
Probability space

Probability space: (!, F , P) with
! set
F a ω-algebra
P probability measure
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Complete probability space

Hypothesis: We assume that P is complete, i.e

A → F such that P(A) = 0, and B ↑ A
=↓

B → F and P(B) = 0.

Remark: A probability can always be completed
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Idea : Any set which has "(A) =0" is declared
measurable ,

10 that IPCA) can be computed

we don't know that
-

Bef



Simple examples (1)

Tossing 2 dice:
! = {1, 2, 3, 4, 5, 6}2

F = P(!)
P(A) = |A|

36

Uniform distribution on [0, 1]:
! = [0, 1]
F = B([0, 1])
P = ε, Lebesgue measure
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Simple examples (2)

Gaussian law on R:
! = R
F = B(R)

P(A) = 1
(2ω)1/2

∫
A e→ (x→µ)2

2ω2 dx , for A → F

Samy T. Convergence of r.v Probability Theory 9 / 118

Probability given by N(M,
(2)

with density
Altra e-Mi

X

250/t



Rmk In the 3 examples we have
seen

,
the natural I was

comple enough ( < 1
...632, [0,

R
,

in (

Generally speaking ,
I can be very

complicated and it is unspecified.

Example : For experiment given by rolling
2 clice ,

we haveraken
M= < 1, -

-, 63. However, I should
be maybe

z = (path of 2 diced rolled)



Typical example for this course

Let ! = ωp with p → (1, ↑). We set:

d(u, v) =



∑

n→1
|un ↓ vn|p




1/p

.

Then ! is a complete metric separable space.

Proposition 1.
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Il 1/

10 = (sequences (UnInasinp <*

complete : If on couchy requence in 10
,
when

Un -0 and ve lP

separable : = Go; n21] dense in IP



Random variables

Let
(!, F , P) complete probability space
A function X : ! ↔ R

Then

X is said to be a random variable if X is measurable

Definition 2.
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Def : If X : (2
,
F) -> (M

,
B(M)), we say

that X is measurable if

FAE B(M) (Or FA open in M),

x
+(A)EF

↳Er ; Xw)E Ab
umk Usually we write NXEA)
instead of we need this to be inF

if we

#(xtA) = P(GwER ; X(w)EA)) want
the probability to make sense



Timb Related to the notim of measura-
vility

,
we have

· Simple random variables

LP(R) spaces

Monotone convergence

·
Dominated convergence



Independence (1)

Independence of r.v: Let (Xj)j→J r.v in Rn.
Those r.v are said to be independent if for all m → 2:

For every j1, . . . , jm ↑ J , the r.v (Xj1 , . . . , Xjm) are ↓↓

Otherwise stated: for all A1, . . . , Am ↑ B(Rn) we have

P (Xj1 ↑ A1, . . . , Xjm ↑ Am) =
m∏

k=1
P (Xjk ↑ Ak)
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Hyp: J is countable



Independence (2)

Independence of ω-algebras: Let (Fj)j→J ω-algebras, Fj ↔ F .
Those ω-algebras are said to be independent if for all m → 2:

For all j1, . . . , jm ↑ J , the ω-algebras (Fj1 , . . . , Fjm) are ↓↓

Otherwise stated: for all B1 ↑ Fj1 , . . . , Bm ↑ Fjm we have

P
( m⋂

k=1
Bk

)

=
m∏

k=1
P (Bk)
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If BE Fi
,
When BE F

The Bu's should be I
as events



ε-systems and ϑ-systems

ε-system: Let P family of subsets of !. P is a ε-system if:

A, B ↑ P =↗ A ↘ B ↑ P

ϑ-system: Let L family of subsets of !. L is a ϑ-system if:
1 ! ↑ L
2 If A ↑ L, then Ac ↑ L
3 If for j → 1 we have:

↭ Aj ↑ L
↭ Aj ↘ Ai = ⊋ if j ≃= i

Then ⇐j↑1Aj ↑ L
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In applications :

(i) 2 is a family ofsels
which satisfies a "nice"
property

(ii) P is a smaller set for
which the property is

easy to prove
Game : extend the property from

Pro L



Dynkin’s ε-ϑ lemma

Let P et L such that:
P is a ε-system
L is a ϑ-system
P ↔ L

Then ω(P) ↔ L

Proposition 3.
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5(p) = -- algebra generated by 0



Application of Dynkin’s ε-ϑ lemma

Let:
X1, . . . , Xn r.v with values in Rm.
X ⇒ (X1, . . . , Xn) ↑ Rm↓n.
µXj = L(Xj) and µX = L(X ).

Then the two following assertions are equivalent:
1 X1, . . . , Xn are independent
2 µX = µX1 ⇑ · · · ⇑ µXn on B(Rm↓n)

Proposition 4.
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Mxj is a probab measure on M
,

which is the
distribution or law of Xi
Mxj(A) = P(xj(A)

The law of X is the product of the marginal laws



Def Let M ,
r be measures on im

Then Mor is a measure on

Mm > Mm such that if A,
B are

in B(MM), we have

Mor (A xB) = u(A)w(B)
1 Then extension to CEB(MMxM)



X= (X, . .,
Xn)

Azim Consider two measures on RM*n :

M = Mx , M2 = Mx0 - --Mxn

we want to prove that M. =Mr ,
i- 2

M, (B) =Mz(B) f BE B(mm)

Thus natural candidate for L

2 = hBEB)Mm) ; M, (B) = My (B))



Natural candidate for P

P= ( product leb) all in B(MM)

= SAEBIMMM); A = A
,

+ .. .. xAn]

If A is a product set
,

we have

u,
(A) = ux(A) = P(X(A)

=(X,
EA

, KEAc ..., XuE An

# D(X, EA,
) ...(XnEAn)

= Mx ,
(A , ) . . . Mxn(An) = uc(A)



Now we prove

(i) P is a it-system
check at home

(ii)2 is a d-system
We conclude

2 > r(P) = B((m=m)

We thus yet

u , (B) =M(B) - BE B(M
+m)



Proof (1)

Definition of two systems: We set

µ1 = µX , and µ2 = µX1 → · · · → µXn ,

and

P ↑
{
A ↓ B(Rm→n); A = A1 ↔ · · · ↔ An, where Aj ↓ B(Rm)

}

L ↑
{
B ↓ B(Rm→n); µ1(B) = µ2(B)

}
.
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Proof (2)

Application of Dynkin’s lemma: We have
P is a ω-system
L is a ε-system
µ1(C) = µ2(C) for all C ↓ P

Thus ϑ(P) ↗ L, and ϑ(P) = B(Rm→n)

Conclusion:

µ1(A) = µ2(A) for all A ↓ B(Rm→n)

Samy T. Convergence of r.v Probability Theory 18 / 118


