MA/STAT 538 Spring 2025 Probability Theory

Midterm

- You can use a calculator.
- A 2 pages long handwritten cheat sheet is allowed. It should only contain formulae and theorems (no example, no solved problem).
- You have 60 minutes.
- Show your work.
- In order to get full credits, you need to give correct and simplified answers and explain in a comprehensible way how you arrive at them.
- GOOD LUCK!

Name:

Purdue ID:

Problem 1. We consider two sequences of random variables $\{X_n; n \ge 1\}$ and $\{Y_n; n \ge 1\}$, as well as another random variable Y. All random variables are defined on the same probability space $(\Omega, \mathcal{F}, \mathbf{P})$. We assume that

$$X_n \xrightarrow{(d)} 0$$
, and $Y_n \xrightarrow{P} Y_n$

Let also $g : \mathbb{R}^2 \to \mathbb{R}$ be a measurable function such that $y \mapsto g(x, y)$ is a continuous function of y for all x, and $(x, y) \mapsto g(x, y)$ is continuous at every point of the form (0, y). The aim of the problem is to prove that $g(X_n, Y_n) \xrightarrow{\mathrm{P}} g(0, Y)$.

1.1. Prove that the set $\{\omega \in \Omega; g(X_n(\omega), Y_n(\omega)) \to g(0, Y(\omega))\}$ is an element of the σ -algebra \mathcal{F} .

1.2. Let $\delta, \hat{\varepsilon} > 0$ be given. Prove that one can find $M = M_{\delta,\hat{\varepsilon}}$ large enough such that for $n \ge M$ we have

 $\mathbf{P}\left(|X_n| > \delta\right) < \hat{\varepsilon}, \quad \mathbf{P}\left(|Y - Y_n| > \delta\right) < \hat{\varepsilon}, \quad \text{and} \quad \mathbf{P}\left(|Y| > M\right) < \hat{\varepsilon}.$

1.3. Prove that g is uniformly continuous on the region of \mathbb{R}^2 defined by $D_M = \{0\} \times [-M, M]$, where M is given in Question 1.2. Deduce that for a given small $\varepsilon > 0$, there exists $\delta > 0$ such that for every $y \in [-M, M]$ we have

$$\left(|\xi| \leq \delta \text{ and } |\eta - y| \leq \delta\right) \implies |g(\xi, \eta) - g(0, y)| < \varepsilon$$

1.4. With M and ε,δ like in Question 1.3, prove that

 $\mathbf{P}\left(|g(X_n, Y_n) - g(0, Y)| \ge \varepsilon\right) \le \mathbf{P}\left(|X_n| > \delta\right) + \mathbf{P}\left(|Y_n - Y| > \delta\right) + \mathbf{P}\left(|Y| > M\right).$

1.5. Prove that $g(X_n, Y_n) \xrightarrow{\mathcal{P}} g(0, Y)$.

Problem 2. In this problem we consider a sequence of independent random variables $\{X_n; n \ge 1\}$, with common law $\mathcal{N}(0, 1)$. All random variables are defined on the same probability space $(\Omega, \mathcal{F}, \mathbf{P})$. Our aim is to prove that one has to renormalize $|X_n|$ by $(2\ln(n))^{1/2}$ in order to get bounded fluctuations.

2.1. We set f(x) for the density of X_1 . Prove that f solves the differential equation f' = -xf.

2.2. Let Φ be the cdf of the random variable X_1 . Applying Question 2.1 and integration by parts, show that for $x \ge 0$ we have

$$1 - \Phi(x) = \frac{f(x)}{x} - \int_x^\infty \frac{f(r)}{r^2} \, \mathrm{d}r \, .$$

Deduce that $1 - \Phi(x) \leq \frac{f(x)}{x}$. *Remark:* For the sequel, we will in fact admit that $(1 - \Phi(x)) \sim \frac{f(x)}{x}$ as $x \to \infty$.

2.3. Let $-\frac{1}{2} < \varepsilon < \frac{1}{2}$ be fixed. Prove that we have the following equivalent as $n \to \infty$: $\mathbf{P}\left(|X_1| \ge (2\ln(n))^{1/2}(1+\varepsilon)\right) \sim \frac{1}{2(\pi\ln(n))^{1/2}(1+\varepsilon)n^{(1+\varepsilon)^2}}.$

2.4. For a given $0 < \varepsilon < \frac{1}{2}$, show that we have

$$\mathbf{P}\left(\limsup_{n \to \infty} \frac{|X_n|}{(\ln(n))^{1/2}} \ge \sqrt{2}(1+\varepsilon)\right) = 0.$$

2.5. Prove that we have

$$\mathbf{P}\left(\limsup_{n \to \infty} \frac{|X_n|}{(\ln(n))^{1/2}} = \sqrt{2}\right) = 1.$$