
Prob space (2 , Fo, ) ,
FC Fo

Def of EIXIF] = Y ,
such that

(i) Ye> F
"Best possible approx"
1

(ii) El Y1A] = ElX 1A]

FAC F



Extreme example

If XE F ,
then EIXIf] = X

Extreme example 2

If X 1 F ,
when E[X1F] = E[X]

In-between
,
the recipe is

(i) Freeze what you know

(ii) Average on what you don't know



In-between example

If F generated by a partition
45:; 2 1)

,
when

E[X12j]EXIF]= Ari
PP(rj)

Particular case. If F= 0 (B) ,

PAIF) = E[1A1F]

= ((AIB)1B + P(A/B) 13



Dice throwing

Example: We consider
! =

{
1, 2, 3, 4, 5, 6

}
, A = {4}, B = "even number".

Then
P(A|F) = 1

3 1B.
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Fo = P(c) , P = H((1, ..,6))

S F= +(B)
↑



Setting
2= (1 , .., 6) ,

f = P(r)
A = 443

F= r(b) = 40
,
B
,
B?, r)

is= even number = <2, 4,6)

Computation

According to the general formula
↳ O

IP(AIF) = #(AIB) 1B + PAIBY)1

= 51B



Conditioning a r.v by another r.v

Let
X random variable such that X → L

1(!)
Y random variable

We set
E[X |Y ] = E[X |ω(Y )].

Definition 8.
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+(x)= \Y" (B) ; BEB(MY
= smallest t-algebra which makes y measurable



Characterizing ω(Y )

How to know if A → ω(Y ):
We have A → ω(Y ) i!

A =
{
ε; Y (ε) → B

}
, or 1A = 1B(Y )

How to know if Z → ω(Y ):
Let Z and Y be two random variables. Then

Z → ω(Y ) i! we can write Z = U(Y ), with U → B(R).
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for BE B(M)

Note : V : R- I is a generic measurable

function



Conditioning a r.v by a discrete r.v

Example 4: Whenever X and Y are discrete random variables
ϑ↑ Computation of E[X |Y ] can be handled as in example 3.

More specifically:
Assume Y → E with E = {yi ; i ↓ 1}
Hypothesis: P(Y = yi) > 0 for all i ↓ 1.

Then E[X |Y ] = h(Y ) with h : E ↑ R defined by:

h(y) = E[X 1(Y =y)]
P(Y = y) .
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r(X) is generated by [Rijj21) where ti= (V= Yi)

Typical example of E : E = (1 .., 6)
20 , ..., n)
IN

r.V . X :2E



claim : E[X1X]= h(X)

where h(y)= ElX 1x=ys] = E[xiv=y]
P(V=y) from

baby conditioning
We check

(i) z = h(y)Er(Y)
↳ True since t is of the
form h(X) for h
measurable

Nore h : E < I



(ii) We should check z= k(X)

E[z1A] = E[X1A]

forA Er(y) = u(rj ; j =)

where: = (V= %:)

We are this reduced to prove

EIZ 1(V= yF] = ElX1xgs]
fjz I



EIZ 1(V= yF] = ElX1xgs]

Recall z = h(V)= hy! 1x= :)
=EXi

P(X= yi)

Then Elz1(= y: 1] =O if itI

= EX1] ELLYi) LEYi]
|P(X=Yi)

P(Y= yj) 1(i= j)

=
E[X1x=yj)] P(X= yj) = E[X1y+y2)
1P(X= yj)

+

- (ii) verified



Conditioning a r.v by a continuous r.v

Example 5: Let (X , Y ) couple of real random variables with
measurable density f : R2→R+. We assume that

∫

R
f (x , y)dx > 0, for all y ↑ R.

Let g : R → R a measurable function such that g(X ) ↑ L
1(!). Then

E[g(X )|Y ] = h(Y ), with h : R → R defined by:

h(y) =
∫
R g(x)f (x , y)dx

∫
R f (x , y)dx

.

Samy T. Conditional expectation Probability Theory 42 / 91

= ETg(x)(X=y] from baby conditioning



Heuristic proof

Formally one can use a conditional density:

P(X = x |Y = y)” = ”P(X = x , Y = y)
P(Y = y) = f (x , y)

∫
f (x , y)dx

,

Integrating against this density we get:

E[g(X )|Y = y ] =
∫

g(x)P(X = x |Y = y) dx

=
∫

g(x)f (x , y)dx
∫

f (x , y)dx
.
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Recall : M(yi= Jug(x)f(x,y)dx
Sinf((y)dx

claim : h(X) =z satisfies (i) and (ii)

(i) zEr())
,
since z = h(X)
withh measurable

(ii) We should prove

ETz1a] = ElX1A]AEO(y)

Generic A : 1A = 1B(Y)



In fact it is enough to prove

ETzp(X)] = Encantat(+)]

for any 4 E Bo(R)
-

bounded

Elzp(X)] = E[h(x)4(73]

= Sh h(y) +(y) f(x,y)dx dy

Enough : Elz 1p(X)]= E[X1p (V]



Elzy(y)]

= Sh h(y) +(y) f(x,y)dx dy
= JiJugy) fly)e p(y) f(x,y) de dy

f(2,y) du

Fubini J Cydz f(z,y)y(z,*) 4(y)_/Alycra
joint density Jflu,y)

du
-

= Jg(z,y)y(y)f(z,y)dz dy

= E[g(x) +(2)]cified



Rigorous proof
Strategy: Check (i) and (ii) in the definition for the r.v h(Y ).

(i) If h → B(R), we have seen that h(Y ) → ω(Y ).

(ii) Let A → ω(Y ) Then

A =
{
ε; Y (ε) → B

}
=↑ 1A = 1B(Y )

Thus

E[h(Y )1A] = E[h(Y )1B(Y )]
=

∫

B

∫

R
h(y)f (x , y)dxdy

=
∫

B

dy

∫

R

{∫
g(z)f (z , y)dz
∫

f (z , y)dz

}
f (x , y)dx

=
∫

B

dy

∫
g(z)f (z , y)dz= E[g(X )1B(Y )].
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