Probability space

Probability space: $(\Omega, \mathcal{F}, \mathbf{P})$ with

- Ω set
- \mathcal{F} a σ -algebra
- P probability measure

3

イロト イポト イヨト イヨト

Complete probability space

Idea: Any set which has "P(A) = " is declared measurable, so that P(A) can be computed

Hypothesis: We assume that **P** is complete, i.e we don't know that $A \in \mathcal{F}$ such that $\mathbf{P}(A) = 0$, and $\overline{B} \subset A$ \Longrightarrow $B \in \mathcal{F}$ and $\mathbf{P}(B) = 0$.

Remark: A probability can always be completed

Simple examples (1)

Tossing 2 dice:

Ω = {1, 2, 3, 4, 5, 6}²
F = P(Ω)
P(A) = |A|/36

Uniform distribution on [0, 1]:

- $\Omega = [0, 1]$
- $\mathcal{F} = \mathcal{B}([0,1])$
- $\mathbf{P} = \lambda$, Lebesgue measure

3

Simple examples (2)

< □ > < □ > < □ > < □ > < □ > < □ >

In the 3 examples we have seen, the natural & was simple enough (21,...,65°, CO, I), R) BMK Generally speaking, IZ can be very complicated and it is unspecified. Example: For experiment given by rolling 2 clice, we have taken 2=11,...,65°. However, & should be (maybe)

sz = 2 path of 2 dired volledy

"Typical" example for this course $\mathcal{L}^{P} = \{ \text{ sequences}(U_{n})_{n \ge 1} ; \sum_{n=1}^{\infty} |U_{n}|^{P} < \infty \}$

Proposition 1.

Let $\Omega = \ell^p$ with $p \in (1,\infty)$. We set:

$$d(u,v) = \left(\sum_{n\geq 1} |u_n - v_n|^p\right)^{1/p}$$

Then Ω is a complete metric separable space.

$$\underbrace{Complete: If Un Cauchy requerce in l, then
Un \rightarrow U and U \in ln
separable: $\exists \ \downarrow U^{n}, n \ge 1$ dense in $l^{p}$$$

Random variables

Definition 2.

Let

- $(\Omega, \mathcal{F}, \mathbf{P})$ complete probability space
- A function $X : \Omega \to \mathbb{R}$

Then

X is said to be a random variable if X is measurable

 $\chi \omega \in \mathcal{R}$; $\chi(\omega) \in \mathcal{A}$

Rmk Usually we write TR(XEA) instead of we need this to be in G if we

P(XEA)= P(ZwEZ; X(w) EAJ) vant the probability to make sense

. Simple vandon variables

. L?(I) spaces

. Monotone convergence

. Dminated convergence

Independence (1) <u>Hyp</u>: J is cauntable

Independence of r.v: Let $(X_j)_{j \in J}$ r.v in \mathbb{R}^n . Those r.v are said to be independent if for all $m \ge 2$:

• For every
$$j_1,\ldots,j_m\in J$$
, the r.v (X_{j_1},\ldots,X_{j_m}) are ${\perp\!\!\!\perp}$

• Otherwise stated: for all $A_1, \ldots, A_m \in \mathcal{B}(\mathbb{R}^n)$ we have

$$\mathbf{P}\left(X_{j_1}\in A_1,\ldots,X_{j_m}\in A_m
ight)=\prod_{k=1}^m\mathbf{P}\left(X_{j_k}\in A_k
ight)$$

Image: A matrix

Independence (2)

If BE F; then BE F

Independence of σ -algebras: Let $(\mathcal{F}_j)_{j \in J} \sigma$ -algebras, $\mathcal{F}_j \subset \mathcal{F}$. Those σ -algebras are said to be independent if for all $m \geq 2$:

• For all $j_1, \ldots, j_m \in J$, the σ -algebras $(\mathcal{F}_{j_1}, \ldots, \mathcal{F}_{j_m})$ are $\bot\!\!\!\bot$

• Otherwise stated: for all $B_1 \in \mathcal{F}_{j_1}, \ldots, B_m \in \mathcal{F}_{j_m}$ we have

$$P\left(\bigcap_{k=1}^{m} B_{k}\right) = \prod_{k=1}^{m} P(B_{k})$$
The B_{k} 's should be IL
as events

π -systems and λ -systems

 π -system: Let \mathcal{P} family of subsets of Ω . \mathcal{P} is a π -system if:

 $A, B \in \mathcal{P} \implies A \cap B \in \mathcal{P}$

 λ -system: Let \mathcal{L} family of subsets of Ω . \mathcal{L} is a λ -system if:

$$\Omega \in \mathcal{L}$$
If $A \in \mathcal{L}$, then $A^c \in \mathcal{L}$
If for $j \ge 1$ we have:

 $A_j \in \mathcal{L}$
 $A_j \cap A_i = \emptyset$ if $j \ne i$

Then $\bigcup_{j\ge 1} A_j \in \mathcal{L}$
Crame: extern the property from P to \mathcal{L}

Dynkin's π - λ lemma

Proposition 3. Let \mathcal{P} et \mathcal{L} such that: • \mathcal{P} is a π -system • \mathcal{L} is a λ -system • $\mathcal{P} \subset \mathcal{L}$ Then $\sigma(\mathcal{P}) \subset \mathcal{L}$ J(P) = J- algebra generated by P

э

(4) (日本)

Application of Dynkin's
$$\pi$$
- λ lemma
 μ_{x_i} is a probab. measure on \Re^m , which is the
distribution or law of x_i
 $\mu_{x_i}(A) \equiv \mathbb{P}(\times_i \in A)$
Proposition 4.
Let:
• X_1, \dots, X_n r.v with values in \mathbb{R}^m .
• $X \equiv (X_1, \dots, X_n) \in \mathbb{R}^{m \times n}$.
• $\mu_{X_j} = \mathcal{L}(X_j)$ and $\mu_X = \mathcal{L}(X)$.
Then the two following assertions are equivalent:
• X_1, \dots, X_n are independent
• $\mu_X = \mu_{X_1} \otimes \dots \otimes \mu_{X_n}$ on $\mathcal{B}(\mathbb{R}^{m \times n})$
The law of \times is the product of the marginal laws

Then use is a measure on

R^m × R^m uch that if A, B are

in B(R"), we have

$\mu \otimes \mu (A \times B) = \mu (A) \mu (B)$

>> Then extension to CEB(R***R*)

 $X = (X_1, ..., X_n)$

Aim Consider two measures on R^{m*n}:

 $M_1 = M_X$, $M_2 = M_{X_1} \otimes \cdots \otimes M_{X_n}$

we want to prove that $\mu_i = \mu_2$, t-e

$\mathcal{M}_{i}(\mathcal{B}) = \mathcal{M}_{i}(\mathcal{B}) \quad \forall \mathcal{B} \in \mathcal{B}(\mathbb{R}^{n \times m})$

Thus natural candidate for L

$\mathcal{L} = \{ \mathcal{B} \in \mathcal{B}(\mathbb{R}^{n \times m}); \mu_1(\mathcal{B}) = \mu_2(\mathcal{B}) \}$

Natural condidate for P

P= 2 product sets y all in B(R**) $= \langle A \in \mathcal{B}(\mathbb{R}^{m \times n}), A = A_1 \times \cdots \times A_n \rangle$ If A is a product set, we have $\mu_{i}(A) = \mu_{x}(A) = \mathbb{P}(X \in A)$ = $P(X_i \in A_i, X_i \in A_k, ..., X_n \in A_n)$ $\frac{1}{2} P(X_i \in A_i) \cdots P(X_n \in A_n)$

 $= \mu_{x_1}(A_1) \cdots \mu_{x_n}(A_n) = \mu_2(A)$

Nou ne prove

(i) P is a T-xystem check at home

(ii) d is a d-xystem

we conclude

 $\mathcal{L} \supset \sigma(\mathcal{P}) = \mathcal{B}(\mathbb{R}^{n \times m})$

We thus ger

 $\mu_{i}(B) = \mu_{i}(B) \forall B \in \mathcal{B}(\mathbb{R}^{n \times m})$

Definition of two systems: We set

$$\mu_1=\mu_X,\quad\text{and}\quad\mu_2=\mu_{X_1}\otimes\cdots\otimes\mu_{X_n},$$
 and

$$\mathcal{P} \equiv \left\{ A \in \mathcal{B}(\mathbb{R}^{m \times n}); \ A = A_1 \times \cdots \times A_n, \text{ where } A_j \in \mathcal{B}(\mathbb{R}^m) \right\}$$
$$\mathcal{L} \equiv \left\{ B \in \mathcal{B}(\mathbb{R}^{m \times n}); \ \mu_1(B) = \mu_2(B) \right\}.$$

・ロト ・四ト ・ヨト ・ヨト

3

Proof (2)

Application of Dynkin's lemma: We have

- \mathcal{P} is a π -system
- \mathcal{L} is a λ -system

•
$$\mu_1(C) = \mu_2(C)$$
 for all $C \in \mathcal{P}$

Thus
$$\sigma(\mathcal{P}) \subset \mathcal{L}$$
, and $\sigma(\mathcal{P}) = \mathcal{B}(\mathbb{R}^{m \times n})$

Conclusion:

$$\mu_1(A) = \mu_2(A)$$
 for all $A \in \mathcal{B}(\mathbb{R}^{m imes n})$

э

< □ > < 同 >