
Prop 15

(xnP > X) = (xn(x)

Proof .
Accume XnEX. Let

x be a point of continuity of
Ex .

We wish to prove that

tim Fr(x) = E



an (E)Two inequalities

(i) Fu(x) < F((+ 2) + P(X - X( > E)

(ii) F(x -2) < Fn(x) + an(2)

=> Fn(x) = F(is)-an(9)

We thus get

F(x-2) -an(z) <Fn(k) < F(x+3) + an(z)

Recall :Sim an (21 = 0
,
due to

n -> XnX



We have

F(x-2) -an(z) <Fn(k) < F(x+3) + an(z)

We wish torake limits in on all

sides of the inequalities
Problem : Even though Fn(x) E [0

,
1,

we don't know if it is is

convergent

Solution : Take limsup ,
lim inf



Def for asequence Un Mn

limcup Un = timSuper
Note : no in is y

If (Unl bounded
limn-· Mr exist and is finite

Mr

Def him infun = Im if Up
If In bounded When
limmn exists and is finite



Recall

F(x-2) -an(z) <Fn(k) < F(x+3) + an(z)

we can rake limsup and him if
We get l

F(x-2) < liment Enli
- limcup En(x) Flat

L



Summary : For all eso
,

we have

f(x-2)(l =Lkf(x+2)

we nowrake -0 . If < is
a point of continuity for F, we

have

umF(x-2) = Cm(t) =F

Thus1 = L = F(x)

Def : xn X is lim Full = F(x) Ex pointof
continuity of F



Conclusion we have obtained
, if

x point of continuity for F,

limcht Fu(x) = empf(x) = f(x)

Thus

hm Fn(sl = F(x)

andXn X



Proof of Proposition 15 (1)

Notation: Set

Fn(x) = P(Xn → x), F (x) = P(X → x)

Aim: Prove that

limn→↑ Fn(x) = F (x) if F is continuous at x
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Proof of Proposition 15 (2)

1st decomposition: We have

Fn(x) = P (Xn → x , X → x + ω) + P (Xn → x , X > x + ω)
→ F (x + ω) + P (|Xn ↑ X | > ω)

2nd decomposition: We have

F (x ↑ ω) = P (X → x ↑ ω, Xn → x) + P (X → x ↑ ω, Xn > x)
→ Fn(x) + P (|Xn ↑ X | > ω)

Summary:

F (x ↑ ω) ↑ P (|Xn ↑ X | > ω) → Fn(x) → F (x + ω) + P (|Xn ↑ X | > ω)
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Proof of Proposition 15 (3)

Limits as n ↓ ↔: Since Xn
(P)↑↓ X , we have

F (x ↑ ω) → lim infn→↑
Fn(x) → lim sup

n→↑
Fn(x) → F (x + ω)

Limits as ω ↓ 0: If F is continuous at x , we get

F (x) = lim infn→↑
Fn(x) = lim sup

n→↑
Fn(x) = F (x)
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Convergence in Lp
(!)

Let
Xn sequence of random variables

Assume Xn
Ls

↑↓ X for s > r

Then
Xn

Lr
↑↓ X

Proposition 16.
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Def In X if
tim E[(n-X15] 5 = 0
n->

= 11Xn-X112(2) = 11Xn-XIIs

Proof of Prop 16

If XnEX
,
when

O ↓11Xn-X111Xn-X1
Thus

XX



Example of requence such that
If so r we have

XnX but In x

Take Anlus , all I with

· P(Xn = 0) = 1 - +y
· (X== kesik



Recall

P(Xn = 0) = 1 - y+2

P(Xa = m)= mes)
Claim 1 : Xn -0 in L .

Indeed

EIAn-Olr] = E[(ulr]

= 0x4(Xn =0) + u P(Xn = n)

= n
nx+1/2

n =D

= here > O



claim 2 : In #O in .

Indeed

EIAn-OP] = E[(nl]

= 0x4(Xn =0) + us P(Xn = n)

= nx
nx+1/2

n =D= >

Nore Here Unino has an
v(

escape too "problem.



Proof of Proposition 16

Inequality on norms: We have

→Xn ↑ X→r ↓ →Xn ↑ X→s
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Counter-example

Definition of a sequence: We consider independent r.v with

P (Xn = n) = 1
n 1

2 (r+s) , P (Xn = 0) = 1 ↑ 1
n 1

2 (r+s)

Convergence: If r < s we have
1 Xn

Lr
↑↔ 0

2 Xn does not converge in Ls
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Markov’s inequality

Let

X random variable with X ↗ L1(!)

Then for all a > 0 we have

P (|X | ↘ a) ↓ E [|X |]
a

Proposition 17.
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ET1A] =(A)
Proof on the set

A = <w ; (x(w)l > a) ,

we have K(w) > a Therefore

I 2 IX 11 z a 1A

Since XEL'(121
,
one can take E :

#[IX1 z Ela1A] = a IP(A)

=> P(A)1
#[1x1]

a



Proof of Proposition 17

Deterministic inequality: Set

A = {|X | → a}

Then we have
|X | → a 1A , almost surely

Expectations: Taking expectations above, we get

E [|X |] → a P(A)
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Convergence in Lp
(!) and in probablity

Let
Xn sequence of random variables

Assume Xn
L1

↑↓ X

Then
Xn

P↑↓ X

Proposition 18.
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Proof We assume In Ex
,
that is

E[/Xn-X1] < O

We with to prove XnEX. This
means that for alla

P)(Xn - X > 2)n
+00

However
Markov ELIXn-X1]

P((Xn-X1zE) < E

↓ convergence o
n-18



Example ofAn 30 ourn0 .
TakeIn all I such that

P(Xn =0= 1- th P(xn = m)= Th
Then for all Oc < 1

P((n-01 > 2) = P)xn = n3)

=0

Thus Xn O



Recall

P(Xn =0= 1- th P(xn = m)= Th

Claim : Xn O. Indeed

E[Kn-Ol = ElXn]

= O = 1(Xn =0) + n3 P(Xn = n3)
n-

=
n3

>

H2



Proof of Proposition 18

Applying Markov’s inequality: For ω > 0, we have

P (|Xn → X | > ω) ↑ E[|Xn → X |]
ω

Then take n ↓ ↔
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Counter-example

Definition of a sequence: We consider independent r.v with

P
(
Xn = n3

)
= 1

n2 , P (Xn = 0) = 1 → 1
n2

Convergence: We have
1 Xn

P→↓ 0
2 Xn does not converge in L1
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Proof of counter-example for Xn (1)

Some notation: For ω > 0 and X = 0 set:

Ak(ω) = {|Xk → X | > ω}

Convergence in probability: We have

limn→↑
P (An(ω)) = limn→↑

P
(
Xn = n3

)

= limn→↑

1
n2

= 0

Thus
Xn

P→↓ 0
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Proof of counter-example for Xn (2)

Non convergence in L1: We have

E[|Xn|] = E[Xn] = n

Thus
Xn

L1

↗↓ 0
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Samy T. Convergence of r.v Probability Theory 70 / 118



Limsup of sets

Let
{An; n ↘ 1} sequence in F

We define
lim sup

n→↑
An =

↑⋂

n=1

↑⋃

k=n
Ak

Definition 19.

Interpretation: We also have

lim sup
n→↑

An = {ε ≃ !; ε belongs to an infinity of An’s}
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we limsup An it no 21
,
7 k2 no

S .
U. ce Ar

it we an infinity of An

EF



Borel-Cantelli lemma

Let
{An; n ↘ 1} sequence in F

We assume ↑∑

n=1
P(An) < ↔

Then we have
P

(
lim sup

n→↑
An

)
= 0

Theorem 20.
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co "never" belongs to an

T infinity of An's


