
Relations between convergences (1)

Examples of relations for functions on [0, 1]:
fn(x) = xn

ω→ converges almost everywhere, not pointwise

gn(x) = n1[0,1/n](x)
ω→ converges almost everywhere, not in L1
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Example 1 fu(x) = xw
,
xET0

,
R

Then

(i) If (Eio,
1)

,
when

fn(x) = xn > 0

(ii) If x = 1
, then

fu(x) = fn(1) = 1 = 1 <

Thus An >0 ae (b(0
,1) =1 (

An O pointwise



Example 2 In : [0
,
1) < In given by

In(x) = 1 10n] (32) menks
R 8

we have ··
(i) If E (0,

13
,
then Ino s.

r.

f n2 no we have > in

=>1on() =0 f n = no

=> gn(1 +0 n 2 no

=> him Inkl = 0 Egn-O ae



In= n 150]
(ii) The sequenceIn does not converge

to 0 in L :

11 gn- Olly = Il gully

= 101gnk)1d = m: 10,k) che
=
n t ch
= 1x > 0

Rmb Generally ,
thistype of problem

occurs when eitheris some mass

escapes toa or (ii) Big Jump



Relations between convergences (2)

Another example of relation for functions on [0, 1]:
hn = 1[0,1], 1[0,1/2] , 1[1/2,1], 1[0,1/3], 1[1/3,2/3], . . .
ω→ converges in measure, not almost everywhere
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>(u; hucus+0])

-0
=> convergence

in measure



Claim : The requence he does not

converge to 0 a . e.

In fact for every i Eto,
1) and

no z I
,
there exists n > no J .

%.

hn(x) = 1

=> hnk) does not converge
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Almost sure convergence

Let
{Xn; n → 1} sequence of random variables on (!, F , P)
Another random variable X defined on (!, F , P)

We assume

P
({

ω ↑ !; limn→↑
Xn(ω) = X (ω)

})
= 1.

Then we say that

Xn ↓↔ X almost surely

Definition 10.
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# a.e convergence
for functions (

Paintwise : W
,
Xn(w) -> X(w)



Convergence in Lp

Let
{Xn; n → 1} sequence of r.v in Lr(!)
Another random variable X ↑ Lr(!)

We assume
limn→↑

E [|Xn ↓ X |r ] = 0.

Then we say that

Xn ↓↔ X in Lr(!) (or in r -th mean)

Definition 11.
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Convergence in probability

Let
{Xn; n → 1} sequence of random variables on (!, F , P)
Another random variable X defined on (!, F , P)

We assume that for all ε > 0

limn→↑
P (|Xn ↓ X | > ε) = 0.

Then we say that

Xn ↓↔ X in probability

Definition 12.
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=> Convergence in measure

for functions

P



Convergence in distribution

Let
{Xn; n → 1} sequence of random variables on (!, F , P)
Another random variable X defined on (!, F , P)

We assume that for all points x ↑ R such that FX is continuous,

limn→↑
FXn(x) = FX (x).

Then we say that

Xn ↓↔ X in distribution

Definition 13.
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Exn = colf of Xn

Ex = colf of X

~I A

(d)



Rmb XnEX if the measure

on in induced by Xm
, given by

Mxn)( - p
,
x]) = Ex(x)

,

issuch that "Man- >MX"

Rmb 2 The colf of a rv is not

necessarily continuous. If E has
a jump at x EM

,
it means that

P(X = x) = a > 0

> size of the jump



Example If X-B(p) . Then

#(x)
1 - 0

po C
F(x)= P(X(x)

C
! x

In general ,
# is right continuous

with limits on the left (ocee

Standard notation : cadlag

Limit in (d) : only occurat points of continuity
for Ex



Remarks about convergence in distribution

1 The central limit theorem
ω→ is a convergence in distribution

2 Ergodic theorems for Markov chains
ω→ are convergences in distributions

3 Convergence in distribution
ω→ does not refer to a specific (!, F , P)
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A Bernoulli example

A Bernoulli sequence: We consider
X ↑ B(1/2)
Xn = X for all n ↓ 1
Y = 1 ↔ X

Convergences:
1 We have

Xn
(d)↔→ X

2 Xn does not converge to X in any other mode
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Situation : We rabe Xn = X with
* vB(t)

Set v= 1-X

Then N(V= 0) = 1P(X= 1) = t
|P(V= 1) = 1P(X=0) = t

=> Y vB(t)

=>In Y
= 1- X

However X-y = ex-1
=> P((X -y) = 1) = 1



Conclusion : If I Y1 = 1 as
,

· IP((V1>E) # O as n->

· E[Kn-V17 =1 0 asn +

· (n-Y #0 a.



Relations between modes of convergence

Theorem 14.
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Convergence in probability and in distribution

Let
Xn sequence of random variables

Assume Xn
P→↑ X

Then
Xn

(d)→↑ X

Proposition 15.

Samy T. Convergence of r.v Probability Theory 55 / 118



Notation We set

Fn(x) = P(Xn -(x)

F(x) = 1P(X
-
()

We assume AnX. We wish
no show

Fn(x) < F(x)

at any point of continuity of F



Hyp: 1)(xn-X122) -> 0 E > O

En > F

-E in ictE
F

- Fr

(n x,XxE(

1 Fn(x) = 1P(Xn(x) => 1x-Xn1 >E

= P(Xn(x
,
X(x+e)

+P(Xn(x,
X)x+2)

-> PP(X (x+2) + P)(X-Xks)
= an(E)



En > F

-E in ictE
F

- Fr

2 F(x- 2 ) = P)X(x-c)

= P(X=2
,

Xu (x)
+ P(X(x2, Xnxx) an(E)

- P(Xn[x) + P((n -X(x )

=> F(x-3) 1 Fn(x) + an(2)

Fu(x) - F(x) + an(e)


