
Conditional expectation and independence

Let
X , Y two independent random variables
ω : R2 → R such that ω(X , Y ) ↑ L

1(!)
We set, for x ↑ R,

g(x) = E[ω(x , Y )].

Then
E[ω(X , Y )|X ] = g(X ).

Theorem 22.

Proof: with 4 steps method applied to ω.
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Generalization of the previous theorem

Let
F ↓ F0

X ↑ F and Y ↔↔ F two random variables
ω : R2 → R such that ω(X , Y ) ↑ L

1(!)
We set, for x ↑ R,

g(x) = E[ω(x , Y )].

Then
E[ω(X , Y )|F ] = g(X ).

Theorem 23.
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Orthogonal projection

Definition: Let
H Hilbert space
ε→ complete vectorial space equipped with inner product.
F closed subspace of H .

Then, for all x ↑ H

There exists a unique y ↑ F , denoted by y = ϑF (x)
Satisfying one of the equivalent conditions (i) or (ii).
(i) For all z ↑ F , we have ↗x ↘ y , z≃ = 0.
(ii) For all z ↑ F , we have ⇐x ↘ y⇐H ↭ ⇐x ↘ z⇐H .
ϑF (x) is denoted orthogonal projection of x onto F .
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Application : H=(2)
In a problem : <X.>= EIXX] is an

inner product
Conclusion: L'(e) is a Hilbert space



Question : If It is a Hilbert space,
what is a closed subspace F of H ?

subspace : F is stable by + and

multiplication by a scalar

closed : If knEF and kn-
in 11

when EF



x1

x-y

-"
(F Y

y = Tf(x) Satisfies (IED (i) )

(i) (x-y ,
z) =0 z EF

(ii) 11x-y//n = min (11x-z11; zEF)
> y is the best approximation of in F



Conditional expectation and projection

Consider
The space L

2(F0) → {Y ↑ F0; E[Y 2] < ↓}.
X ↑ L

2(F0).
F ↔ F0

Then
1 L

2(F0) is a Hilbert space
ω↗ Inner product ↘X , Y ≃ = E[XY ].

2 L
2(F) is a closed subspace of L

2(F0).
3 εL2(F)(X ) = E[X |F ].

Theorem 24.
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=> bestapproximatinf



2 (2(F) is a closed subspace of (218)

subspace : If Wit are two v.r.
in 12 (F) and 2

., x EM,
when

& W + dez is a continuous
function of (W

,
z) => it is F-meas.

It is also in2, since (2 is a

Vector space



Closed : Take XnEL2(f) c.%.
Xn >X in (4(F)

lim E [Ixn-X12] =O
n+x

In this cale we know that XE((8)

In addition
, if Xn Ex , 7 RR

S.t. And > X d .
S.

Since Xun -F ,
we have XEF.

Conclusion : (F) closed subspace

P is a pl meas or both (2 ,El and (R, 5)



3 E[X1F] = Tr(x) , F= (2(f)

For this
, we need to prove that

for all zt LI(F), we have

< X- E[x1f)
,
z) = 0

= El (x - E[XIF))z) = 0



We have

E((X - E[X(F))z) =0(((f)
= EIXz]- ES ElX1f]z)

= E[Xz] - E\EIXz1F]]
= E[Xz] - E[Xz]

= O

=> E[X(f) = π((f(x)



Proof

Proof of 2:
If Xn → X in L

2 ↑ There exists a subsequence Xnk
→ X a.s.

Thus, if Xn ↓ F , we also have X ↓ F .

Proof of 3: Let us check (i) in our definition of projection
Let Z ↓ L

2(F).
ω→ We have E[Z X |F ] = Z E[X |F ], and thus

E {Z E[X |F ]} = E {E[X Z |F ]} = E [X Z ] ,

which ensures (i) and E[X |F ] = εL2(F)(X ).
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Application to Gaussian vectors

Example: Let
(X , Y ) centered Gaussian vector in R2

Hypothesis: V (Y ) > 0.
Then

E[X |Y ] = ϑY , with ϑ = E[X Y ]
V (Y ) .
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Def (X
,
X) is a centered Gaussian
rector if X

, BEM ,
the

r. V.

(x + BX) v N(0,B)

Example 1 : XuW
,
Gi)

,
XuW,El

and XIY. Then

< X+ By vW(0, 2 ri+Ba

=> X, XI Gaussian vector



Example 2 XvW(0 ,1)

Ec.U. P(c = 11) = z ,
EX

and V= EX. Then
-check

(i) XW,1) (ii) XWW(0
,)

(iii) (X
,%) not a Gaussian rector:

Take < = 1
, B= +1. Then

xX+ By= X +y = (+2)X

Indeed N((+elX=0) = P(H+z =0
= = x+ X not Gauss.



In our example, we assume X, X)
is Gauss . Vector

claim : ETXIVT= x Y
with x= ETXX]

V(V)

We will prove that by proving that

2Y= π((r()(X)

i.e FZE (I (r() we have

E[(- aY)z] = 0



a= E[XX]
Aim : prove E[Y2]

# zE (I (f(x) we have

E[(- aY)z] = 0

Rmk : Any ZE (2(t(V)) can be
written as z = 4 (X)

Take 4= Id. We wish

EJX-xy)X] % 0
>

= E[XX - xE[X] = 0



Proof
Step 1: We look for ω such that

Z = X → ωY =↑ Z ↓↓ Y .

Recall: If (Z , Y ) is a Gaussian vector
ε↔ Z ↓↓ Y i! cov(Z , Y ) = 0

Application: cov(Z , Y ) = E[Z Y ]. Thus

cov(Z , Y ) = E[(X → ωY ) Y ] = E[X Y ] → ωV (Y ),

et
cov(Z , Y ) = 0 i! ω = E[XY ]

V (Y ) .
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Proof (2)

Step 2: We invoke (i) in the definition of ϑ.
ε↔ Let V ↗ L

2(ϖ(Y )). Then

Y ↓↓ (X → ωY ) =↑ V ↓↓ (X → ωY )

and
E[(X → ωY ) V ] = E[X → ωY ] E[V ] = 0.

Thus
ωY = ϑω(Y )(X ) = E[X | Y ].
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