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Experiment

Procedure:
Consider a plane ruled by lines y = k , with k → Z
Take a needle with length 1
Fling the needle n times on the plane

Outcome: We record, for i = 1, . . . , n,
Xi ↑ 1Ai , where Ai = (i-th needle intersect a line)
Sn ↑ # times the needle intersects the line

Simulation:

This website from UIUC
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Xi = 1Ai =)e
se



imb We will see that

Sn = average #needles intersecting
Th

n+0
This gives a way to approximate it

This can be seen as one of first
examples of Monte Carlo method

use of probability to compute
an integral



Limiting result

Under the above conditions we have

P (Ai) = 2
ω

Sn
n →↑ 2

ω

Proposition 5.
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Ai = "ith needle hits one line
"



Bernoulli v. v

↑~B(peur
a

Puf : Px(0) = P(X=0) = 1 - p

probability Px(l) = P(x= 1) = P
mass

function #(GWEr ; x(w) = 13)

-F
,
since <13 is

measurable in IR



Bernoulli random variable (1)

Notation:

X → B(p) with p ↑ (0, 1)

State space:

{0, 1}

Pmf:
P(X = 0) = 1 ↓ p, P(X = 1) = p

Expected value, variance, generating function:

E[X ] = p, Var(X ) = p(1 ↓ p), GX (s) = (1 ↓ p) + p s
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Bernoulli random variable (2)

Use 1, success in a binary game:
Example 1: coin tossing

↭ X = 1 if H, X = 0 if T

↭ We get X → B(1/2)

Example 2: dice rolling
↭ X = 1 if outcome = 3, X = 0 otherwise

↭ We get X → B(1/6)

Use 2, answer yes/no in a poll
X = 1 if a person feels optimistic about the future
X = 0 otherwise
We get X → B(p), with unknown p
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Jacob Bernoulli

Some facts about Bernoulli:
Lifespan: 1654-1705, in Switzerland
Discovers constant e
Establishes divergence of ∑ 1

n
Contributions in di!. eq
First law of large numbers
Bernoulli:
family of 8 prominent mathematicians
Fierce math fights between brothers
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Binomial r.v

Xv Bin (n ,p)

X : 2- 20, 1, ..., n)

pmf : K = 0
,
1. .., n

P(X= k) = upk(-pyn
-1



Binomial random variable (1)

Notation:

X → Bin(n, p), for n ↑ 1, p ↓ (0, 1)

State space:

{0, 1, . . . , n}

Pmf:
P(X = k) =

(
n
k

)

pk (1 ↔ p)n→k , 0 ↗ k ↗ n

Expected value, variance and generating function:

E[X ] = np, Var(X ) = np(1 ↔ p), GX (s) = [(1 ↔ p) + p s]n
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Binomial random variable (2)

Use 1, Number of successes in a Bernoulli trial:
Example: Roll a dice 9 times.
X = # of 3 obtained
We get X → Bin(9, 1/6)
P(X = 2) = 0.28

Use 2: Counting a feature in a repeated trial:
Example: stock of 1000 pants with 10% defects
Draw 15 times a pant at random
X = # of pants with a defect
We get X → Bin(15, 1/10)
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= (2)(b)2(5)



Binomial random variable (3)
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Figure: Pmf for Bin(6; 0.5). x -axis: k. y -axis: P(X = k)
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Binomial random variable (4)
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Figure: Pmf for Bin(30; 0.5). x -axis: k. y -axis: P(X = k)
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Uniform random variable (1)

Notation:

X → U([ω, ε]), with ω < ε

State space:

[ω, ε]

Density:
f (x) = 1

ε ↔ ω
1[ω,ε](x)

Expected value and variance:

E[X ] = ω + ε

2 , Var(X ) = (ε ↔ ω)2

12
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Classical r. v

Discrete Continuous

B(p) 2([a
, B2)

Bin (n ,p. E(J) -> exponentiala

P(d) N(u, +2)

G(p) Cauchy



Uniform random variable (2)

Use:
U([0, 1]) only r.v directly accessible on a computer
ω→ rand function

Example of computation: if X ↑ U([8, 10]), then

P(7.5 < X < 9.5) = 1
2

∫ 9.5

8
dx = 9.5 ↓ 8

2 = 3
4
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Experiment (repeated)

Procedure:
Consider a plane ruled by lines y = k , with k ↔ Z
Take a needle with length 1
Fling the needle n times on the plane

Outcome: We record, for i = 1, . . . , n,
Xi ↗ 1Ai , where Ai = (i-th needle intersects a line)
Sn ↗ # times the needle intersects the line

Samy T. Convergence of r.v Probability Theory 31 / 118



Model
.
Call
,

distance(vi)
,
line

underneath)

(i
,
Vi) = center of
i-th needle i

i

①: = angle (ith needle, axis)

Zi = distance (Ei
,
Vi)
,

line underneath (

We assume
independentand identically distributed

M

· zi H([0,1) ·Zi

·: ~U([0 , it))Zil 2
.
i . d

& ⑪i 121] i . i .d



Recall :
1 1

distance(vi)
,
line =Zi

underneath)

Ai = "i-th needle
hits a line" L

We decompose

Ai = Ai UA where

Ai = <zi ]14Zi[sin]

A = <Zi <]1(l-Zioni)

=> P(Ai) = P(A) + P(A)) = [PP(A)



Ai = <zi ]14Zi[sin]

zivU([0,1) @: ~U([O,i) Zi:
X

Mzi) = Mz:Mi;

Thus

(A)= do+ /! de 1End)
= + 6 do( xnodz
= ↳

*

Ecino do = -cosol"

= = P(A= ) = CP)A)=



P(Ai)=
end step : Count the #hit .

Set

Xi = 11) = ) iithhi
a easy

=> Xi v B(p= )

Sn = total number ofhit=i
=> Sn-Bin(n, )

According tode Moirre
,

&



Proof of Proposition 5 (1)

Notation: We define
(Xi , Yi) → Coordinates of the center of the i-th needle
!i → angle (i-th needle, x -axis)
Zi = d ((Xi , Yi), nearest line underneath) = Yi ↑ ↓Yi↔

Model: We assume
1 Zi ↗ U([0, 1])
2 !i ↗ U([0, ω])
3 Zi ↘↘ !i
4 {Zi ; i ≃ 1} i.i.d sequence
5 {!i ; i ≃ 1} i.i.d sequence
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Proof of Proposition 5 (2)

Expression for Ai : We have

Ai = A→
i ⇐ A+

i

with

A→
i =

{
Zi ⇒ 1

2 , and Zi <
1
2 sin (!i)

}

A+
i =

{
Zi >

1
2 , and 1 ↑ Zi <

1
2 sin (!i)

}
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Proof of Proposition 5 (3)

Computing P(Ai): We write

P(Ai) = P(A→
i ) + P(A+

i )
= 2P(A→

i )

= 2
ω

∫ ω

0
dε

∫ 1
2 sin(ε)

0
dz

Thus
P(Ai) = 2

ω
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Proof of Proposition 5 (4)

Some laws: We have

Xi ↗ B
( 2

ω

)

Sn ↗ Bin
(

n,
2
ω

)

Limit: By De Moivre,
Sn
n ↑⇑ 2

ω
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Aim of this chapter

Problem with limit statement:
For every n ≃ 1, we have Sn : ” ⇑ R
Sn is thus a function
We don’t know exactly what Sn

n ↑⇑ 2
ω means!

Aim of this chapter:
Explore di!erent modes of convergence for random variables

Preliminary step:
Explore di!erent modes of convergence for functions
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Setting for convergence of functions

Sequence of functions: We consider
A sequence {fn; n ≃ 1} with

fn : [0, 1] ↑⇑ R

Aim of subsection: Review modes for

limn↑↓
fn

Samy T. Convergence of r.v Probability Theory 38 / 118



Pointwise convergence

Let
{fn; n ≃ 1} sequence of measurable functions

We assume

limn↑↓
fn(x) = f (x) , for all x ⇓ [0, 1]

Then we say that

fn ↑⇑ f pointwise

Definition 6.
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Almost everywhere convergence

Let
{fn; n ≃ 1} sequence of measurable functions

We assume

limn↑↓
fn(x) = f (x) , for almost every x ⇓ [0, 1]

Then we say that

fn ↑⇑ f almost everywhere

Definition 7.
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(50, 17,(50, 17)
,6)
-



Question : what do we mean by

tim Anx = f(x) for almostevery

Answer : If J = Lebesque measure on to, 17,
J (xETO,
i; Anli) does not converge

ro f(x))) = 0



Lp
convergence

Let
{fn; n → 1} sequence of measurable functions

We assume

limn→↑
↑fn(x) ↓ f (x)↑Lp([0,1]) = 0

Then we say that

fn ↓↔ f in Lp([0, 1])

Definition 8.
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Convergence in measure

Let
{fn; n → 1} sequence of measurable functions

We assume that for all ω > 0

limn→↑
ε ({u ↗ [0, 1]; |g(u) ↓ h(u)| > ω}) = 0

Then we say that

fn ↓↔ f in measure

Definition 9.
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fn(u)-f(u)
X


