Conditional expectation and independence

Generalization of the previous theorem

78 / 104

Outline

Definition

- Baby conditional distributions: discrete case
- Baby conditional distributions: continuous case
- Definition with measure theory
- 2 Examples
- 3 Existence and uniqueness
- 4 Conditional expectation: properties
- 5 Conditional expectation as a projection
- 6 Conditional regular laws
 - Probability laws and expectations
 - Definition of the CRL

79 / 104

Orthogonal projection Application: H= L²(R) In a problem: <×, >>= E[×>] is an inner product

Definition: Let

Conclusion: L2(1) is a Hilbert space

• *H* Hilbert space

 \hookrightarrow complete vectorial space equipped with inner product.

- F closed subspace of H.
- Then, for all $x \in H$

• There exists a unique $y \in F$, denoted by $y = \pi_F(x)$ Satisfying one of the equivalent conditions (i) or (ii).

(i) For all $z \in F$, we have $\langle x - y, z \rangle = 0$.

(ii) For all $z \in F$, we have $||x - y||_H \leq ||x - z||_H$.

 $\pi_F(x)$ is denoted orthogonal projection of x onto F.

< □ > < □ > < □ > < □ > < □ > < □ >

э.

Question: If H is a Hilbert space, what is a closed subspace F of H?

Subspace: F is stable by + and multiplication by a scalar

(loved: If $x_n \in F$ and $x_n \rightarrow x$ in H

then *x G F*

Conditional expectation and projection

Theorem 24. Consider • The space $L^2(\mathcal{F}_0) \equiv \{Y \in \mathcal{F}_0; \mathbf{E}[Y^2] < \infty\}$. • $X \in L^2(\mathcal{F}_0)$. • $\mathcal{F} \subset \mathcal{F}_0$ Then • $L^2(\mathcal{F}_0)$ is a Hilbert space \hookrightarrow Inner product $\langle X, Y \rangle = \mathbf{E}[XY]$. 2 $L^2(\mathcal{F})$ is a closed subspace of $L^2(\mathcal{F}_0)$. • $\pi_{L^2(\mathcal{F})}(X) = \mathbf{E}[X|\mathcal{F}]$ => best approximation of X in $L^2(\mathcal{F})$

< □ > < □ > < □ > < □ > < □ > < □ >

2) L2(F) is a closed subspace of L2(G) Subspace: If $W, \neq are rwo r.v.$ in $L^2(F)$ and $\alpha, \alpha \in \mathbb{R}$, then $X, W + X_{z} \neq \overline{i}$ a continuous function of $(W, z) = \overline{i} t \overline{i} \overline{i} \overline{F}$ -meas. It is also in L², since L² is a vector space

 $\frac{(loved: Take X_n \in L^2(G)).t}{X_n \longrightarrow X in L^2(G)}$ $\lim E [|X_n - X|^2] = 0$ In this case we know that XEL2(63) In addition, if $x_n \stackrel{c^2}{\longrightarrow} x$, $\exists n_k$ s.t. $x_{n_k} \longrightarrow x$ a.s. Since Xn E F, we have XGF. Conclusion: 12(F) closed rubspace

P is a pt meas on both (2, 5) and (2, F)

$E[X|G] = \pi_{F}(X), F = L^{2}(G)$

For this, we need to prove that for all $z \in L^2(F)$, we have

$\langle X - E[X|F], 2 \rangle = 0$ $\Leftrightarrow E \langle (X - E[X|F]), 2 \rangle = 0$

 \cap

$E\left\{ \left(X - E[X|F] \right) \geq \right\} = O \quad e^{2}(F)$ $= E[X \geq] - E\left\{ E[X|F] \geq \right\}$

E[x2]- E{ E[x216]}

E[XZ] - E[XZ]

$\implies \mathbb{E}[X \mid \mathcal{F}] = \pi_{\mathcal{L}(\mathcal{F})}(X)$

Proof

Proof of 2:

If $X_n \to X$ in $L^2 \Rightarrow$ There exists a subsequence $X_{n_k} \to X$ a.s. Thus, if $X_n \in \mathcal{F}$, we also have $X \in \mathcal{F}$.

Proof of 3: Let us check (i) in our definition of projection

Let
$$Z \in L^2(\mathcal{F})$$
.
 \hookrightarrow We have $\mathbf{E}[ZX|\mathcal{F}] = Z \mathbf{E}[X|\mathcal{F}]$, and thus
 $\mathbf{E} \{ Z \mathbf{E}[X|\mathcal{F}] \} = \mathbf{E} \{ \mathbf{E}[XZ|\mathcal{F}] \} = \mathbf{E} [XZ],$

which ensures (i) and $\mathbf{E}[X|\mathcal{F}] = \pi_{L^2(\mathcal{F})}(X)$.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Application to Gaussian vectors

Example: Let

- (X, Y) centered Gaussian vector in \mathbb{R}^2
- Hypothesis: V(Y) > 0.

Then

$$\mathbf{E}[X|Y] = \alpha Y$$
, with $\alpha = \frac{\mathbf{E}[X|Y]}{V(Y)}$.

イロト 不得 トイヨト イヨト

. . . .

3

(X,Y) is a centered Gaussian vector if 4 x, B E R, the r.v. Pet $(\alpha X + \beta Y) \sim W(O, \sigma_{\alpha\beta}^2)$ $\frac{E \times angle \ I}{and} : \times \mathcal{N}(0, \mathcal{G}_{\epsilon}^{2}) \times \mathcal{N}(0, \mathcal{G}_{\epsilon}^{2})$ $\propto X + BY \sim W(O, \alpha^{2} \tau_{1}^{2} + B^{2} \sigma_{2}^{2})$ => (X, Y) Gaussian vector

Example 2 X~ W(0,1)

\mathcal{E} S.F. $\mathbb{P}(\mathcal{E}=\pm 1)=\pm$, $\mathcal{E}=\pm X$

and Y= EX. Then check

$(i) \times \mathcal{N}(0,1) \quad (ii) \times \mathcal{N}(0,1)$

(ici) (X,Y) not a Gaussian vector: Take $\alpha = 1$, $\beta = +1$. Then

X + BY = X + Y = (I + E) X

Indeed $\mathbb{P}((t \in X = 0) \ge \mathbb{P}(t \in = 0)$ = $\frac{1}{2} = \sum X + Y$ not Gauss.

In our example, we assume (X,Y) is Gauss. vector

$\frac{Claim: E[X|Y] = \alpha Y}{\text{with } \alpha = \frac{E[XY]}{V(Y)}}$

We will prove that by proving that $\alpha Y = \pi_{L^2(\sigma(Y))}(X)$

$i \in \forall \neq \in L^2(\sigma(\forall))$ we have

 $E\overline{(X-XY)} \ge \overline{]} = 0$

Proof

Step 1: We look for α such that

$$Z = X - \alpha Y \quad \Longrightarrow \quad Z \perp\!\!\!\perp Y.$$

Recall: If (Z, Y) is a Gaussian vector $\hookrightarrow Z \perp \perp Y$ iff $\operatorname{cov}(Z, Y) = 0$

Application: $cov(Z, Y) = \mathbf{E}[Z Y]$. Thus

$$\operatorname{cov}(Z, Y) = \operatorname{\mathsf{E}}[(X - \alpha Y) Y] = \operatorname{\mathsf{E}}[X Y] - \alpha V(Y),$$

et

$$\operatorname{cov}(Z, Y) = 0$$
 iff $\alpha = \frac{\mathsf{E}[XY]}{V(Y)}$.

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Proof (2)

Step 2: We invoke (i) in the definition of π . \hookrightarrow Let $V \in L^2(\sigma(Y))$. Then

$$Y \perp\!\!\!\perp (X - \alpha Y) \implies V \perp\!\!\!\perp (X - \alpha Y)$$

and

$$\mathbf{E}[(X - \alpha Y) V] = \mathbf{E}[X - \alpha Y] \mathbf{E}[V] = 0.$$

Thus

$$\alpha Y = \pi_{\sigma(Y)}(X) = \mathbf{E}[X|Y].$$

э

A B b A B b

< □ > < 同 >