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General definition

Let
(X ,Y ) couple of discrete random variables
Joint pmf p
Marginal pmf’s pX , pY

y such that pY (y) > 0

Then the conditional pmf of X given Y = y is defined by

pX |Y (x | y) = P (X = x | Y = y) = p(x , y)
pY (y)

Definition 1.
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Example ctd: tossing 3 coins (1)

Experiment:
Tossing a coin 3 times

Events: We consider

A = "At most one Head"
B = "At least one Head and one Tail"

Random variables: Set

X1 = 1A, X2 = 1B, X = (X1,X2)
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Example ctd: tossing 3 coins (2)
Joint distribution of (X1,X2):

X1\X2 0 1 Marg. X1
0 1/8 3/8 1/2
1 1/8 3/8 1/2

Marg. X2 1/4 3/4 1

Conditional probabilities given X1 = 0:

pX2|X1(0| 0) = 1/8
1/2 = 1

4 , pX2|X1(1| 0) = 3/8
1/2 = 3

4

Conditional probabilities given X2 = 1:

pX1|X2(0| 1) = 3/8
3/4 = 1

2 , pX1|X2(1| 1) = 3/8
3/4 = 1

2
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Conditioning Poisson random variables

Let
X ∼ P(λ1), Y ∼ P(λ2)
X ⊥⊥ Y
p = λ1

λ1+λ2

Then

L (X | X + Y = n) = Bin(n, p)

Proposition 2.
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Proof (1)

Expression for the conditional probabilities:
Let 0 ≤ k ≤ n. Then invoking X ⊥⊥ Y ,

P (X = k| X + Y = n) = P (X = k) P (Y = n − k)
P (X + Y = n)

Law of X + Y : One can prove that

X + Y ∼ P(λ1 + λ2)
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Proof (2)

Computation of the conditional probabilities:

P (X = k| X + Y = n)

= e−λ1
λk

1
k! e−λ2

λn−k
2

(n − k)!

[
e−(λ1+λ2) (λ1 + λ2)n

n!

]−1

=
(

n
k

)
pk(1 − p)n−k

Conclusion:
L (X | X + Y = n) = Bin(n, p)
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Cond. expectation in the discrete case

Let
(X ,Y ) couple of discrete random variables
Joint pmf p
Marginal pmf’s pX , pY , y such that pY (y) > 0
pX |Y (x | y) conditional distribution

Then the conditional exp. of X given Y = y is defined by

E [X | Y = y ] =
∑
x∈E

x pX |Y (x | y)

Definition 3.
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Binomial example (1)

Situation: Let
X ,Y ∼ Bin(n, p)
X ⊥⊥ Y
Z = X + Y

Problem: We wish to compute

E [X | Z = m]
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Binomial example (2)
Distribution for Z :

Z =
n∑

i=1
Xi +

n∑
j=1

Yj ∼ Bin(2n, p)

Computation for conditional pmf: For k ≤ min(n,m) we have

P (X = k| Z = m) = P(X = k , X + Y = m)
P(Z = m)

= P(X = k , Y = m − k)
P(Z = m)

=

(
n
k

)(
n

m−k

)
(

2n
m

)
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Hypergeometric random variable (1)

Use: Consider the experiment
Urn containing N balls
m white balls, N − m black balls
Sample of size n is drawn without replacement
Set X = # white balls drawn

Then
X ∼ HypG(n,N ,m)
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Hypergeometric random variable (2)
Notation:

X ∼ HypG(n,N ,m), for N ∈ N∗, m, n ≤ N

State space:

{0, . . . , n}

Pmf:

P(X = k) =

(
m
k

)(
N−m
n−k

)
(

N
n

) , 0 ≤ k ≤ n

Expected value and variance: Set p = m
N . Then

E[X ] = np, Var(X ) = np(1 − p)
(

N − n
N − 1

)
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Binomial example (3)
Conditional pmf: For k ≤ min(n,m) we have seen

pX |Z (k| m) =

(
n
k

)(
n

m−k

)
(

2n
m

)
Recall: If V ∼ HypG(n,N ,m) then

P(X = k) =

(
m
k

)(
N−m
n−k

)
(

N
n

)
Identification of the conditional pmf: We have

pX |Z (k| m) = Pmf of HypG(m, 2n, n)
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Binomial example (4)

Conditional expectation: Let V ∼ HypG(m, 2n, n). Then

E [X | Z = m] = E[V ]

Numerical value:
According to the values for hypergeometric distributions,

E [X | Z = m] = m × n
2n = m

2
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General definition

Let
(X ,Y ) couple of continuous random variables
Joint density f
Marginal densities fX , fY
y such that fY (y) > 0

Then the conditional density of X given Y = y is defined by

fX |Y (x | y) = f (x , y)
fY (y)

Definition 4.
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Justification of the definition

Heuristics: fX |Y (x | y) can be interpreted as

fX |Y (x | y) dx = f (x , y) dxdy
fY (y) dy

≃ P (x ≤ X ≤ x + dx , y ≤ Y ≤ y + dy)
P (y ≤ Y ≤ y + dy)

= P (x ≤ X ≤ x + dx | y ≤ Y ≤ y + dy)

Use of the conditional probability: compute probabilities like

P (X ∈ A| Y = y) =
∫

A
fX |Y (x | y) dx

Rigorous definition: see next sections
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Simple example of continuous conditioning (1)

Density: Let (X ,Y ) be a random vector with density

e− x
y e−y

y 1(0,∞)(x) 1(0,∞)(y)

Question: Compute
P(X > 1| Y = y)
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Simple example of continuous conditioning (2)
Marginal distribution of Y : We have

fY (y) =
∫ ∞

0
f (x , y) dx

= e−y

y

(∫ ∞

0
e− x

y dx
)

1(0,∞)(y)

= e−y 1(0,∞)(y)

Conditional density: For y > 0 we have

fX |Y (x | y) = f (x , y)
fY (y) = e− x

y

y 1(0,∞)(x)

Namely L(X | Y = y) = E( 1
y )
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Simple example of continuous conditioning (3)

Conditional probability:

P(X > 1| Y = y) =
∫ ∞

1
fX |Y (x | y) dx

=
∫ ∞

1

e− x
y

y dx

= e− 1
y
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Cond. expectation in the continuous case

Let
(X ,Y ) couple of continuous random variables
Joint density f
Marginal densities fX , fY , y such that fY (y) > 0
fX |Y (x | y) conditional density

Then the conditional exp. of X given Y = y is defined by

E [X | Y = y ] =
∫
R

x fX |Y (x | y) dx

Definition 5.
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Example of continuous conditional expectation (1)

Density: Let (X ,Y ) be a random vector with density

e− x
y e−y

y 1(0,∞)(x) 1(0,∞)(y)

Question: Compute
E [X | Y = y ]

Samy T. Conditional expectation Probability Theory 25 / 104



Example of continuous conditional expectation (2)
Conditional density: For y > 0 we have seen that

fX |Y (x | y) = f (x , y)
fY (y) = e− x

y

y 1(0,∞)(x)

Namely L(X | Y = y) = E( 1
y )

Conditional expectation: We have

E [X | Y = y ] =
∫
R

x fX |Y (x | y) dx

=
∫ ∞

0
x e− x

y

y
= y
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Formal definition

We are given a probability space (Ω,F0,P) and
A σ-algebra F ⊂ F0.
X ∈ F0 such that E[|X |] < ∞.

Conditional expectation of X given F :
Denoted by E[X |F ]
Defined by: E[X |F ] is the L1(Ω) r.v Y such that

(i) Y ∈ F .
(ii) For all A ∈ F , we have

E[X1A] = E[Y 1A],

or otherwise stated
∫

A X dP =
∫

A Y dP.

Definition 6.
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Remarks

Notation: We use the notation Y ∈ F to say that a random variable
Y is F -measurable.

Interpretation: More intuitively
F represents a given information
Y is the best prediction of X given the information in F .

Existence and uniqueness:
To be seen after the examples.
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Easy examples (1)

Example 1: Assume
X ∈ F .

Then
E[X |F ] = X
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Independence of a r.v and a σ-field

We say that X ⊥⊥ F if
↪→ for all A ∈ F and B ∈ B(R), we have

P((X ∈ B) ∩ A) = P(X ∈ B) P(A),

or otherwise stated:
X ⊥⊥ 1A

Definition 7.
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Easy examples (2)

Example 2: Assume
X ⊥⊥ F .

Then
E[X |F ] = E[X ]
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Proof: example 2

We have
(i) E[X ] ∈ F since E[X ] is a constant.
(ii) If A ∈ F ,

E[X 1A] = E[X ] E[1A] = E
[
E[X ] 1A

]
.
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Discrete conditional expectation

Example 3: We consider{
Ωj ; j ⩾ 1

}
partition of Ω such that P(Ωj) > 0 for all j ⩾ 1.

F = σ(Ωj ; j ⩾ 1).
Then

E[X |F ] =
∑
j⩾1

E[X 1Ωj ]
P(Ωj)

1Ωj ≡ Y . (1)
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Proof: example 3

Strategy: Verify (i) and (ii) for the random variable Y .

(i) For all j ≥ 1, we have 1Ωj ∈ F . Thus, for any sequence (αj)j≥1,∑
j≥1

αi1Ωj ∈ F .

(ii) It is enough to verify (1) for A = Ωn and n ≥ 1 fixed. However,

E[Y 1Ωn ] = E
{

E[X1Ωn ]
P(Ωn) 1Ωn

}
= E[X 1Ωn ]

P(Ωn) E[1Ωn ] = E[X 1Ωn ].
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Undergrad conditional probability

Definition: For a generic measurable set A ∈ F0, we set

P(A|F) ≡ E[1A|F ]

Discrete example setting:
Let B,Bc be a partition of Ω, and A ∈ F0. Then

1 F = σ(B) =
{
Ω, ∅,B,Bc

}
2 We have

P(A|F) = P(A|B) 1B + P(A|Bc) 1Bc .
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Dice throwing

Example: We consider
Ω =

{
1, 2, 3, 4, 5, 6

}
, A = {4}, B = "even number".

Then
P(A|F) = 1

3 1B.
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Conditioning a r.v by another r.v

Let
X random variable such that X ∈ L1(Ω)
Y random variable

We set
E[X |Y ] = E[X |σ(Y )].

Definition 8.
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Characterizing σ(Y )

How to know if A ∈ σ(Y ):
We have A ∈ σ(Y ) iff

A =
{
ω; Y (ω) ∈ B

}
, or 1A = 1B(Y )

How to know if Z ∈ σ(Y ):
Let Z and Y be two random variables. Then

Z ∈ σ(Y ) iff we can write Z = U(Y ), with U ∈ B(R).
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Conditioning a r.v by a discrete r.v

Example 4: Whenever X and Y are discrete random variables
↪→ Computation of E[X |Y ] can be handled as in example 3.

More specifically:
Assume Y ∈ E with E = {yi ; i ≥ 1}
Hypothesis: P(Y = yi) > 0 for all i ≥ 1.

Then E[X |Y ] = h(Y ) with h : E → R defined by:

h(y) = E[X 1(Y =y)]
P(Y = y) .
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Conditioning a r.v by a continuous r.v

Example 5: Let (X ,Y ) couple of real random variables with
measurable density f : R2→R+. We assume that∫

R
f (x , y)dx > 0, for all y ∈ R.

Let g : R → R a measurable function such that g(X ) ∈ L1(Ω). Then
E[g(X )|Y ] = h(Y ), with h : R → R defined by:

h(y) =
∫
R g(x)f (x , y)dx∫

R f (x , y)dx .
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Heuristic proof

Formally one can use a conditional density:

P(X = x |Y = y)” = ”P(X = x ,Y = y)
P(Y = y) = f (x , y)∫

f (x , y)dx ,

Integrating against this density we get:

E[g(X )|Y = y ] =
∫

g(x)P(X = x |Y = y) dx

=
∫

g(x)f (x , y)dx∫
f (x , y)dx .
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Rigorous proof
Strategy: Check (i) and (ii) in the definition for the r.v h(Y ).

(i) If h ∈ B(R), we have seen that h(Y ) ∈ σ(Y ).

(ii) Let A ∈ σ(Y ) Then

A =
{
ω; Y (ω) ∈ B

}
=⇒ 1A = 1B(Y )

Thus

E[h(Y )1A] = E[h(Y )1B(Y )]

=
∫

B

∫
R

h(y)f (x , y)dxdy

=
∫

B
dy
∫
R

{∫ g(z)f (z , y)dz∫
f (z , y)dz

}
f (x , y)dx

=
∫

B
dy
∫

g(z)f (z , y)dz= E[g(X )1B(Y )].
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Weird example

Example 6: We take
Ω = (0, 1), F0 = B((0, 1)) and P = λ.

We set X (ω) = cos(πω), and

F = {A ⊂ (0, 1); A or Accountable} .

Then E[X |F ] = 0.
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Proof

Strategy: Check (i) and (ii) in the definition for the r.v Y = 0.

(i) Obviously 0 ∈ F .

(ii) Let A ∈ F , such that A is countable. Then

E[X 1A] =
∫

A
cos(πx)dx = 0.

Similarly, if A ∈ F is such that Ac is countable, we have

E[X 1A] =
∫ 1

0
cos(πx)dx −

∫
Ac

cos(πx)dx = 0,

which ends the proof.
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Weird example: heuristics

Intuition: One could think that
1 We know that {x} occurred for all x ∈ [0, 1]
2 {x} ∈ F
3 Thus E[X |F ] = X .

Paradox: This is wrong because X /∈ F .

Correct intuition: If we know ω ∈ Ai for a finite number of Ai ∈ F
then nothing is known about X .
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Conditional expectation: uniqueness

On the probability space (Ω,F0,P) consider
A σ-algebra F ⊂ F0.
X ∈ F0 such that E[|X |] < ∞.

Then if it exists, the random variable

E[X |F ]

is uniquely defined.

Proposition 9.
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Proof of uniqueness

Aim: Let Y ,Y ′ satisfying (i) + (ii).
↪→ Let us show Y = Y ′ a.s

General property: For all A ∈ F , we have E[Y 1A] = E[Y ′ 1A].

Particular case: Let ϵ > 0, and set

Aϵ ≡ (Y − Y ′ ⩾ ϵ).

Then Aϵ ∈ F , and thus

0 = E[(Y − Y ′) 1Aϵ] ≥ ϵE[1Aϵ] = ϵP(Aϵ)

⇒ P(Aϵ) = 0.
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Proof of uniqueness (2)
Set A+: Let

A+ ≡ (Y − Y ′ > 0) =
⋃
n⩾1

A1/n.

We have n 7→ A1/n increasing, and thus

P(A+) = P
⋃

n⩾1
A1/n

 = lim
n→∞

P(A1/n) = 0.

Set A−: In the same way, if

A− = {Y − Y ′ < 0}

we have P(A−) = 0.
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Proof of uniqueness (3)

Conclusion: We obtain, setting

A̸= ≡ {Y ̸= Y ′} = A+ ∪ A−,

that P(A̸=) = 0, and thus Y = Y ′ a.s.
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Absolute continuity

Let µ, ν two σ-finite measures on (Ω,F).
We say that ν ≪ µ (µ is absolutely continuous w.r.t ν) if

µ(A) = 0 =⇒ ν(A) = 0 for all A ∈ F .

Definition 10.
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Radon-Nykodym theorem

Let
µ, ν σ -finite measures on (Ω,F), such that ν ≪ µ.

Then there exists f ∈ F such that for all A ∈ F we have

ν(A) =
∫

A
f dµ.

The function f :
Is called Radon-Nykodym derivative of µ with respect to ν
Is denoted by f ≡ dν

dµ
.

We have f ≥ 0 µ-almost everywhere
f ∈ L1(µ).

Theorem 11.
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Conditional expectation: existence

On the probability space (Ω,F0,P) consider
A σ-algebra F ⊂ F0.
X ∈ F0 such that E[|X |] < ∞.

Then the random variable

E[X |F ]

exists and is uniquely defined.

Proposition 12.
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Proof of existence

Hypothesis: We have
A σ-algebra F ⊂ F0.
X ∈ F0 such that E[|X |] < ∞.
X ⩾ 0.

Defining two measures: we set
1 µ = P, measure on (Ω,F).
2 ν(A) ≡ E[X 1A] =

∫
A X dP.

Then ν is a measure (owing to Beppo-Levi).
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Proof of existence (2)

Absolute continuity: we have

P(A) = 0 ⇒ 1A = 0 P-a.s.
⇒ X 1A = 0 P-a.s.
⇒ ν(A) = 0

Thus ν ≪ P

Conclusion: invoking Radon-Nykodym, there exists f ∈ F such that,
for all A ∈ F , we have ν(A) =

∫
A f dP.

↪→ We set f = E[X |F ].
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Linearity, expectation

Let X ∈ L1(Ω). Then

E
{
E[X |F ]

}
= E[X ].

Proposition 13.

Let α ∈ R, and X ,Y ∈ L1(Ω). Then

E[αX + Y |F ] = αE[X |F ] + E[Y |F ] a.s.

Proposition 14.
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Proof
Strategy: Check (i) and (ii) in the definition for the r.v

Z ≡ αE[X |F ] + E[Y |F ].

Verification: we have
(i) Z is a linear combination of E[X |F ] and E[Y |F ]

↪→ Z ∈ F .
(ii) For all A ∈ F , we have

E[Z 1A] = E
{
(αE[X |F ] + E[Y |F ]) 1A

}
= αE

{
E[X |F ] 1A

}
+ E

{
E[Y |F ] 1A

}
= αE[X 1A] + E[Y 1A]
= E[(αX + Y ) 1A].
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Monotonicity

Let X ,Y ∈ L1(Ω) such that X ⩽ Y almost surely. We have

E[X |F ] ⩽ E[Y |F ],

almost surely.

Proposition 15.

Proof: Along the same lines as proof of uniqueness for the
conditional expectation. For instance if we set

Aε = {E[X |F ] − E[Y |F ] ⩾ ε > 0} ,

then it is readily checked that

P(Aε) = 0.
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Monotone convergence

Let {Xn; n ≥ 1} be a sequence of random variables such that
Xn ⩾ 0
Xn ↗ X almost surely
E[X ] < ∞.

Then
E[Xn|F ] ↗ E[X |F ].

Proposition 16.
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Proof

Strategy: Set Yn ≡ X − Xn. We are reduced to show
Zn ≡ E[Yn|F ] ↘ 0.

Existence of a limit: n 7→ Yn is decreasing, and Yn ⩾ 0
↪→ Zn is decreasing and Zn ⩾ 0.
↪→ Zn admits a limit a.s, denoted by Z∞.

Aim: Show that Z∞ = 0.
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Proof (2)
Expectation of Z∞: we will show that E[Z∞] = 0. Indeed

Xn converges a.s. to X .
0 ⩽ Xn ⩽ X ∈ L1(Ω).

Thus, by dominated convergence, E[Xn] → E[X ].
We deduce:

E[Yn] → 0
Since E[Yn] = E[Zn], we also have E[Zn] → 0.
By monotone convergence, we have E[Zn] → E[Z∞]

This yields E[Z∞] = 0.

Conclusion: Z∞ ≥ 0 and E[Z∞] = 0
↪→ Z∞ = 0 almost surely.
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Cauchy-Schwarz inequality

Let X ,Y ∈ L2(Ω). Then

E2[X Y |F ] ⩽ E[X 2|F ] E[Y 2|F ] a.s.

Proposition 17.
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Proof of Cauchy-Schwarz (1)

A family positive random variables:
For all θ ∈ R, we have

E[(X + θY )2|F ] ⩾ 0 a.s.

Thus almost surely we have: for all θ ∈ Q,

E[(X + θY )2|F ] ⩾ 0,
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Proof of Cauchy-Schwarz (2)

Expansion: For all θ ∈ Q

E[Y 2|F ]θ2 + 2E[XY |F ]θ + E[X 2|F ] ⩾ 0.

Recall: If a polynomial satisfies aθ2 + bθ + c ⩾ 0 for all θ ∈ Q
↪→ then we have b2 − 4ac ⩽ 0

Application: Almost surely, we have

E 2[XY |F ] − E[X 2|F ]E[Y 2|F ] ⩽ 0.
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Jensen’s inequality

Let X ∈ L1(Ω), and φ : R → R such that φ(X ) ∈ L1(Ω) and
φ convex. Then

φ(E[X |F ]) ⩽ E[φ(X )|F ] a.s.

Proposition 18.
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Contraction in Lp(Ω)

The conditional expectation is a

contraction in Lp(Ω) for all p ⩾ 1

Proposition 19.
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Proof of contraction in Lp

Application of Jensen’s inequality: We have

X ∈ Lp(Ω) ⇒ E[X |F ] ∈ Lp(Ω)

and

|E[X |F ]|p ≤ E[|X |p|F ] =⇒ E {|E[X |F ]|p} ⩽ E[|X |p]
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Successive conditionings

Let
Two σ-algebras F1 ⊂ F2.
X ∈ L1(Ω).

Then

E {E[X |F1]|F2} = E[X |F1] (2)
E {E[X |F2]|F1} = E[X |F1]. (3)

Theorem 20.

Samy T. Conditional expectation Probability Theory 71 / 104



Proof

Proof of (2): We set Z ≡ E[X |F1]. Then

Z ∈ F1 ⊂ F2.

According to Example 1, we have E[Z |F2] = Z , i.e. (2).

Proof of (3): We set U = E[X |F2].
↪→ We will show that E[U |F1] = Z , via (i) and (ii) of Definition 6.
(i) Z ∈ F1.
(ii) If A ∈ F1, we have A ∈ F1 ⊂ F2, and thus

E[Z1A] = E[X1A] = E[U1A].
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Conditional expectation for products

Let X ,Y ∈ L2(Ω), such that X ∈ F . Then

E[X Y |F ] = X E[Y |F ].

Theorem 21.

Proof: We use a 4 steps methodology
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Proof

Step 1: Assume X = 1B, with B ∈ F
We check (i) and (ii) of Definition 6.
(i) We have 1BE[Y |F ] ∈ F .
(ii) For A ∈ F , we have

E {(1BE[Y |F ]) 1A} = E {E[Y |F ] 1A∩B}
= E[Y 1A∩B]
= E[(1BY ) 1A],

and thus
1B E[Y |F ] = E[1B Y |F ].
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Proof (2)
Step 2: If X is of the form

X =
∑
i⩽n

αi1Bi ,

with αi ∈ R and Bi ∈ F , then, by linearity we also get

E[XY |F ] = X E[Y |F ].

Step 3: If X ,Y ⩾ 0
↪→ There exists a sequence {Xn; n ⩾ 1} of simple random variables
such that

Xn ↗ X .
Then applying the monotone convergence we end up with:

E[XY |F ] = X E[Y |F ].
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Proof (3)

Step 4: General case X ∈ L2

↪→ Decompose X = X + − X − and Y = Y + − Y −, which gives

E[XY |F ] = XE[Y |F ]

by linearity.
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Conditional expectation and independence

Let
X ,Y two independent random variables
α : R2 → R such that α(X ,Y ) ∈ L1(Ω)

We set, for x ∈ R,

g(x) = E[α(x ,Y )].

Then
E[α(X ,Y )|X ] = g(X ).

Theorem 22.

Proof: with 4 steps method applied to α.
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Generalization of the previous theorem

Let
F ⊂ F0

X ∈ F and Y ⊥⊥ F two random variables
α : R2 → R such that α(X ,Y ) ∈ L1(Ω)

We set, for x ∈ R,

g(x) = E[α(x ,Y )].

Then
E[α(X ,Y )|F ] = g(X ).

Theorem 23.
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Orthogonal projection

Definition: Let
H Hilbert space
↪→ complete vectorial space equipped with inner product.
F closed subspace of H .

Then, for all x ∈ H
There exists a unique y ∈ F , denoted by y = πF (x)

Satisfying one of the equivalent conditions (i) or (ii).
(i) For all z ∈ F , we have ⟨x − y , z⟩ = 0.
(ii) For all z ∈ F , we have ∥x − y∥H ⩽ ∥x − z∥H .
πF (x) is denoted orthogonal projection of x onto F .
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Conditional expectation and projection

Consider
The space L2(F0) ≡ {Y ∈ F0; E[Y 2] < ∞}.
X ∈ L2(F0).
F ⊂ F0

Then
1 L2(F0) is a Hilbert space
↪→ Inner product ⟨X ,Y ⟩ = E[XY ].

2 L2(F) is a closed subspace of L2(F0).
3 πL2(F)(X ) = E[X |F ].

Theorem 24.
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Proof

Proof of 2:
If Xn → X in L2 ⇒ There exists a subsequence Xnk → X a.s.
Thus, if Xn ∈ F , we also have X ∈ F .

Proof of 3: Let us check (i) in our definition of projection
Let Z ∈ L2(F).
↪→ We have E[Z X |F ] = Z E[X |F ], and thus

E {Z E[X |F ]} = E {E[X Z |F ]} = E [X Z ] ,

which ensures (i) and E[X |F ] = πL2(F)(X ).
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Application to Gaussian vectors

Example: Let
(X ,Y ) centered Gaussian vector in R2

Hypothesis: V (Y ) > 0.
Then

E[X |Y ] = αY , with α = E[X Y ]
V (Y ) .
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Proof
Step 1: We look for α such that

Z = X − αY =⇒ Z ⊥⊥ Y .

Recall: If (Z ,Y ) is a Gaussian vector
↪→ Z ⊥⊥ Y iff cov(Z ,Y ) = 0

Application: cov(Z ,Y ) = E[Z Y ]. Thus

cov(Z ,Y ) = E[(X − αY ) Y ] = E[X Y ] − αV (Y ),

et
cov(Z ,Y ) = 0 iff α = E[XY ]

V (Y ) .
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Proof (2)

Step 2: We invoke (i) in the definition of π.
↪→ Let V ∈ L2(σ(Y )). Then

Y ⊥⊥ (X − αY ) =⇒ V ⊥⊥ (X − αY )

and
E[(X − αY ) V ] = E[X − αY ] E[V ] = 0.

Thus
αY = πσ(Y )(X ) = E[X | Y ].

Samy T. Conditional expectation Probability Theory 85 / 104



Outline
1 Definition

Baby conditional distributions: discrete case
Baby conditional distributions: continuous case
Definition with measure theory

2 Examples

3 Existence and uniqueness

4 Conditional expectation: properties

5 Conditional expectation as a projection

6 Conditional regular laws
Probability laws and expectations
Definition of the CRL

Samy T. Conditional expectation Probability Theory 86 / 104



Aim of this section

Recall: We have seen that if
X ∼ P(λ1), Y ∼ P(λ2)
X ⊥⊥ Y
p = λ1

λ1+λ2
,

then

L (X | X + Y = n) = Bin(n, p)

Question:
How to translate this
↪→ to the non-baby conditional expectation language?
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Characterizing r.v by expected values

Notation:
Cb(R) ≡ set of continuous and bounded functions on R.

Let X be a r.v. We assume that

E[φ(X )] =
∫
R
φ(x) f (x) dx , for all functions φ ∈ Cb(R).

Then X is continuous, with density f .

Theorem 25.
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Application: change of variable

Problem: Let
X random variable with density f .
Set Y = h(X ) with h : R → R.

We wish to find the density of Y .
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Application: change of variable (2)

Recipe: One proceeds as follows
1 For φ ∈ Cb(R), write

E[φ(Y )] = E[φ(h(X ))] =
∫
R
φ(h(x)) f (x) dx .

2 Change variables y = h(x) in the integral.
After some elementary computations we get

E[φ(Y )] =
∫
R
φ(y) g(y) dy .

3 This characterizes Y , which admits a density g
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Example: normal r.v and linear transformations

Let
X ∼ N (0, 1)
µ ∈ R and σ > 0
Set Y = σX + µ

Then
Y ∼ N (µ, σ2)

Proposition 26.
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Proof

Recipe, item 1: for φ ∈ Cb(R), write

E[φ(Y )] = E[φ(σX + µ)] =
∫
R
φ(σx + µ) e−x2/2

√
2π

dx .

Recipe, item 2: Change of variable: y = σx + µ:

E[φ(Y )] =
∫
R
φ(y) g(y) dx , with g(y) = e−(y−µ)2/(2σ2)

√
2πσ2

.

Recipe, item 3:
Y is continuous with density g , therefore Y ∼ N (µ, σ2).
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Characterizing r.v by expected values (ctd)

Let X : Ω → R be a r.v. Then

{E[φ(X )]; φ ∈ Cb(R)} characterizes the law of X

Theorem 27.
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CRL

Let
(Ω,F ,P) a probability space
(S,S) a measurable space of the form Rd ,Zd

X : (Ω,F) → (S,S) a random variable in L1(Ω)
G a σ-algebra such that G ⊂ F .

We say that µ : Ω × S → [0, 1] is a Conditional regular law of
X given G if
(i) For all f ∈ Cb(S), the map ω 7→ µ(ω, f ) is a random

variable, equal to E[f (X )| G] a.s.
(ii) ω-a.s. f 7→ µ(ω, f ) is a probability measure on (S,S).

Definition 28.

Samy T. Conditional expectation Probability Theory 96 / 104



Discrete example

Poisson law case: Let
X ∼ P(λ) and Y ∼ P(µ)
X ⊥⊥ Y

We set S = X + Y .
Then

CRL of X given S is Bin(S, p), with p = λ
λ+µ
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Proof for the discrete example

Proof: we have seen that for n ⩽ m

P(X = n|S = m) =
(

m
n

)
pn (1 − p)m−n with p = λ

λ+ µ
.

Then we consider
State space = N, G = σ(S)

and we verify that these conditional probabilities define a CRL.
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Continuous example

Exponential law case: Let
X ∼ E(1) and Y ∼ E(1)
X ⊥⊥ Y

We set S = X + Y .
Then

CRL of X given S is U([0, S]).
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Continuous example

Proof: The joint density of (X , S) is given by

f (x , s) = e−s1{0≤x≤s}.

Let then ψ ∈ Bb(R+). Thanks to Example 5, we have

E[ψ(X )|S] = u(S),

with
u(s) =

∫
R+ ψ(x)f (x , s)dx∫

R2
+

f (x , s)dx = 1
s

∫ s

0
ψ(x)dx .
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Proof

In addition, S ̸= 0 almost surely, and thus if A ∈ B(R) we have:

E[ψ(X )|S] =
∫ S

0 ψ(x)dx
S .

Considering the state space as = R+, S = B(R+) and setting

µ(ω, f ) = 1
S(ω)

∫ S(ω)

0
ψ(x)dx ,

one can verify that we have defined a conditional regular law.
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Existence of the CRL

Let
X a random variable on (Ω,F0,P).
Taking values in a space of the form (Rn,B(Rn)).
G ⊂ F0 a σ-algebra.

Then the CRL of X given G exists.

Theorem 29.

Proof: nontrivial and omitted.
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Computation rules for CRL
(1) If G = σ(Y ), with Y random variable with values in Rm, we have

µ(ω, f ) = µ(Y (ω), f ),

and one can define a CRL of X given Y as a family
{µ(y , .); y ∈ Rm} of probabilities on Rn, such that for all
f ∈ Cb(Rn) the function

y 7→ µ(y , f )

is measurable.
(2) If Y is a discrete r.v, this can be reduced to:

µ(y ,A) = P (X ∈ A|Y = y) = P (X ∈ A,Y = y)
P (Y = y) .
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Computation rules for CRL (2)

(3) When one knows the CRL, quantities like the following (for
ϕ ∈ B(Rn)) can be computed:

E [ϕ(X )|G] =
∫
Rn
ϕ(x)µ(ω, dx)

E [ϕ(X )|Y ] =
∫
Rn
ϕ(x)µ(Y , dx).

(4) The CRL is not unique.
However if N1,N2 are 2 CRL of X given G
↪→ we have ω-almost surely:

N1(ω, f ) = N2(ω, f ) for all f ∈ Cb(Rn).
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