Outline

Definitions and first properties

- 2 Strategies and stopped martingales
- 3 Convergence
- Convergence in L^p
- 5 Optional stopping theorems

< □ > < 同 > < 回 > < 回 > < 回 >

Adaptation
$$\frac{\text{Interpretation}}{F_n = " information up to time n "}$$

Context: We are given

- A probability space $(\Omega, \mathcal{F}, \mathbf{P})$
- A filtration $\{\mathcal{F}_n; n \ge 0\}$
 - \hookrightarrow Sequence of σ -algebras such that $\mathcal{F}_n \subset \mathcal{F}_{n+1}$.

Definition 1.

A sequence of random variables $\{X_n; n \ge 0\}$ is adapted if:

 $X_n \in \mathcal{F}_n$.

$$X_n \in F_n$$
: $X_n \ge$ function of the information we have today. Row not anticipate.

4 / 52

Martingales, Supermartingales, Submartingales

Definition 2.

We consider a sequence of random variables $X = \{X_n; n \ge 0\}$ such that

•
$$\{X_n; n \ge 0\}$$
 is adapted.

2)
$$X_n \in L^1(\Omega)$$
 for all $n \ge 0$.

Then

- X is a martingale if $X_n = \mathbf{E}[X_{n+1}|\mathcal{F}_n]$.
- X is a supermartingale if $X_n \ge \mathbf{E}[X_{n+1}|\mathcal{F}_n]$.
- X is a submartingale if $X_n \leq \mathbf{E}[X_{n+1}|\mathcal{F}_n]$.

Interpretation Sub Martingale: E[Xnri IGn] = Xn

Best approx of Xnn given the information we have at time n is Xn

Xn = constant + fluctuations increasing + fluctuation We expect

Adaptation: The data X_n only depends on information until instant n. Martingale: $n \mapsto X_n$ constant plus fluctuations. Submartingale: $n \mapsto X_n$ increasing plus fluctuations.

Supermartingale: $n \mapsto X_n$ decreasing plus fluctuations.

Random walk

Definition: Let

• { Z_i ; $i \ge 1$ } independent Rademacher r.v $\hookrightarrow \mathbf{P}(Z_i = -1) = \mathbf{P}(Z_i = 1) = 1/2$

• We set $X_0 = 0$, and for $n \ge 1$,

$$X_n = \sum_{i=1}^n Z_i.$$

X is called random walk in \mathbb{Z} .

Property: X is a martingale.

A B A A B A

 $\frac{Proof}{X_1} = \frac{z}{z} = \frac{z}{z};$ Then (i) If we take $F_n = \sigma(X_1, ..., X_n)$, then $X_n \in F_n$ we can also kuhe $f'_n = \sigma(z_1, ..., z_n)$. Then $X_n = Z_{2i} = \varphi(Z_1, ..., Z_n) \Rightarrow X_n \in F_n$ In fact we have Fr= Fn

(ci) $X_n = \tilde{Z} = Z_i$, and $X_n \in L'(\mathcal{D})$:

$\mathbb{E}[|X_n|] \leq \sum_{i=1}^n \mathbb{E}[|Z_i|] = n < \infty$

(iii) EZ Xnn IFn] = Xn + E[2nn] (Xn) is a martingale Xn

<u>Rmk</u> we have seen 3 kypes of sequences

(i) independent r.v.

(ci) Markov chains

E[q(Xnn) | Gn] = E[q(Xnn) | Xn]

(icc) Martingales

E[Xnn [Fn] = Xn