Relations between convergences (1)

Examples of relations for functions on [0, 1]:

•
$$f_n(x) = x^n$$

 \hookrightarrow converges almost everywhere, not pointwise

•
$$g_n(x) = n \mathbf{1}_{[0,1/n]}(x)$$

 \hookrightarrow converges almost everywhere, not in L^1

Example 1 $f_n(x) = x^n$, $x \in [0, 1]$

Then

(i) If x E to, 1), then

 $f_n(x) = x^n \longrightarrow O$

(ii) If x = 1, then

 $\frac{1}{2} \xrightarrow{->} 0 \quad \alpha \cdot e \quad (\lambda(0,1)) = 1)$ Thus

an: to, i) -> I given by Example 2

 $g_n(x) = n \quad 1_{CO, mJ}(x) \quad n \stackrel{ance}{\uparrow}$

we have (i) If $x \in (0, 1]$ then $\exists n_0 \ s.r.$ $\forall n \ge n_0$ we have $x > \frac{1}{n}$ $\Rightarrow 1_{TO, 1}(x) = 0 \quad \forall n \ge n_0$

 $g_n(x) = 0 \quad \forall n \ge n_0$

=>

 $= \lim_{n \to \infty} g_n(x) = 0 \implies g_n \longrightarrow 0 \quad a.e$

(ii) The sequence g_n does not converge to 0 in L':

= 1 - +> 0

Rme Generally, His type of problem occurs when either (i) some mass escapes to a or (ii) Big tump

Relations between convergences (2)Another example of relation for functions on [0, 1]:

• $h_n = \mathbf{1}_{[0,1]}, \mathbf{1}_{[0,1/2]}, \mathbf{1}_{[1/2,1]}, \mathbf{1}_{[0,1/3]}, \mathbf{1}_{[1/3,2/3]}, \dots$

 \hookrightarrow converges in measure, not almost everywhere

<u>Claim</u>: The sequence h_n does not converge to O a.e.

In fact for every $x \in [0,1]$ and $n_0 \ge 1$, there exists $n > n_0 = 1$.

=> hn (x) does not converge

Outline

Introduction

- 1.1 Basic probability structures
- 1.2 Buffon's needle
- 1.3 Convergence of functions

2 Modes of convergence

- 2.1 Reviewing the modes of convergence
- 2.2 Results for P and L^p convergences
- 2.3 Results for almost sure convergence
- 2.4 Cases of inverse relations for modes of convergence
- 2.5 Inverse method for simulation
- 2.6 Results for convergence in distribution

Outline

Introduction

- 1.1 Basic probability structures
- 1.2 Buffon's needle
- 1.3 Convergence of functions

2 Modes of convergence

2.1 Reviewing the modes of convergence

- 2.2 Results for P and L^p convergences
- 2.3 Results for almost sure convergence
- 2.4 Cases of inverse relations for modes of convergence
- 2.5 Inverse method for simulation
- 2.6 Results for convergence in distribution

46 / 118

Definition 10.

Let

• $\{X_n; n \ge 1\}$ sequence of random variables on $(\Omega, \mathcal{F}, \mathbf{P})$

• Another random variable X defined on $(\Omega, \mathcal{F}, \mathbf{P})$

We assume Paintwiz: $\forall \omega$, $X_n(\omega) \rightarrow X(\omega)$

$$\mathbf{P}\left(\left\{\omega\in\Omega;\ \lim_{n\to\infty}X_n(\omega)=X(\omega)
ight\}
ight)=1.$$

Then we say that

 $X_n \longrightarrow X$ almost surely

~	_
500014	
Janny	

Convergence in L^p

Convergence in probability - Convergence in measure for functions

Definition 12.

Let

- { X_n ; $n \ge 1$ } sequence of random variables on $(\Omega, \mathcal{F}, \mathbf{P})$
- Another random variable X defined on $(\Omega, \mathcal{F}, \mathbf{P})$

We assume that for all $\varepsilon > 0$

$$\lim_{n\to\infty}\mathbf{P}(|X_n-X|>\varepsilon)=0.$$

Then we say that

 $X_n \xrightarrow{\boldsymbol{\mathcal{P}}} X$ in probability

-		_
_	2 1223	
ు	annv	

Convergence in distribution

 $F_{x_n} = cdf of X_n$ $F_x = cdf of X$

Definition 13.

Let

- { X_n ; $n \ge 1$ } sequence of random variables on $(\Omega, \mathcal{F}, \mathbf{P})$
- Another random variable X defined on $(\widetilde{\Omega}, \widetilde{\mathcal{F}}, \widetilde{\mathbf{P}})$

We assume that for all points $x \in \mathbb{R}$ such that F_X is continuous,

 $\lim_{n\to\infty}F_{X_n}(x)=F_X(x).$

Then we say that

 $X_n \xrightarrow{(d)} X$ in distribution

	_
Samar	
Janny	

Bink Xn Is x if the measure on R induced by Xn, given by

 $\mu_{X_n}((-\infty, x]) = F_{X_n}(x),$

is such that " un -> un"

Rm/2 The cdf of a r.v is not necessarily continuous. If F. has a jump at x E.R., it means that P(X=z) = a > 0 > size of the jump

X~B(p). Then I1 Example · 个 Fr(z) $F_{x}(x) = P(x \leq x)$ In general, F is right continuous with limits on the left (rcll) Standard notation : cadlag Limit in (d): only occur, at points of antinuity

Remarks about convergence in distribution

- The central limit theorem
 - \hookrightarrow is a convergence in distribution
- e Ergodic theorems for Markov chains → are convergences in distributions
- Solution Solution \hookrightarrow does not refer to a specific $(\Omega, \mathcal{F}, \mathbf{P})$

A Bernoulli example

A Bernoulli sequence: We consider

Convergences:

We have

$$X_n \xrightarrow{(d)} X$$

2 X_n does not converge to X in any other mode

→ ∃ →

э

Situation: We keke Xn = X with X ~ B(12) Set Y= 1-X

Then $P(Y=0) = P(X=1) = \frac{1}{2}$ $P(Y=1) = P(X=0) = \frac{1}{2}$

Conclusion: If IX-YI= 1 a.s.,

. P(1X-Y1>E) →> O as n-> 0

· E [[×n-Y1]= 1 x>0 as n->∞

· (Xn-M to O as

Relations between modes of convergence

Sam

					_	2.15
у Т.	Convergence of r.v	Prot	ability ⁻	Theory		53 / 118

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Outline

Introduction

- 1.1 Basic probability structures
- 1.2 Buffon's needle
- 1.3 Convergence of functions

2 Modes of convergence

2.1 Reviewing the modes of convergence

2.2 Results for P and L^p convergences

- 2.3 Results for almost sure convergence
- 2.4 Cases of inverse relations for modes of convergence
- 2.5 Inverse method for simulation
- 2.6 Results for convergence in distribution

54 / 118

< □ > < □ > < □ > < □ > < □ > < □ >

Convergence in probability and in distribution

Let

• X_n sequence of random variables

• Assume
$$X_n \stackrel{\mathsf{P}}{\longrightarrow} X$$

Then

 $X_n \xrightarrow{(d)} X$

~	_
5 0 0001/	
Janny	

$F_n(x) = \mathbb{P}(X_n \leq x)$

$F(x) = P(X \leq x)$

We assume Xn => X. We wish ro show

$F_n(x) \longrightarrow F(x)$

at any point of continuity of F

