Discrete case cond. $pm_{\perp} p_{xiy}(ziy) = \frac{p(z,y)}{p_{r}(y)}$ Cincl. exp Elg(x) 1 Y= y] = Zg(x) px1x 12/y) Cont. case f(x,y)Cond. density fixing (2/y)= 42(4) Cond. exp Elg(x) 1Y=y] = $\int_{\mathbb{R}} g(x) f_{xir}(z|y) dx$

Simple example of continuous conditioning (1)

Density: Let (X, Y) be a random vector with density

$$\frac{e^{-\frac{x}{y}}e^{-y}}{y}\mathbf{1}_{(0,\infty)}(x)\mathbf{1}_{(0,\infty)}(y) \qquad \begin{array}{c} (\Rightarrow \times \geq \mathcal{O} \\ \times \geq \mathcal{O} \end{array} \right)$$

Question: Compute

$$P(X > 1 | Y = y) = E[A_{(1,\infty)}(x) | Y = y]$$

= $\int_{1}^{\infty} f_{x|y}(x|y) dx$

Image: A matrix

э

Maryinal for Y: Take y>0 fr (y)= Jaf (z,y) de Joensily of E(+ $\frac{e^{-y}}{y} = \frac{e^{-x}}{y} = \frac{1}{1_{(0,\infty)}} (x) dx$ 3 $\frac{1}{2} \int_{a}^{a} \frac{1}{4} e^{\frac{1}{4}} dx$ $(\Rightarrow \forall v \in (1))$ P-y Cond density Take I y fx1x (2 1y)= f(2,y) **5-A** = + e-2

 $z \sim \varepsilon(1) \Rightarrow \Re(z \ge a) = e^{-Aa}$ Summary for x, y > 0fx1x (2 1y)= + e= => L(XIY=y) ~ E(+) Cond. probability <u> えゃ と(も)</u> P(X>11Y=y)= P(Z>1) = e^{-\$}

Differences between baby /non baby Cond. expectation

(i) We condition on a o-algebra G

(ci) E[XIF] is a r.r.

EIXIFJ

(iii) We define EZ g(x) IFJ, then

conditional distributions

(iv) Interpretation: "Best possible" approx.

Simple example of continuous conditioning (2)

Marginal distribution of Y: We have

$$f_{Y}(y) = \int_{0}^{\infty} f(x, y) dx$$

= $\frac{e^{-y}}{y} \left(\int_{0}^{\infty} e^{-\frac{x}{y}} dx \right) \mathbf{1}_{(0,\infty)}(y)$
= $e^{-y} \mathbf{1}_{(0,\infty)}(y)$

Conditional density: For y > 0 we have

$$f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)} = \frac{e^{-\frac{x}{y}}}{y} \mathbf{1}_{(0,\infty)}(x)$$

Namely $\mathcal{L}(X | Y = y) = \mathcal{E}(\frac{1}{y})$

22 / 90

Image: A matrix

Simple example of continuous conditioning (3)

Conditional probability:

$$P(X > 1 | Y = y) = \int_{1}^{\infty} f_{X|Y}(x|y) dx$$
$$= \int_{1}^{\infty} \frac{e^{-\frac{x}{y}}}{y} dx$$
$$= e^{-\frac{1}{y}}$$

★ ∃ >

э

< □ > < 同 >

Cond. expectation in the continuous case

Definition 5.

Let

- (X, Y) couple of continuous random variables
- Joint density f
- Marginal densities f_X, f_Y, y such that $f_Y(y) > 0$
- $f_{X|Y}(x|y)$ conditional density

Then the conditional exp. of X given Y = y is defined by

$$\mathbf{E}[X|Y=y] = \int_{\mathbb{R}} x f_{X|Y}(x|y) dx$$

Example of continuous conditional expectation (1)

Density: Let (X, Y) be a random vector with density

$$\frac{e^{-\frac{x}{y}}e^{-y}}{y}\mathbf{1}_{(0,\infty)}(x)\mathbf{1}_{(0,\infty)}(y)$$

Question: Compute

$$\mathsf{E}\left[X \mid Y = y\right]$$

~	_	
S 2 1221/		
JALLIV		
ean,		

25 / 90

Image: Image:

Example of continuous conditional expectation (2)

Conditional density: For y > 0 we have seen that

$$f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)} = \frac{e^{-\frac{x}{y}}}{y} \mathbf{1}_{(0,\infty)}(x)$$

Namely
$$\mathcal{L}(X|\;Y=y)=\mathcal{E}(rac{1}{y})$$

Conditional expectation: We have

$$\mathbf{E}[X|Y = y] = \int_{\mathbb{R}} x f_{X|Y}(x|y) dx$$
$$= \int_{0}^{\infty} x \frac{e^{-\frac{x}{y}}}{y}$$
$$= y$$

Image: Image:

Outline

Definition

- Baby conditional distributions: discrete case
- Baby conditional distributions: continuous case
- Definition with measure theory

2 Examples

- 3 Existence and uniqueness
- 4 Conditional expectation: properties
- 5 Conditional expectation as a projection
- 6 Conditional regular laws

Formal definition Big o-algebra Definition 6. We are given a probability space $(\Omega, \mathcal{F}_0, \mathbf{P})$ and • A σ -algebra $\mathcal{F} \subset \mathcal{F}_0$. • $X \in \mathcal{F}_0$ such that $\mathbf{E}[|X|] < \infty$. Conditional expectation of X given \mathcal{F} : *É*[xIF]=Y • Denoted by $\mathbf{E}[X|\mathcal{F}]$ • Defined by: $\mathbf{E}[X|\mathcal{F}]$ is the $L^1(\Omega)$ r.v Y such that (i) $Y \in \mathcal{F}$. (ii) For all $A \in \mathcal{F}$, we have $\mathbf{E}[X\mathbf{1}_A] = \mathbf{E}[Y\mathbf{1}_A],$ or otherwise stated $\int_{\Delta} X \, d\mathbf{P} = \int_{\Delta} Y \, d\mathbf{P}$.

ヘロト 人間ト ヘヨト ヘヨト

Remarks

Notation: We use the notation $Y \in \mathcal{F}$ to say that a random variable Y is \mathcal{F} -measurable.

Interpretation: More intuitively

- \mathcal{F} represents a given information
- Y is the best prediction of X given the information in \mathcal{F} .

Existence and uniqueness:

To be seen after the examples.

Outline

Definition

- Baby conditional distributions: discrete case
- Baby conditional distributions: continuous case
- Definition with measure theory

2 Examples

- 3 Existence and uniqueness
- 4 Conditional expectation: properties
- 5 Conditional expectation as a projection
- 6 Conditional regular laws

Setting (I, Fo, P), FC Fo

Recall: Y is the "best approx" of X as a r.v. YEG

Intuitively: If XEF, the best approx mould be X

Easy examples (1)

Example 1: Assume

 $X \in \mathcal{F}$.

Then

 $\mathbf{E}[X|\mathcal{F}] = X$

-			
~	2	22.1	
	-		

э

・ロト ・四ト ・ヨト ・ヨト

Independence of a r.v and a σ -field

Definition 7.

We say that $X \perp\!\!\!\perp \mathcal{F}$ if \hookrightarrow for all $A \in \mathcal{F}$ and $B \in \mathcal{B}(\mathbb{R})$, we have

 $\mathbf{P}((X \in B) \cap A) = \mathbf{P}(X \in B) \, \mathbf{P}(A),$

or otherwise stated:

 $X \perp\!\!\!\perp \mathbf{1}_A$

Easy examples (2)

Example 2: Assume

 $X \perp\!\!\!\perp \mathcal{F}.$

Then

 $\mathbf{E}[X|\mathcal{F}] = \mathbf{E}[X]$

~	
.	
Janny	

э

・ロト ・四ト ・ヨト ・ヨト

Proof: example 2

We have

(i) $\mathbf{E}[X] \in \mathcal{F}$ since $\mathbf{E}[X]$ is a constant. (ii) If $A \in \mathcal{F}$,

$$\mathbf{E}[X \mathbf{1}_A] = \mathbf{E}[X] \mathbf{E}[\mathbf{1}_A] = \mathbf{E}\Big[\mathbf{E}[X] \mathbf{1}_A\Big].$$

3

イロト イヨト イヨト

Discrete conditional expectation

Example 3: We consider

{Ω_j; j ≥ 1} partition of Ω such that P(Ω_j) > 0 for all j ≥ 1.
F = σ(Ω_j; j ≥ 1).

Then

$$\mathbf{E}[X|\mathcal{F}] = \sum_{j \ge 1} \frac{\mathbf{E}[X \mathbf{1}_{\Omega j}]}{\mathbf{P}(\Omega_j)} \mathbf{1}_{\Omega j} \equiv Y.$$
(1)

- ∢ /⊐ >

э

Setting: Partition {SZ; ; >1} $Y = Z_{\delta \geq 1} \quad \beta_{\delta} \quad 1_{\mathcal{X}_{\delta}} , \quad \beta_{\delta} = \frac{\mathcal{E} \mathcal{I} \times \mathcal{I}_{\mathcal{X}_{\delta}}}{\mathcal{P}(\mathcal{R}_{\delta})}$ (c) $F = \sigma(\Omega_{\tilde{t}}; \tilde{t} \geq 1)$ => $1_{x_i} \in G$ (as a r.v) $=> \sum_{i\geq i} \alpha_i \mathbf{1} \mathcal{I}_i \in \mathcal{F} \forall (\alpha_i)_{i\geq i}$ particular, YEG In

 $Y = Z_{i \geq 1} \quad \beta_i \quad 1_{\mathcal{L}_i} \quad \beta_i = \frac{\# [X \ 1_{\mathcal{L}_i}]}{\Re (\mathcal{R}_i)}$ =0 a.s. if s = n For a given n, EZY12n] = EZ(Ziz, Bi 1e;) 1en] = E[Bn 12n] = Bn E[1en] E[×1sn] = Br P(Rn) = P(R) RLD) $= E\bar{l} \times 1 s_n$] => (ii) proved

Simple example of partition : B, B^c $\Rightarrow \sigma(B,B^{c}) = \{ \not a, B, B^{c}, p \} = F$ Now hake AEES and set $E[1_A | F] = P(A | F)$ we get, according to example 3 RAIF) = <u>ET1A1B</u>] 1B + <u>ET1A1B</u>] 1BC RB) RBC RBC = $\mathbb{R}(A|B)$ 1_B + $\mathbb{P}(A|B^c)$ 1_Bc

Proof: example 3

Strategy: Verify (i) and (ii) for the random variable Y.

(i) For all $j \ge 1$, we have $\mathbf{1}_{\Omega_j} \in \mathcal{F}$. Thus, for any sequence $(\alpha_j)_{j \ge 1}$, $\sum_{j \ge 1} \alpha_j \mathbf{1}_{\Omega_j} \in \mathcal{F}.$

(ii) It is enough to verify (1) for $A = \Omega_n$ and $n \ge 1$ fixed. However,

$$\mathsf{E}[Y\mathbf{1}_{\Omega_n}] = \mathsf{E}\left\{\frac{\mathsf{E}[X\mathbf{1}_{\Omega_n}]}{\mathsf{P}(\Omega_n)}\mathbf{1}_{\Omega_n}\right\} = \frac{\mathsf{E}[X\mathbf{1}_{\Omega_n}]}{\mathsf{P}(\Omega_n)}\mathsf{E}[\mathbf{1}_{\Omega_n}] = \mathsf{E}[X\mathbf{1}_{\Omega_n}].$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Undergrad conditional probability

Definition: For a generic measurable set $A \in \mathcal{F}_0$, we set

$$\mathsf{P}(A|\mathcal{F}) \equiv \mathsf{E}[\mathbf{1}_A|\mathcal{F}]$$

Discrete example setting: Let B, B^c be a partition of Ω , and $A \in \mathcal{F}_0$. Then **1** $\mathcal{F} = \sigma(B) = \{\Omega, \emptyset, B, B^c\}$ **2** We have $\mathbf{P}(A|\mathcal{F}) = \mathbf{P}(A|B) \mathbf{1}_B + \mathbf{P}(A|B^c) \mathbf{1}_{B^c}.$