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General definition

— Definition 1. | \
Let
@ (X,Y) couple of discrete random variables

@ Joint pmf p
e Marginal pmf's px, py
@ y such that py(y) >0

Then the conditional pmf of X given Y = y is defined by

p(x,y)

pxiy(xly) =P (X =x|Y =y) = v (y)
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Example ctd: tossing 3 coins (1)

Experiment:
Tossing a coin 3 times

Events: We consider

A = "At most one Head"
B = "At least one Head and one Tail"

Random variables: Set

Xl - 1A7 X2 - ]-Ba X = (X17X2)
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Example ctd: tossing 3 coins (2)

Joint distribution of (X, X5):

X1\ Xz 0 1 || Marg. X;
0 1/8(3/8 1/2
1 1/813/8 1/2
Marg. X; [1/4]3/4 | 1
Conditional probabilities given X; = 0:
1/8 1

Conditional probabilities given X, = 1:

3/8 1
pX1|X2(0‘ ) 3/4 5’ PX1|X2(1| 1)

_3/8

3/8
3/4

3

T4

1

2
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Conditioning Poisson random variables

,—{Proposition 2.}
Let
@ X ~P(A), Y ~P(A\)
e X 1Y

_ A\
®P=xn

Then

L(X|X+Y = n) = Bin(n, p)
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Proof (1)

Expression for the conditional probabilities:
Let 0 < k < n. Then invoking X 1L Y,

P(X=kKP(Y=n—k)
P(X+Y=n)

P(X=klX+Y=n)=

Law of X + Y: One can prove that

X+Y ~PA+ A)
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Proof (2)

Computation of the conditional probabilities:
P(X=kl|X+Y =n)

_)\1)\_’1(6_)\2 )\gik e—(AH—)\z) ()\1 + )\2),1
k! (n — k)! nl

= (Z) pra—p)

Conclusion:

=€

L(X|X+Y = n)=Bin(n, p)
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Cond. expectation in the discrete case

— Definition 3. \

Let

(X, Y) couple of discrete random variables
Joint pmf p

Marginal pmf's px, py, y such that py(y) >0
px|y (x| y) conditional distribution

Then the conditional exp. of X given Y = y is defined by

E[X|Y =y] :ZXPX\Y(XW)

xe€
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Binomial example (1)

Situation: Let
e X,Y ~ Bin(n, p)
e X 1LY
e Z/=X+Y

Problem: We wish to compute

E[X|Z = m]
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Binomial example (2)

Distribution for Z:

n n

Z=> Xi+>_Y;~Bin(2n,p)

i=1 j=1

Computation for conditional pmf: For k < min(n, m) we have

P(X=k X+VY=

P(Z=m)
 P(X=k Y=m—k)
B P(Z =m)

(D))
()
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Hypergeometric random variable (1)

Use: Consider the experiment
@ Urn containing N balls
e m white balls, N — m black balls
@ Sample of size n is drawn without replacement
@ Set X = # white balls drawn

Then
X ~ HypG(n, N, m)
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Hypergeometric random variable (2)
Notation:

X ~ HypG(n,N,m), for Ne N*, mn<N
State space:
{0,...,n}
Pmf: .
P(X:k):<k)(”‘k) 0<k<n

O

Expected value and variance: Set p = 5. Then

ElX] = o, Var(X) = (1 p) (1)
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Binomial example (3)

Conditional pmf: For k < min(n, m) we have seen

i = W)
px|z(k| m) (i:,)

Recall: If V ~ HypG(n, N, m) then

Identification of the conditional pmf: We have

px|z(k| m) = Pmf of HypG(m, 2n, n)
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Binomial example (4)

Conditional expectation: Let V ~ HypG(m,2n,n). Then
E[X|Z = m] = E[V]

Numerical value:
According to the values for hypergeometric distributions,
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Outline
@ Definition

@ Baby conditional distributions: continuous case
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General definition

— Definition 4. | \
Let
@ (X, Y) couple of continuous random variables

@ Joint density f
@ Marginal densities fx, fy
e y such that fy(y) >0

Then the conditional density of X given Y = y is defined by

f(x,y)
fy(y)

fxiy(xly) =
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Justification of the definition

Heuristics: fx|y(x|y) can be interpreted as

flx, y) dedy
fy(y) dy
P(x<X<x+dx,y<Y<y+dy)
P(y <Y <y+dy)
= P(x<X<x+dx|ly<Y<y+dy)

fxv (x| y) dx

Use of the conditional probability: compute probabilities like
P(XEAlY=y)= /A v (x| y) dx

Rigorous definition: see next sections
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Simple example of continuous conditioning (1)

Density: Let (X, Y) be a random vector with density

X

e vre v

1(0,00)(x) L(0,00)(¥)

Question: Compute
PX>1Y=y)
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Simple example of continuous conditioning (2)

Marginal distribution of Y: We have
fr(y) =

-y 00 x
= </o e dX> Lio,00)(¥)
= e’ 1(0,00) (.y)

f(x,y)dx

k‘mﬁ

Conditional density: For y > 0 we have

fxiy(x]y) =

Namely L(X|Y =y) = 5(%)
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Simple example of continuous conditioning (3)

Conditional probability:

PX>1Y=y) = /1 v (x| y) dx
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Cond. expectation in the continuous case

—~ Definition 5.

Let

(X, Y') couple of continuous random variables
Joint density f

Marginal densities fx, fy, y such that fy(y) > 0
fx|v(x| y) conditional density

Then the conditional exp. of X given Y = y is defined by

E[X|Y =y] :'/H%XfX\Y(X“/)dX
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Example of continuous conditional expectation (1)

Density: Let (X, Y) be a random vector with density

X

e vre v

1(0,00)(x) L(0,00)(¥)

Question: Compute
EX]Y =y]
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Example of continuous conditional expectation (2)

Conditional density: For y > 0 we have seen that

fxy(xly) = ff(:(;/y)) = eyy 1(0,00) (%)

Namely L(X|Y =y) = 5(%)
Conditional expectation: We have

EX|Y=y] = fo|y(x]y) dx

T

X
o0 e v

= X
y

Samy T. Conditional expectation Probability Theory 26 /104



Outline

@ Definition

@ Definition with measure theory

o = = £ DA
Samy T. Conditional expectation



Formal definition

— Definition 6. | \
We are given a probability space (2, Fo, P) and

e A o-algebra F C Fy.

e X € Fy such that E[|X]] < oc.
Conditional expectation of X given F:

@ Denoted by E[X|F]

o Defined by: E[X|F] is the L}(Q2) r.v Y such that

(i) Y eF.
(ii) For all A€ F, we have

E[X14] = E[Y1,],

or otherwise stated [, X dP = [, Y dP.

\.
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Remarks

Notation: We use the notation Y € F to say that a random variable
Y is F-measurable.

Interpretation: More intuitively
@ F represents a given information
@ Y is the best prediction of X given the information in F.

Existence and uniqueness:
To be seen after the examples.

Samy T. Conditional expectation Probability Theory 29 /104
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© Examples
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Easy examples (1)

Example 1: Assume

Then

XeF

E[X|F] = X

o = = £ DA
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Independence of a r.v and a o-field

—~ Definition 7. \

We say that X Il F if
— for all A€ F and B € B(R), we have

P((X € B)N A) = P(X € B)P(A),

or otherwise stated:

X 1 1,4
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Easy examples (2)

Example 2: Assume

Then

X 1 F.

E[X|F] = E[X]

o = = £ DA
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Proof: example 2

We have
(i) E[X] € F since E[X] is a constant.
(i) IfAe F,

E[X 1] = E[X] E[14] = E[E[X] 14.
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Discrete conditional expectation

Example 3: We consider
° {Qj;j > 1} partition of Q such that P(€;) > 0 for all j > 1.
o F=0(Qj>1).

Then Eix 1
ElXIA] = 3 g

Jj=1

1QJ' =Y. (1)
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Proof: example 3

Strategy: Verify (i) and (ii) for the random variable Y.

(i) Forall j > 1, we have 1, € F. Thus, for any sequence (a;);>1,

ZO&,‘].QJ. e F.

Jj=1
(i) It is enough to verify (1) for A = Q, and n > 1 fixed. However,

E[Xlo], | _E[Xla]
P(2,) "}_ P(2,)

E[Y 1] = E{ Ello,] = E[X1p].
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Undergrad conditional probability

Definition: For a generic measurable set A € F, we set
P(A|F) = E[14]F]

Discrete example setting:
Let B, B¢ be a partition of €2, and A € Fy. Then

@ F=0(B)={Q0,B B}

@ We have
P(A|F) =P(AB)1g + P(A|B) 1.
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Dice throwing

Example: We consider
o Q= {1,2,3,4,5,6}, A= {4}, B ="even number".
Then 1
P(AIF) = ; 1a.
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Conditioning a r.v by another r.v

— Definition 8. \
Let
@ X random variable such that X € L}(Q)

@ Y random variable

We set

E[X|Y] = E[X|o(Y)].
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Characterizing o(Y)

How to know if A € o(Y):
We have A € o(Y) iff

A= {w; Y(w) € B}, or 1,=15(Y)
How to know if Z € o(Y):

Let Z and Y be two random variables. Then

Zeco(Y) iffwecanwrite Z=U(Y), with U e B(R).
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Conditioning a r.v by a discrete r.v

Example 4: Whenever X and Y are discrete random variables
— Computation of E[X|Y] can be handled as in example 3.

More specifically:
@ Assume Y € E with E ={y;; i > 1}
@ Hypothesis: P(Y =y;) > 0 for all i > 1.

Then E[X|Y] = h(Y) with h: E — R defined by:

h(y) = EP[);YI (_Yyy))].
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Conditioning a r.v by a continuous r.v

Example 5: Let (X, Y) couple of real random variables with
measurable density f : R2—R,. We assume that

/ f(x,y)dx >0, forallycRR.
R

Let g : R — R a measurable function such that g(X) € L}(Q2). Then
E[g(X)|Y] = h(Y), with h: R — R defined by:

e g()F(x. y)dx
)= ey )
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Heuristic proof

Formally one can use a conditional density:

v ZPX=xY=y)  f(xy)
PX=xY =)= P(Y=y)  [f(x,y)dx’

Integrating against this density we get:

Elg(X)|Y =y = [g()P(X =x|Y =) dx
J &(x)f(x,y)dx

Jf(x,y)dx
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Rigorous proof
Strategy: Check (i) and (ii) in the definition for the r.v h(Y).

(i) If h € B(R), we have seen that h(Y) € o(Y).
(i) Let A€ o(Y) Then

A={w Y(w)eB} = 14=15Y)
Thus

E[h(Y)1a] = E[h(Y)15(Y)]
= //h(y)fx y)dxdy

/ / {f gf fzf y )(;Zdz}f(x,y)dx
= [ & [ e(2)f(z.y)dz= Elg(X)1a(Y)].

Probability Theory 44 /104



Weird example

Example 6: We take
e Q=(0,1), Fo = B((0,1)) and P = A.

We set X(w) = cos(mw), and
F ={AC(0,1); A or A°countable} .

Then E[X|F] = 0.
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Proof

Strategy: Check (i) and (ii) in the definition for the r.v Y = 0.

(i) Obviously 0 € F.
(i) Let A € F, such that A is countable. Then
E[X1,] = / cos(mx)dx = 0.
A

Similarly, if A € F is such that A¢ is countable, we have

E[X1,] = /01 cos(mx)dx — / cos(mx)dx =0,

C

which ends the proof.
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Weird example: heuristics

Intuition: One could think that
@ We know that {x} occurred for all x € [0, 1]
Q@ {x}eF
@ Thus E[X|F] = X.

Paradox: This is wrong because X ¢ F.

Correct intuition: If we know w € A; for a finite number of A; € F
then nothing is known about X.
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Conditional expectation: uniqueness

,—{Proposition 9.}
On the probability space (2, Fo, P) consider
o A o-algebra F C Fo.
o X € Fy such that E[|X|] < cc.

Then if it exists, the random variable
E[X[F]

is uniquely defined.

\ J
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Proof of uniqueness

Aim: Let Y, Y satisfying (i) + (ii).
— Let us show Y =Y’ as

General property: For all A € F, we have E[Y 1] = E[Y'14].
Particular case: Let € > 0, and set

A=(Y-Y >0
Then A, € F, and thus

0= E[(Y — Y")14] > cE[Ls] = ¢ P(A)

= P(A.) = 0.
Samy T. Conditional expectation Probability Theory 50 /104



Proof of uniqueness (2)

Set A,: Let
Ar=(Y =Y >0) = Ayn

n>1

We have n > Ay, increasing, and thus

n>1

P(A,) = (U Al/,,) = lim P(Ay,) =0.

Set A_: In the same way, if

_={Yy-Y' <o}
we have P(A_) = 0.
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Proof of uniqueness (3)

Conclusion: We obtain, setting
A, ={Y#Y}=A,UA_,

that P(A.) =0, and thus Y = Y’ as.
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Absolute continuity

~ Definition 10. | .
Let i, v two o-finite measures on (2, F).
We say that v < p (p is absolutely continuous w.r.t v) if

wWA)=0 = v(A)=0forall Ac F.
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Radon-Nykodym theorem

r—[Theorem 11.] \
Let
@ 1, v o -finite measures on (£, F), such that v < .
Then there exists f € F such that for all A € F we have

V(A) = /A fdp.

The function f:
@ Is called Radon-Nykodym derivative of ;o with respect to v
@ Is denoted by f = Z—Z.
@ We have f > 0 p-almost everywhere
o fellu).
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Conditional expectation: existence

,—{Proposition 12.]
On the probability space (2, Fo, P) consider
o A o-algebra F C Fo.
o X € Fy such that E[|X|] < cc.

Then the random variable
E[X|F]

exists and is uniquely defined.

\ J
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Proof of existence

Hypothesis: We have
o A o-algebra F C Fy.
e X € Fy such that E[|X]|] < oo.
e X >0.

Defining two measures: we set
Q 1 = P, measure on (Q,F).
Q@ v(A) =E[X1,4] = [, XdP.
Then v is a measure (owing to Beppo-Levi).
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Proof of existence (2)

Absolute continuity: we have

P(A)=0=1,=0 P-as.
= X1,=0 P-as.
=v(A)=0

Thus v < P
Conclusion: invoking Radon-Nykodym, there exists f € F such that,

for all A€ F, we have v(A) = [, f dP.
— We set f = E[X]|F].
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Linearity, expectation

,—[Proposition 13.] \
Let X € L}(Q2). Then

E{E[X|F]} = E[X].

\ J

,—[Proposition 14.]
Let « € R, and X, Y € L}(Q2). Then

E[aX + Y|F] = « E[X|F] + E[Y|F] as.
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Proof

Strategy: Check (i) and (ii) in the definition for the r.v
Z = o E[X|F] + E[Y|F].

Verification: we have
(i) Z is a linear combination of E[X|F] and E[Y|F]
—ZeF.
(i) For all A€ F, we have

E[Z1s] = E{(aE[X|F]+E[Y|F])1a}
= aE{E[X|F]1a} + E{E[Y|F] 14}
= E[X14]+E[Y1,]
E[(aX + Y)14].
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Monotonicity

,—[Proposition 15.] \
Let X, Y € L1(Q) such that X < Y almost surely. We have

E[X|F] < E[Y|F],

almost surely.

\ J

Proof: Along the same lines as proof of uniqueness for the
conditional expectation. For instance if we set

A:. = {E[X|F] — E[Y|F] = ¢ > 0},
then it is readily checked that
P(A.) =0.
Probability Theory ~ 61/104



Monotone convergence

,—[Proposition 16.]
Let {X,; n > 1} be a sequence of random variables such that
e X, >0
e X, /X almost surely
e E[X] < .
Then

E[X,|F] 7 E[X|F].
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Proof

Strategy: Set Y, = X — X,,. We are reduced to show
Z, = E[Y,|F] \( 0.

Existence of a limit: n— Y, is decreasing, and Y, > 0
— Z, is decreasing and Z, > 0.
— Z, admits a limit a.s, denoted by Z.

Aim: Show that Z,, = 0.
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Proof (2)

Expectation of Z..: we will show that E[Z.,] = 0. Indeed
@ X, converges a.s. to X.
0 0< X, < Xe Q).
Thus, by dominated convergence, E[X,] — E[X].
We deduce:
e E[Y,] =0
@ Since E[Y,] = E[Z,], we also have E[Z,] — 0.
@ By monotone convergence, we have E[Z,] — E[Z.]
This yields E[Z,] = 0.

Conclusion: Z,, > 0 and E[Z,] =0
— Z, = 0 almost surely.
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Cauchy-Schwarz inequality

Proposition 17.]
Let X, Y € L?(Q2). Then

E’[X Y|F] < E[X?|F]E[Y?|F] as.
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Proof of Cauchy-Schwarz (1)

A family positive random variables:
For all 8 € R, we have

E[(X+0Y)’|F] >0 as.
Thus almost surely we have: for all 0 € Q,

E[(X +0Y)?F] >0,

Samy T. Conditional expectation
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Proof of Cauchy-Schwarz (2)

Expansion: For all 6 € Q

E[Y?|F]0* + 2E[XY|F]0 + E[X?|F] > 0.
Recall: If a polynomial satisfies a#? 4+ b +c > 0 for all 6 € Q
< then we have b®> —4ac <0

Application: Almost surely, we have

E?[XY|F] — E[X? F]E[Y?F] <O.
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Jensen’s inequality

,—{Proposition 18.}

Let X € LY(Q), and ¢ : R — R such that p(X) € L}(Q) and
@ convex. Then

p(E[X|F]) < E[p(X)|F] as.
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Contraction in LP(2)

Proposition 19.]

The conditional expectation is a

contraction in LP(Q2) for all p > 1
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Proof of contraction in LP

Application of Jensen's inequality: We have
X € LP(Q) = E[X|F] € LP(Q)
and

EX|FIP <E[X]PlF] = E{[E[X|F]IP} < E[IX]"]
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Successive conditionings

r—[Theorem 20.}

Let
@ Two o-algebras F; C F».
o X € L}(Q).
Then
E{E[X|A]F} = E[X|F] (2)
E{E[X|R]lF} = E[X|F] (3)
Probability Theory 71/104



Proof

Proof of (2): We set Z = E[X|F;]. Then
Z e FL CFo.
According to Example 1, we have E[Z|F,] = Z, i.e. (2).

Proof of (3): We set U = E[X|F,].
— We will show that E[U|F;] = Z, via (i) and (ii) of Definition 6.

(I) Z € Fi.
(i) If A€ Fi, we have A € F; C F,, and thus

E[Z14] = E[X1,] = E[UL,].
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Conditional expectation for products

Theorem 21.]

Let X, Y € L?(Q2), such that X € F. Then

E[X Y|F] = X E[Y|F].

Proof: We use a 4 steps methodology
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Proof

Step 1: Assume X = 1, with B F
We check (i) and (ii) of Definition 6.

(i) We have 1gE[Y|F] € F.
(i) For A € F, we have

E{(1E[Y|F]) 1a} = E{E[Y[F]1lans}

= E[Y 1AmB]
= E[(1gY)14],
and thus
15 E[Y|F] = E[1g Y|F].
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Proof (2)
Step 2: If X is of the form

X = Z(I,'IB,.,

i<n
with o; € R and B; € F, then, by linearity we also get

E[XY|F] = X E[Y|F].

Step3: If X, Y >0
< There exists a sequence {X,; n > 1} of simple random variables
such that

X, 7 X.

Then applying the monotone convergence we end up with:
E[XY|F] = XE[Y|F].
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Proof (3)

Step 4: General case X € [?
— Decompose X = XT — X~ and Y = Y — Y, which gives

E[XY|F] = XE[Y|F]

by linearity.
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Conditional expectation and independence

r—[Theorem 22.] ‘
Let
e X, Y two independent random variables
e a:R? — R such that a(X, Y) € L}(Q)
We set, for x € R,

8(x) = Ela(x, Y)].

Then

E[a(X, Y)|X] = g(X).

\.

Proof: with 4 steps method applied to a.
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Generalization of the previous theorem

r—[Theorem 23.}
Let
o FC Ky
e X € Fand Y 1L F two random variables
e a:R? — R such that a(X, Y) € LY(Q)
We set, for x € R,

g(x) = E[a(x, Y.

Then

Ela(X, Y)|F] = &(X).
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© Conditional expectation as a projection
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Orthogonal projection

Definition: Let

@ H Hilbert space
— complete vectorial space equipped with inner product.

@ F closed subspace of H.
Then, for all x €¢ H
@ There exists a unique y € F, denoted by y = m¢(x)
Satisfying one of the equivalent conditions (i) or (ii).
(i) For all z € F, we have (x — y,z) = 0.
(ii) For all z € F, we have ||x — y||y < ||x — z|| 4.
7e(x) is denoted orthogonal projection of x onto F.
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Conditional expectation and projection

r—[Theorem 24.}
Consider
@ The space L?(Fo) = {Y € Fo; E[Y?] < o0}
o X € L*(Fo).
o FCFy
Then
@ [%(Fp) is a Hilbert space
— Inner product (X, Y) = E[XY].
@ [%(F) is a closed subspace of L?(Fy).
Q 727 (X) = E[X|F].

Samy T. Conditional expectation Probability Theory 81 /104



Proof

Proof of 2:
If X, — X in L2 = There exists a subsequence X, — X a.s.
Thus, if X, € F, we also have X € F.

Proof of 3: Let us check (i) in our definition of projection

Let Z € [2(F).
— We have E[Z X|F] = Z E[X|F], and thus

E{ZE[X|F|} = E{E[XZ|F]} = E[X Z],

which ensures (i) and E[X|F] = 7m2(7)(X).
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Application to Gaussian vectors

Example: Let
e (X, Y) centered Gaussian vector in R?
@ Hypothesis: V(Y) > 0.

Then

B . _ E[XY]
E[X|]Y]=aY, with o= V(Y)
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Proof

Step 1: We look for « such that

Z=X—-aY — Z1Y.

Recall: If (Z,Y) is a Gaussian vector
— Z 1l Yiffcov(Z,Y)=0

Application: cov(Z,Y) =E[Z Y]. Thus
cov(Z,Y) = E[(X — aY) Y] = E[X Y] — aV(Y),
et

_E[XY]

cov(Z,Y)=0 iff VY)"
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Proof (2)

Step 2: We invoke (i) in the definition of .
< Let V € L?(o(Y)). Then

YL (X—-aY) = VI (X-aY)
and
E[(X —aY) V] =E[X —aY]E[V]=0.
Thus
aY = Wg(y)(X) = E[X‘ Y]
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Outline

@ Conditional regular laws
@ Probability laws and expectations
@ Definition of the CRL
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Aim of this section

Recall: We have seen that if
[*) X ~ P()\l), Y ~ P()\Q)
e X 1Y

_ M
®P=xTn

then
L(X|X+Y = n)=Bin(n,p)

Question:
How to translate this
— to the non-baby conditional expectation language?
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@ Conditional regular laws

@ Probability laws and expectations
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Characterizing r.v by expected values

Notation:
Cp(R) = set of continuous and bounded functions on R.

r—[Theorem 25.] ~
Let X be a r.v. We assume that

E[o(X)] = /R o(x) f(x) dx, for all functions ¢ € Cy(R).

Then X is continuous, with density f.

\ J
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Application: change of variable

Problem: Let

@ X random variable with density f.
@ Set Y = h(X) with h: R — R.
We wish to find the density of Y.
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Application: change of variable (2)

Recipe: One proceeds as follows
Q For p € Cp(R), write

Elp(Y)] = E[p(h(X))] Z/Rtp(h(X))f(X) dx.

@ Change variables y = h(x) in the integral.
After some elementary computations we get

E[p(Y)] = /]R ©(y) g(y)dy.

© This characterizes Y, which admits a density g

Samy T. Conditional expectation Probability Theory 91 /104



Example: normal r.v and linear transformations

,—[Proposition 26.]
Let
e X ~N(0,1)
e pneRando >0
@ Set Y=0X+p

Then

Y ~ N(u,0°)
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Proof

Recipe, item 1: for ¢ € Cp(R), write

e—x2/2

E[(Y)] = Ele(0X + )] = [ o(ox+ ) N

Recipe, item 2: Change of variable: y = ox + pu:

o~ (r—1)?2/(20)

Ele(V)] = [ o) 80) d, with g(y) =" ——

Recipe, item 3:
Y is continuous with density g, therefore Y ~ A/ (y, 0?).
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Characterizing r.v by expected values (ctd)

Theorem 27.]
Let X : Q2 =R bearwv. Then

{E[p(X)]; ¢ € Cp(R)} characterizes the law of X
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@ Conditional regular laws

@ Definition of the CRL

o = = £ DA
Samy T. Conditional expectation



CRL

r—[Definition 28.} \
Let
e (2, F, P) a probability space
e (S,8) a measurable space of the form R4, Z¢
e X :(Q,F)— (S,8) a random variable in L}(Q)
@ G a o-algebra such that G C F.
We say that 11 : Q x S — [0, 1] is a Conditional regular law of
X given G if
(i) For all f € Cy(S), the map w — u(w, f) is a random
variable, equal to E[f(X)|J] a:s.
(i) w-a.s. f— p(w, f) is a probability measure on (S, S).
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Discrete example

Poisson law case: Let
e X ~P(\)and Y ~ P(u)
e X 1Y

Weset S=X+Y.
Then

CRL of X given S is Bin(S, p), with p = 13-

m
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Proof for the discrete example

Proof: we have seen that for n < m

m n m—n . _ A
P(X:n|S:m):<n>p(1—p) W|thp——)\+u.

Then we consider
e State space =N, G =0d(S)
and we verify that these conditional probabilities define a CRL.
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Continuous example

Exponential law case: Let
o X~¢&(1)and Y ~ &(1)
e X1Y

Weset S=X-+Y.
Then

CRL of X given S is U([0, S]).

Samy T. Conditional expectation Probability Theory 99 /104



Continuous example

Proof: The joint density of (X, S) is given by
f(x,s) = e *lipcx<sy-
Let then ¢ € Bp(R). Thanks to Example 5, we have
E[¢(X)[S] = u($),
with

Jr, P(x)f(x,s)dx 1y
u(s) = ez Fx, 5)dx = g/o P(x)dx.
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Proof

In addition, S # 0 almost surely, and thus if A € B(R) we have:

S
Ef)ls] = VI

Considering the state space as = R, S = B(R,) and setting

e f) = g [

one can verify that we have defined a conditional regular law.
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Existence of the CRL

r—[Theorem 29.}

Let
e X a random variable on (2, Fo, P).
e Taking values in a space of the form (R”, B(R")).
e G C JFy a o-algebra.

Then the CRL of X given G exists.

Proof: nontrivial and omitted.
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Computation rules for CRL
(1) If G =o(Y), with Y random variable with values in R™, we have
pw, f) = p(Y(w), ),

and one can define a CRL of X given Y as a family

{1y, .);y € R™} of probabilities on R”, such that for all
f € Cp(R") the function

y = u(y,f)

is measurable.

(2) If Y is a discrete r.v, this can be reduced to:

P(XEAY=y)
P(Y=y)

Wy, A)=P(X e AlY =y)=
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Computation rules for CRL (2)

(3) When one knows the CRL, quantities like the following (for
¢ € B(R")) can be computed:

E[0()IG] = [ 66)u(w, o)
E[()Y] = [ o) u(Y.d)

(4) The CRL is not unique.
However if Ny, N, are 2 CRL of X given G
— we have w-almost surely:

Ni(w, f) = Na(w, f)  for all f e Cp(R").
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