
Aim : If x EL'(e) , Foalgebra

existence + uniqueness of EIXIE] ?
proved

Tool: Consider w KM. Then

= &10 ,
measurable such

that for all g E Bo

r(g) = u(f9)
(In particular w(1A) = u(f11))



Conditional expectation: existence

On the probability space (!, F0, P) consider
A ω-algebra F → F0.
X ↑ F0 such that E[|X |] < ↓.

Then the random variable

E[X |F ]

exists and is uniquely defined.

Proposition 12.
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satisfies
(i) EXIFJEL
(ii) ETX1A]
= E[X11]
AE F



Proof Hyp : =

(1) Define a measure r on (2, F)
by setting

w(A) = EIX1a]
,
fAEE

claim : W is a measure
,
i . e

(a) r(d) =0 > disjoint union

(6) r(Ai)=(i)
(c) (A) 20 AEF



Here (a) and (c) are clear.
Moreover

, if Ais are disjoint

r(Ai) = ElX 1A]
disjoint E[X1]
= ET1A]
Fuqui[X1A
= (A: ) => (6) verified

Thus r is a measure



Recall : w(Al = ElX 1A]

Take M= . M is a probability
on (2, F) , our also on ( ,F)

We can write uIA) = El 1A]

Question : Do we havewu ?

If u (Al =0, when 1A = 0 a. c.

=> X1A = 0 0 . ) . Yes!

=> r(A) = E[X1A] = 0



Radon-Nykodym : Since M,
7YEF J. U . ↓ AEF

r(1A) = ElY 1A]

Thus YEF and for all AEF

E[X1A] = E[Y1A]

Conclusion: V= E[x1F]



Proof of existence

Hypothesis: We have
A ω-algebra F → F0.
X ↑ F0 such that E[|X |] < ↓.
X ↭ 0.

Defining two measures: we set
1 µ = P, measure on (!, F).
2 ε(A) ↔ E[X 1A] =

∫
A

X dP.
Then ε is a measure (owing to Beppo-Levi).
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Proof of existence (2)

Absolute continuity: we have

P(A) = 0 ↗ 1A = 0 P-a.s.
↗ X 1A = 0 P-a.s.
↗ ε(A) = 0

Thus ε ↘ P

Conclusion: invoking Radon-Nykodym, there exists f ↑ F such that,
for all A ↑ F , we have ε(A) =

∫
A

f dP.
ϑ≃ We set f = E[X |F ].
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Outline

1 Definition
Baby conditional distributions: discrete case
Baby conditional distributions: continuous case
Definition with measure theory

2 Examples

3 Existence and uniqueness

4 Conditional expectation: properties

5 Conditional expectation as a projection

6 Conditional regular laws
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Linearity, expectation

Let X ↑ L
1(!). Then

E
{
E[X |F ]

}
= E[X ].

Proposition 13.

Let ϖ ↑ R, and X , Y ↑ L
1(!). Then

E[ϖX + Y |F ] = ϖ E[X |F ] + E[Y |F ] a.s.

Proposition 14.
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still a r. v.



Proof of linearity. Set

z = x E[X1f) + E[Y1F]

We want to prove (i) and (ii) for z

(i) ZE F
,
since

E[xF)EF
,
ElYIf] Ef

and z is a linear combination of
the two.



z = x E[X1f) + E[Y1F]

(ii) Take A F. Then

ElZ 1A] nr V. V.

= E((xE[XIF) + E[XIF]) 1A]
Elinear
= & EL ETXIF] 1A) + ECETXIEJIAS
(ii)
= x [[X1A] + E[X1A]
linearity
= E[(X+y)11]

=> (ii) verified



Proof Char EE[X1F]) = E[X]
X

We have that FAEF,

El Y1A] = E[X11]

In particular, REF. We get
ETX1r] = ElX 12]

=> E[X] = E[X]



Proof
Strategy: Check (i) and (ii) in the definition for the r.v

Z → ω E[X |F ] + E[Y |F ].

Verification: we have
(i) Z is a linear combination of E[X |F ] and E[Y |F ]

ε↑ Z ↓ F .
(ii) For all A ↓ F , we have

E[Z 1A] = E

{
(ωE[X |F ] + E[Y |F ]) 1A

}

= ωE

{
E[X |F ] 1A

}
+ E

{
E[Y |F ] 1A

}

= ωE[X 1A] + E[Y 1A]
= E[(ωX + Y ) 1A].
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Monotonicity

Let X , Y ↓ L
1(!) such that X ↭ Y almost surely. We have

E[X |F ] ↭ E[Y |F ],

almost surely.

Proposition 15.

Proof: Along the same lines as proof of uniqueness for the
conditional expectation.For instance if we set

Aω = {E[X |F ] ↔ E[Y |F ] ↫ ϑ > 0} ,

then it is readily checked that

P(Aω) = 0.
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Proof. Take XXY .
We want

to prove that

E[XIF] - ElY 1F]

It is enough to prove that VEXO,
if
Ac = (E[XIF]- ETVIF] = E) ,
then

IP(Az) = 0



Ac = (E[XIF]-ETVIF] =E ) EF

We have = E on As

EP(Az) -J E((E[XIF] -E[X1F]) 1Az]
Linearity of ET. IF]
= coEEIF As
(ii)
E[X-V) 1As]-

O

Thus &P(A2) 10

=> (P)Az) = 0



Monotone convergence

Let {Xn; n → 1} be a sequence of random variables such that
Xn ↭ 0
Xn ↑ X almost surely
E[X ] < ↓.

Then
E[Xn|F ] ↑ E[X |F ].

Proposition 16.
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Xur ? Xn a. ) . and Xn-X &. ) .

C-S .



Recall: XnX a. ) . Welet

20
Yn = X- An .

We have YnY0 a . ).

Set zn = E[YnIF] . We
have

(i) Since ET . 1F] is monotone
and Y Y

,
we have

En > (Enc En a . s.
Zu

(ii) Yn20 = EIYIF] 20

Thus 77020 1 . U. En > Zo



summary : Yn = X-Xn
Zu= El YnIF]
zn y Zo &. ) .

zo 20 9 . ).

we wish to prove : zo = 0

Rmk: If zo10/ in order to
prove that zo =O

,
it

is enough to prove EIZN] = 0

However ElEn] = ECETXIE]]
= E[Yn]

Beppo-Levi
In addition

,
YY0 => E[Yn] YO



We have obtained

E[Zn] Y O

In addition,

En Y Zo & .)

Beppo-Levi
= E[Zn] Y ElZo]

Thus

ETZo] =0 => zo = 0 a. ) .

=> Beppo- Levi for EC . 15]



Proof

Strategy: Set Yn → X ↑ Xn. We are reduced to show
Zn → E[Yn|F ] ↓ 0.

Existence of a limit: n ↔↗ Yn is decreasing, and Yn ↭ 0
ω↗ Zn is decreasing and Zn ↭ 0.
ω↗ Zn admits a limit a.s, denoted by Z→.

Aim: Show that Z→ = 0.
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Proof (2)
Expectation of Z→: we will show that E[Z→] = 0. Indeed

Xn converges a.s. to X .
0 ↫ Xn ↫ X ↘ L

1(!).
Thus, by dominated convergence, E[Xn] ↗ E[X ].
We deduce:

E[Yn] ↗ 0
Since E[Yn] = E[Zn], we also have E[Zn] ↗ 0.
By monotone convergence, we have E[Zn] ↗ E[Z→]

This yields E[Z→] = 0.

Conclusion: Z→ ≃ 0 and E[Z→] = 0
ω↗ Z→ = 0 almost surely.
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