
Summary

C-J.

P (d)

?
L

L2

:



Non comparison between a.s and L1
-convergence

One can find
1 {Xn; n → 1} sequence of random variables such that

Xn
a.s↑↓ X , but Xn

L1

↔↓ X

2 {Yn; n → 1} sequence of random variables such that

Yn
L1

↑↓ Y , but Yn
a.s
↔↓ Y

Proposition 23.
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counter-example 1 Ann of H r. V with

P(Xn = m3) = m ,
P(xn = 0)= 1 - th

Then

(i) Xn50. To prove this ,
consider

An(2) = ((X-x) > 2)

Ir issufficient to prove that #330,

An(e)



P(Xn = m3) = m ,
P(xn = 0)= 1 - th

Here
,
with X=0

,
and 230,

IP(An(e)) = P(A-X(y)

= IP(Xn >2) = P(Xn = n3) = t

Thus

[P(An()) =[

We get Xu O



P(Xn = m3) = m ,
P(xn = 0)= 1 - th

(ii) In 0 .
Indeed

E[IXn-Ol] = E[X]

= Ox (2) + n3x

= nxx0



Counter example 2 Consider Anna
sequence of 1 r. r with

XnvB(m)

Then

(i) We have seen that Xno

(ii) An =50
,

since

EIKn-O1] = ElXn] = t .

1+

%



Proof of counter-example for Xn (1)

Definition of a sequence (repeated):
We consider independent r.v with

P
(
Xn = n3

)
= 1

n2 , P (Xn = 0) = 1 → 1
n2

Convergence: We have
1 Xn

a.s→↑ 0
2 Xn does not converge in L1
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Proof of counter-example for Xn (2)

Some notation: For ω > 0 set:

Ak(ω) = {|Xk → X | > ω}

Almost sure convergence: We have
→∑

n=1
P (An(ω)) =

→∑

n=1
P

(
Xn = n3

)

=
→∑

n=1

1
n2

< ↓

Thus
Xn

a.s→↑ 0
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Proof of counter-example for Xn (3)

Non convergence in L1(!): We have already seen that

E[|Xn|] = E[Xn] = n

Thus
Xn

L1

↔↑ 0
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Case for which
(d)→↑ yields

P→↑

Consider
{Xn; n ↗ 1} sequence of random variables

Assume

Xn
(d)→↑ c , where c is a constant

Then we have:
Xn

P→↑ c

Proposition 24.
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Fn(x) F(x)

Hyp P(Xn(x) < P(X(x) for
every point of continuityof

Hyp 2X= => F(x) = 1 [c, 01 (x2)
1

1 ------

! 2

Aim : Prove P((Xn-ck2) 1490

#E >0



computation ask+ 2

P((X-X(>) = P((X -c) - E )

= ↑(xn < (2) + P(Xn)c+2)

= P(Xn(C-2) + 1 - P(xn(C +2)
n -> -

- (P(Xn(( -5) F(c+2) = 1

in
=0

F(c -2) = 0

Conclusion : As no o, ---- .

1P(K-Xn(>E ) > O
P c+

=> Xn->



Proof of Proposition 24

Expression in terms of cdf: We have

P (|Xn → c| > ω) = P (Xn < c → ω) + P (Xn > c + ω)
= P (Xn < c → ω) + 1 → P (Xn ↑ c + ω)

Convergence: Since Xn
(d)→↓ X , we get

limn→↑
P (|Xn → c| > ω) = 0
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Case for which
P→↓ yields

a.s→↓

Consider
{Xn; n ↔ 1} sequence of random variables

Assume

Xn
P→↓ X

Then there exists a subsequence {nk ; k ↔ 1} such that:

Xnk
a.s→↓ X

Proposition 25.

Samy T. Convergence of r.v Probability Theory 92 / 118



Proof Consider event (IX-Xn1 > (
We know IP(/X-Xn1 >2) -> 0 FE

Define a subsequence recursively : n =
1

and

Ru = inf (n <+i (1xn-X1>)]
Subsequence :

Y = XuR

Consider Ap(s) = ((Yn-X172)

Aim : prove that [PCAn(2)) <
k2



Recall:((Yu-X17th)t
computation

[P(Ap(2))kzt

Conclusion

XaX



Proof of Proposition 25 (1)

Definition of nk : Recursively we set

nk = inf
{

n > nk→1; P
(

|Xn → X | >
1
k

)
↑ 1

k2

}

Some notation: For ω > 0 define:

Yk = Xnk

Ak(ω) = {|Yk → X | > ω}
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Proof of Proposition 25 (2)

Almost sure convergence: We have
↑∑

k=ω→1
P (An(ω)) =

↑∑

k=ω→1
P

(
|Xnk → X | >

1
k

)

↑
↑∑

k=1

1
k2

< ↓

Thus
Yk

a.s→↔ X
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Case for which
P→↔ yields

Lr
→↔

Consider
{Xn; n ↗ 1} sequence of random variables

Assume (bounded convergence)

Xn
P→↔ X , and |Xn| ↑ k a.s for all n ↗ 1 and a given k > 0

Then for all r ↗ 1 we have:

Xn
Lr

→↔ X

Proposition 26.
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better ?
> dominated

convergence



Proof-1" step : We know that as.
Anl-k En .

We can prove that
* is also bounded. To this aim :

Bi = ((x1 = k+d) = P(Bj) = 1

Then

P(Bj) = 1)(X)>k+d)
/
iP((n)(k) = 1

= P)1XK God
,
( < k (

- P((X-x( >6)"3076 >0

Taking J+0,
we get iP((X1(k) = 1



Step 2 : Accume XnEx
,
Anl-k .

Then

ETK-XI] = EJI-XmY1-Xnk2)]
+ E[(X-Xn /r 1(x-x( <2)]

< (k)
"

P((x-X( =2) + c

< Eras n -x
, for allo

Conclusion Def: El-Xnr]T0
Xm2X



New picture
subsequence

C-J.

P (d)

rounded if xn'sa
convergence v

L

L2

:



Proof of Proposition 26 (1)

Boundedness of X : For ω > 0, set

Bω = (|X | → k + ω)

Then for all n ↑ 1 we have

P (Bω) ↑ P (|X ↓ Xn| → ω, |Xn| → k)
↑ P (|Xn| → k) ↓ P (|X ↓ Xn| > ω)
= 1 ↓ P (|X ↓ Xn| > ω)

Taking limits in n, ω we get

P (|X | → k) = 1
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Proof of Proposition 26 (2)

Decomposition of Xn ↓ X : For ε > 0 and n ↑ 1 set

An,ε = {|Xn ↓ X | > ε}

Then
|Xn ↓ X |r → εr 1Acn,ω

+ (2k)r 1An,ω

Taking expectations: We obtain

E [|Xn ↓ X |r ] → εr 1Acn,ω
+ (2k)r P (An,ε)

Taking limits: With n ↔ ↗ and ε ↔ 0 we end up with

limn→↑
E [|Xn ↓ X |r ] = 0
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Right inverse (1)

Let F : R ↔ [0, 1] continuous cdf
We define the right inverse F ↓1 as

F ↓1 : (0, 1) ↔ R, y ↘↔ inf {a ≃ R; F (a) ↑ y}

Definition 27.
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Right inverse (2)

Remarks on right inverse:
(i) If F is strictly increasing, F ↓1 is the inverse of F
ϑ↔ i.e. F ⇐ F ↓1 = F ↓1 ⇐ F = Id
(ii) Graphical method to construct F ↓1:

1 Symmetry wrt diagonal
2 Then erase vertical parts

Example: F (x) = (x ↓ 1)1[1,2)(x) + 1[2,↑)(x)
ϑ↔ F ↓1(y) = (1 + y)1(0,1)(y)
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F= U([1
,
2])

Example of right inverse

F(x)= (- 1) 1 t,2)(x2) + 1240)()

[

M

2

! ! >

F"(y) = (y+ 1) 1(0
,x(y)



Rub F is the colf of U(1,23.

=> [1
,
27 is what is revelant for the

r. V.

On (1, 2) , # is strictly monotone
=> one can compute the inverse

F(x) = y(x - 1 = y

Ex = y + 1 = F"(y)


