s)

This implies Ena M



Specificm Ann(2) = (Enn-MK2)

P(Any(s)) = P)(En-M1 >2)
Chevychel
[ El(Enn-M12]

22

=
52
NrE

If we want [IP(Ann's)) <o,
it issufficient to rake

Un = R

=>Ann(a))a



We have obtained:

Fr a e

From Ent to En . Assume Xn20 a. >.

Take n. . Then ↳t In kask
for a given R . Thus

Suz So < Sarik (Xj's are 20)

Sk& Skri
Kris ↳2



Summary

Sk& Skri
Kris ↳2

Fuz

=>
12 Si -I - St Erik
Ar2 [r1 62

k+0u
a-)- k->x C. J.

V V

↓ M MY
Conclusion

S as



case of a signed Xn :

Write Xn : Ant-X
,
When

apply the previous result for
bork X and Xi



Proof of Proposition 15 (1)
L2

convergence: We compute

E
[(

X̄n → µ
)2

]
=

1

n2
E




( n∑

i=1

(Xi → µ)

)2




=
1

n2
Var

( n∑

i=1

(Xi → µ)

)

=
1

n2

n∑

i=1

Var (Xi)

=
1

n Var (X1)

Conclusion:

limn→↑
E

[(
X̄n → µ

)2
]

= 0
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Proof of Proposition 15 (2)

General result for a subsequence: Since X̄n
P→↑ µ, we have:

There exists a subsequence {nk ; k ↓ 1} such that X̄nk
a.s→↑ µ
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Proof of Proposition 15 (3)

A more concrete subsequence: Set nk = k2
and

Ak(ω) =

{
|X̄nk → µ| > ω

}

Then by Chebyshev,

P (Ak(ω)) ↔
E

[(
X̄k2 → µ

)2
]

ω2
↔ Var(X1)

k2ω2

Almost sure convergence: We have

↑∑

k=1

P (Ak(ω)) < ↗ for all ω > 0, and thus X̄k2

a.s→↑ µ
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Proof of Proposition 15 (4)

Case of a positive sequence: If Xn ↓ 0, then if k2 ↔ n ↔ (k + 1)
2

Sk2 ↔ Sn ↔ S(k+1)2

Sk2

(k + 1)2
↔ Sn

n ↔
S(k+1)2

k2

Taking n ↑ ↗ we get

X̄n
a.s→↑ µ
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Proof of Proposition 15 (5)

Signed sequence case: For a general Xn we argue as follows:

1 Write Xn = X +

n → X ↓
n

2 Apply positive sequence case to both X +

n and X ↓
n

3 This is allowed since X +

n i.i.d with Var(X +

1 ) < ↗

Conclusion: We still have

X̄n
a.s→↑ µ
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Outline

1 Ancillary results

1.1 Reviewing results on random variables

1.2 0-1 laws

2 Laws of large numbers

3 The strong law

4 Law of iterated logarithm
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The strong law

We consider

{Xn; n ↓ 1} sequence of i.i.d random variables

Sn =
∑n

i=1
Xi and X̄n =

1

nSn

Then

X̄n
a.s→↑ µ, ↘≃ X1 ⇐ L1

(!)

Theorem 16.
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Nsc for weak convergence

We consider

{Xn; n ↓ 1} sequence of i.i.d random variables

Sn =
∑n

i=1
Xi and X̄n =

1

nSn

Then

X̄n
P→↑ µ ↘≃ Condition (2) or (3) holds,

with

limn→↑
n P (|X1| > n) = 0, and limn→↑

E
[
X1 1(|X1|↔n)


= µ (2)

ε di!erentiable at 0, and ε↗
(0) = ı µ (3)

Theorem 17.
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6= c. f. of Xi



Example of WLLN without SLLN

We consider

{Xn; n ↓ 1} sequence of i.i.d random variables

Sn =
∑n

i=1
Xi and X̄n =

1

nSn

X1 symmetric random variable

Common cdf satisfies 1 → F (x) ⇒ 1

x ln(x)
as x ↑ ↗

Then

X̄n
P→↑ 0, but X̄n does not converge a.s

Proposition 18.
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example : x, nW(0,02)

X symmetric if
2)- x) = 2(x)
*X,



Why don't we have In M ?

It is due to the fact that XL(r)

Proof that X, L'(r1 : We have
I

P(X, 2x) = 1- F(x) ~xe) (if x, contin.
Thus

, if ~ en()

E[X = 1. P(X, = x)cx = -

=> XEL'(r)



Why do we have Inu ? We should
verify

nP(K,kn)"* 0 (1)

him EX1)]=2)

Proof of (1)
R n+

n(A,
kn) ~neun > O

Proof of (2) Since X, cymmetric
symm.

n->0

EIXACIens] = 0 > 0


