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Probability space

Probability space: (Ω, F , P) with
Ω set
F a σ-algebra
P probability measure
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Complete probability space

Hypothesis: We assume that P is complete, i.e

A ∈ F such that P(A) = 0, and B ⊂ A
=⇒

B ∈ F and P(B) = 0.

Remark: A probability can always be completed
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Simple examples (1)

Tossing 2 dice:
Ω = {1, 2, 3, 4, 5, 6}2

F = P(Ω)
P(A) = |A|

36

Uniform distribution on [0, 1]:
Ω = [0, 1]
F = B([0, 1])
P = λ, Lebesgue measure
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Simple examples (2)

Gaussian law on R:
Ω = R
F = B(R)

P(A) = 1
(2π)1/2

∫
A e− (x−µ)2

2σ2 dx , for A ∈ F
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Typical example for this course

Let Ω = ℓp with p ∈ (1, ∞). We set:

d(u, v) =
∑

n≥1
|un − vn|p

1/p

.

Then Ω is a complete metric separable space.

Proposition 1.
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Random variables

Let
(Ω, F , P) complete probability space
A function X : Ω → R

Then

X is said to be a random variable if X is measurable

Definition 2.
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Independence (1)

Independence of r.v: Let (Xj)j∈J r.v in Rn.
Those r.v are said to be independent if for all m ≥ 2:

For every j1, . . . , jm ∈ J , the r.v (Xj1 , . . . , Xjm) are ⊥⊥

Otherwise stated: for all A1, . . . , Am ∈ B(Rn) we have

P (Xj1 ∈ A1, . . . , Xjm ∈ Am) =
m∏

k=1
P (Xjk ∈ Ak)
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Independence (2)

Independence of σ-algebras: Let (Fj)j∈J σ-algebras, Fj ⊂ F .
Those σ-algebras are said to be independent if for all m ≥ 2:

For all j1, . . . , jm ∈ J , the σ-algebras (Fj1 , . . . , Fjm) are ⊥⊥

Otherwise stated: for all B1 ∈ Fj1 , . . . , Bm ∈ Fjm we have

P
( m⋂

k=1
Bk

)
=

m∏
k=1

P (Bk)
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π-systems and λ-systems

π-system: Let P family of subsets of Ω. P is a π-system if:

A, B ∈ P =⇒ A ∩ B ∈ P

λ-system: Let L family of subsets of Ω. L is a λ-system if:
1 Ω ∈ L
2 If A ∈ L, then Ac ∈ L
3 If for j ≥ 1 we have:

▶ Aj ∈ L
▶ Aj ∩ Ai = ∅ if j ̸= i

Then ∪j≥1Aj ∈ L
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Dynkin’s π-λ lemma

Let P et L such that:
P is a π-system
L is a λ-system
P ⊂ L

Then σ(P) ⊂ L

Proposition 3.
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Application of Dynkin’s π-λ lemma

Let:
X1, . . . , Xn r.v with values in Rm.
X ≡ (X1, . . . , Xn) ∈ Rm×n.
µXj = L(Xj) and µX = L(X ).

Then the two following assertions are equivalent:
1 X1, . . . , Xn are independent
2 µX = µX1 ⊗ · · · ⊗ µXn on B(Rm×n)

Proposition 4.
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Proof (1)

Definition of two systems: We set

µ1 = µX , and µ2 = µX1 ⊗ · · · ⊗ µXn ,

and

P ≡
{
A ∈ B(Rm×n); A = A1 × · · · × An, where Aj ∈ B(Rm)

}
L ≡

{
B ∈ B(Rm×n); µ1(B) = µ2(B)

}
.
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Proof (2)

Application of Dynkin’s lemma: We have
P is a π-system
L is a λ-system
µ1(C) = µ2(C) for all C ∈ P

Thus σ(P) ⊂ L, and σ(P) = B(Rm×n)

Conclusion:

µ1(A) = µ2(A) for all A ∈ B(Rm×n)
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Experiment

Procedure:
Consider a plane ruled by lines y = k , with k ∈ Z
Take a needle with length 1
Fling the needle n times on the plane

Outcome: We record, for i = 1, . . . , n,
Xi ≡ 1Ai , where Ai = (i-th needle intersect a line)
Sn ≡ # times the needle intersects the line

Simulation:

This website from UIUC
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Limiting result

Under the above conditions we have

P (Ai) = 2
π

Sn

n −→ 2
π

Proposition 5.
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Bernoulli random variable (1)

Notation:

X ∼ B(p) with p ∈ (0, 1)

State space:

{0, 1}

Pmf:
P(X = 0) = 1 − p, P(X = 1) = p

Expected value, variance, generating function:

E[X ] = p, Var(X ) = p(1 − p), GX (s) = (1 − p) + p s
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Bernoulli random variable (2)

Use 1, success in a binary game:
Example 1: coin tossing

▶ X = 1 if H, X = 0 if T
▶ We get X ∼ B(1/2)

Example 2: dice rolling
▶ X = 1 if outcome = 3, X = 0 otherwise
▶ We get X ∼ B(1/6)

Use 2, answer yes/no in a poll
X = 1 if a person feels optimistic about the future
X = 0 otherwise
We get X ∼ B(p), with unknown p
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Jacob Bernoulli

Some facts about Bernoulli:
Lifespan: 1654-1705, in Switzerland
Discovers constant e
Establishes divergence of ∑ 1

n
Contributions in diff. eq
First law of large numbers
Bernoulli:
family of 8 prominent mathematicians
Fierce math fights between brothers
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Binomial random variable (1)
Notation:

X ∼ Bin(n, p), for n ≥ 1, p ∈ (0, 1)

State space:

{0, 1, . . . , n}

Pmf:
P(X = k) =

(
n
k

)
pk (1 − p)n−k , 0 ≤ k ≤ n

Expected value, variance and generating function:

E[X ] = np, Var(X ) = np(1 − p), GX (s) = [(1 − p) + p s]n
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Binomial random variable (2)

Use 1, Number of successes in a Bernoulli trial:
Example: Roll a dice 9 times.
X = # of 3 obtained
We get X ∼ Bin(9, 1/6)
P(X = 2) = 0.28

Use 2: Counting a feature in a repeated trial:
Example: stock of 1000 pants with 10% defects
Draw 15 times a pant at random
X = # of pants with a defect
We get X ∼ Bin(15, 1/10)
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Binomial random variable (3)
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Figure: Pmf for Bin(6; 0.5). x -axis: k. y -axis: P(X = k)
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Binomial random variable (4)

0 5 10 15 20 25 30
0.00

0.05

0.10

0.15

Figure: Pmf for Bin(30; 0.5). x -axis: k. y -axis: P(X = k)
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Uniform random variable (1)
Notation:

X ∼ U([α, β]), with α < β

State space:

[α, β]

Density:
f (x) = 1

β − α
1[α,β](x)

Expected value and variance:

E[X ] = α + β

2 , Var(X ) = (β − α)2

12
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Uniform random variable (2)
Use:

U([0, 1]) only r.v directly accessible on a computer
↪→ rand function

Example of computation: if X ∼ U([8, 10]), then

P(7.5 < X < 9.5) = 1
2

∫ 9.5

8
dx = 9.5 − 8

2 = 3
4
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Experiment (repeated)

Procedure:
Consider a plane ruled by lines y = k , with k ∈ Z
Take a needle with length 1
Fling the needle n times on the plane

Outcome: We record, for i = 1, . . . , n,
Xi ≡ 1Ai , where Ai = (i-th needle intersects a line)
Sn ≡ # times the needle intersects the line
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Proof of Proposition 5 (1)

Notation: We define
(Xi , Yi) ≡ Coordinates of the center of the i-th needle
Θi ≡ angle (i-th needle, x -axis)
Zi = d ((Xi , Yi), nearest line underneath) = Yi − ⌊Yi⌋

Model: We assume
1 Zi ∼ U([0, 1])
2 Θi ∼ U([0, π])
3 Zi ⊥⊥ Θi
4 {Zi ; i ≥ 1} i.i.d sequence
5 {Θi ; i ≥ 1} i.i.d sequence
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Proof of Proposition 5 (2)

Expression for Ai : We have

Ai = A−
i ∪ A+

i

with

A−
i =

{
Zi ≤ 1

2 , and Zi <
1
2 sin (Θi)

}
A+

i =
{

Zi >
1
2 , and 1 − Zi <

1
2 sin (Θi)

}
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Proof of Proposition 5 (3)

Computing P(Ai): We write

P(Ai) = P(A−
i ) + P(A+

i )
= 2P(A−

i )

= 2
π

∫ π

0
dθ
∫ 1

2 sin(θ)

0
dz

Thus
P(Ai) = 2

π
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Proof of Proposition 5 (4)

Some laws: We have

Xi ∼ B
( 2

π

)
Sn ∼ Bin

(
n,

2
π

)

Limit: By De Moivre,
Sn

n −→ 2
π
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Aim of this chapter

Problem with limit statement:
For every n ≥ 1, we have Sn : Ω → R
Sn is thus a function
We don’t know exactly what Sn

n −→ 2
π

means!

Aim of this chapter:
Explore different modes of convergence for random variables

Preliminary step:
Explore different modes of convergence for functions
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Setting for convergence of functions

Sequence of functions: We consider
A sequence {fn; n ≥ 1} with

fn : [0, 1] −→ R

Aim of subsection: Review modes for

lim
n→∞

fn
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Pointwise convergence

Let
{fn; n ≥ 1} sequence of measurable functions

We assume

lim
n→∞

fn(x) = f (x) , for all x ∈ [0, 1]

Then we say that

fn −→ f pointwise

Definition 6.
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Almost everywhere convergence

Let
{fn; n ≥ 1} sequence of measurable functions

We assume

lim
n→∞

fn(x) = f (x) , for almost every x ∈ [0, 1]

Then we say that

fn −→ f almost everywhere

Definition 7.
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Lp convergence

Let
{fn; n ≥ 1} sequence of measurable functions

We assume
lim

n→∞
∥fn − f ∥Lp([0,1]) = 0

Then we say that

fn −→ f in Lp([0, 1])

Definition 8.
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Convergence in measure

Let
{fn; n ≥ 1} sequence of measurable functions

We assume that for all ε > 0

lim
n→∞

λ ({u ∈ [0, 1]; |fn(u) − f (u)| > ε}) = 0

Then we say that

fn −→ f in measure

Definition 9.
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Relations between convergences (1)

Examples of relations for functions on [0, 1]:
fn(x) = xn

↪→ converges almost everywhere, not pointwise

gn(x) = n1[0,1/n](x)
↪→ converges almost everywhere, not in L1
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Relations between convergences (2)
Another example of relation for functions on [0, 1]:

hn = 1[0,1], 1[0,1/2] , 1[1/2,1], 1[0,1/3], 1[1/3,2/3], . . .
↪→ converges in measure, not almost everywhere
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Almost sure convergence

Let
{Xn; n ≥ 1} sequence of random variables on (Ω, F , P)
Another random variable X defined on (Ω, F , P)

We assume

P
({

ω ∈ Ω; lim
n→∞

Xn(ω) = X (ω)
})

= 1.

Then we say that

Xn −→ X almost surely

Definition 10.
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Convergence in Lp

Let
{Xn; n ≥ 1} sequence of r.v in Lr(Ω)
Another random variable X ∈ Lr(Ω)

We assume
lim

n→∞
E [|Xn − X |r ] = 0.

Then we say that

Xn −→ X in Lr(Ω) (or in r -th mean)

Definition 11.
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Convergence in probability

Let
{Xn; n ≥ 1} sequence of random variables on (Ω, F , P)
Another random variable X defined on (Ω, F , P)

We assume that for all ε > 0

lim
n→∞

P (|Xn − X | > ε) = 0.

Then we say that

Xn −→ X in probability

Definition 12.
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Convergence in distribution

Let
{Xn; n ≥ 1} sequence of random variables on (Ω, F , P)
Another random variable X defined on (Ω, F , P)

We assume that for all points x ∈ R such that FX is continuous,

lim
n→∞

FXn(x) = FX (x).

Then we say that

Xn −→ X in distribution

Definition 13.
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Remarks about convergence in distribution

1 The central limit theorem
↪→ is a convergence in distribution

2 Ergodic theorems for Markov chains
↪→ are convergences in distributions

3 Convergence in distribution
↪→ does not refer to a specific (Ω, F , P)
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A Bernoulli example

A Bernoulli sequence: We consider
X ∼ B(1/2)
Xn = X for all n ≥ 1
Y = 1 − X

Convergences:
1 We have

Xn
(d)−→ X

2 Xn does not converge to X in any other mode
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Relations between modes of convergence

Theorem 14.
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Convergence in probability and in distribution

Let
Xn sequence of random variables

Assume Xn
P−→ X

Then
Xn

(d)−→ X

Proposition 15.
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Proof of Proposition 15 (1)

Notation: Set

Fn(x) = P(Xn ≤ x), F (x) = P(X ≤ x)

Aim: Prove that

limn→∞ Fn(x) = F (x) if F is continuous at x
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Proof of Proposition 15 (2)
1st decomposition: We have

Fn(x) = P (Xn ≤ x , X ≤ x + ε) + P (Xn ≤ x , X > x + ε)
≤ F (x + ε) + P (|Xn − X | > ε)

2nd decomposition: We have

F (x − ε) = P (X ≤ x − ε, Xn ≤ x) + P (X ≤ x − ε, Xn > x)
≤ Fn(x) + P (|Xn − X | > ε)

Summary:

F (x − ε) − P (|Xn − X | > ε) ≤ Fn(x) ≤ F (x + ε) + P (|Xn − X | > ε)
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Proof of Proposition 15 (3)

Limits as n → ∞: Since Xn
(P)−→ X , we have

F (x − ε) ≤ lim inf
n→∞

Fn(x) ≤ lim sup
n→∞

Fn(x) ≤ F (x + ε)

Limits as ε → 0: If F is continuous at x , we get

F (x) = lim inf
n→∞

Fn(x) = lim sup
n→∞

Fn(x) = F (x)
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Convergence in Lp(Ω)

Let
Xn sequence of random variables

Assume Xn
Ls

−→ X for s > r

Then
Xn

Lr
−→ X

Proposition 16.
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Proof of Proposition 16

Inequality on norms: We have

∥Xn − X∥r ≤ ∥Xn − X∥s
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Counter-example

Definition of a sequence: We consider independent r.v with

P (Xn = n) = 1
n 1

2 (r+s)
, P (Xn = 0) = 1 − 1

n 1
2 (r+s)

Convergence: If r < s we have
1 Xn

Lr
−→ 0

2 Xn does not converge in Ls

Samy T. Convergence of r.v Probability Theory 61 / 118



Markov’s inequality

Let

X random variable with X ∈ L1(Ω)

Then for all a > 0 we have

P (|X | ≥ a) ≤ E [|X |]
a

Proposition 17.
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Andrey Markov

Andrey Markov’s life:
Lifespan: 1856-1922, ≃ St Petersburg
Not a very good student
↪→ except in math
Contributions in analysis and probability
Used chains for
↪→ appearance of vowels
Professor in St Petersburg

▶ Suspended after 1908 students riots
▶ Resumed teaching in 1917

Fact: More than 50 mathematical objects named after Markov!!
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Proof of Proposition 17

Deterministic inequality: Set

A = {|X | ≥ a}

Then we have
|X | ≥ a 1A , almost surely

Expectations: Taking expectations above, we get

E [|X |] ≥ a P(A)
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Convergence in Lp(Ω) and in probablity

Let
Xn sequence of random variables

Assume Xn
L1

−→ X

Then
Xn

P−→ X

Proposition 18.
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Proof of Proposition 18

Applying Markov’s inequality: For ε > 0, we have

P (|Xn − X | > ε) ≤ E[|Xn − X |]
ε

Then take n → ∞
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Counter-example

Definition of a sequence: We consider independent r.v with

P
(
Xn = n3

)
= 1

n2 , P (Xn = 0) = 1 − 1
n2

Convergence: We have
1 Xn

P−→ 0
2 Xn does not converge in L1
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Proof of counter-example for Xn (1)

Some notation: For ε > 0 and X = 0 set:

Ak(ε) = {|Xk − X | > ε}

Convergence in probability: We have

lim
n→∞

P (An(ε)) = lim
n→∞

P
(
Xn = n3

)
= lim

n→∞

1
n2

= 0

Thus
Xn

P−→ 0
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Proof of counter-example for Xn (2)

Non convergence in L1: We have

E[|Xn|] = E[Xn] = n

Thus
Xn

L1

̸→ 0
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Limsup of sets

Let
{An; n ≥ 1} sequence in F

We define
lim sup

n→∞
An =

∞⋂
n=1

∞⋃
k=n

Ak

Definition 19.

Interpretation: We also have

lim sup
n→∞

An = {ω ∈ Ω; ω belongs to an infinity of An’s}
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Borel-Cantelli lemma

Let
{An; n ≥ 1} sequence in F

We assume ∞∑
n=1

P(An) < ∞

Then we have
P
(

lim sup
n→∞

An

)
= 0

Theorem 20.
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Emile Borel

Emile Borel’s life:
Lifespan: 1872-1956, ≃ Paris
# 1 student in France
↪→ for his academic year
Contributions in analysis and probability
Active in politics
Minister of Navy in 1924-25
Resistance against nazi occupation
Introduced the ∞ monkey theorem

Fact: "Only" 14 mathematical objects named after Borel . . .
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Proof of Theorem 20 (1)

A non-increasing sequence: For N ≥ 1 define

BN =
∞⋃

k=N
Ak

Then
1 N 7→ BN is non-increasing

2 lim supn→∞ An = ⋂∞
N=1 BN
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Proof of Theorem 20 (2)

Computing the probability: We have

P
(

lim sup
n→∞

An

)
= P

( ∞⋂
N=1

BN

)
= lim

N→∞
P (BN)

= lim
N→∞

P
( ∞⋃

k=N
Ak

)

≤ lim
N→∞

∞∑
k=N

P (Ak)

= 0
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A.s convergence and limsup

Consider
{Xn; n ≥ 1} sequence of random variables
For ε > 0 set An(ε) = {|Xn − X | > ε}

Then
1 We have

Xn
a.s−→ X ⇐⇒ P

(
lim sup

n→∞
An(ε)

)
= 0 for all ε > 0

2 It holds:
∞∑

n=1
P (An(ε)) < ∞ for all ε > 0 =⇒ Xn

a.s−→ X

Proposition 21.
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Proof of Proposition 21 (1)

Claim: Let

C =
{

ω ∈ Ω; lim
n→∞

Xn(ω) = X (ω)
}

A(ε) = lim sup
n→∞

An(ε)

Then we have

C =
⋂
ε>0

(A(ε))c =
⋂

m≥1

(
A
( 1

m

))c
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Proof of Proposition 21 (2)

Application for almost sure convergence: We have

P (C c) = 0 ⇐⇒ P
 ⋃

m≥1
A
( 1

m

) = 0

⇐⇒ lim
n→∞

P
(

A
( 1

m

))
= 0

⇐⇒ P
(

A
( 1

m

))
= 0, for all m ≥ 1

This proves item 1
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Proof of Proposition 21 (3)

Proof of item 2: We write
∞∑

n=1
P (An(ε)) < ∞ for all ε > 0

=⇒ P
(

lim sup
n→∞

An(ε)
)

= 0 for all ε > 0

=⇒ P
(

lim
n→∞

Xn = X
)

= 1
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A.s convergence and convergence in probability

Consider
{Xn; n ≥ 1} sequence of random variables

Then we have:

Xn
a.s−→ X =⇒ Xn

P−→ X

Proposition 22.
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Proof of Proposition 22

Defining some sets: For ε > 0 set:

Ak(ε) = {|Xk − X | > ε}
Bn(ε) =

⋃
k≥n

Ak(ε)

Evaluating some probabilities: We have seen

Xn
a.s−→ X =⇒ lim

n→∞
P (Bn(ε)) = 0

Thus

lim
n→∞

P (An(ε)) = 0, for all ε > 0
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Counter-example

Definition of a sequence: We consider independent r.v with

Xn ∼ B
(1

n

)

Convergence: We have
1 Xn

P−→ 0
2 Xn does not converge almost surely
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Proof of counter-example
Recalling notation: For ε > 0 set:

Ak(ε) = {|Xk − X | > ε}
Bn(ε) =

⋃
k≥n

Ak(ε)

Convergence in probability: We have

lim
n→∞

P (An(ε)) = lim
n→∞

P (Xn = 1)

= lim
n→∞

1
n

= 0

Thus
Xn

P−→ 0
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Proof of counter-example
Almost sure convergence: We have

P (Bn(ε)) = 1 − P ((Bn(ε))c)

= 1 − P
⋂

k≥n
(Ak(ε))c


= 1 − P

⋂
k≥n

(Xk = 0)


= 1 −
∞∏

k=n

(
1 − 1

k

)
= 1

Thus
Xn

a.s
̸→ 0
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Non comparison between a.s and L1-convergence

One can find
1 {Xn; n ≥ 1} sequence of random variables such that

Xn
a.s−→ X , but Xn

L1

̸→ X

2 {Yn; n ≥ 1} sequence of random variables such that

Yn
L1

−→ Y , but Yn
a.s
̸→ Y

Proposition 23.
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Proof of counter-example for Xn (1)

Definition of a sequence (repeated):
We consider independent r.v with

P
(
Xn = n3

)
= 1

n2 , P (Xn = 0) = 1 − 1
n2

Convergence: We have
1 Xn

a.s−→ 0
2 Xn does not converge in L1
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Proof of counter-example for Xn (2)
Some notation: For ε > 0 set:

Ak(ε) = {|Xk − X | > ε}

Almost sure convergence: We have
∞∑

n=1
P (An(ε)) =

∞∑
n=1

P
(
Xn = n3

)
=

∞∑
n=1

1
n2

< ∞

Thus
Xn

a.s−→ 0

Samy T. Convergence of r.v Probability Theory 87 / 118



Proof of counter-example for Xn (3)

Non convergence in L1(Ω): We have already seen that

E[|Xn|] = E[Xn] = n

Thus
Xn

L1

̸→ 0
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Case for which (d)−→ yields P−→

Consider
{Xn; n ≥ 1} sequence of random variables

Assume

Xn
(d)−→ c , where c is a constant

Then we have:
Xn

P−→ c

Proposition 24.
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Proof of Proposition 24

Expression in terms of cdf: We have

P (|Xn − c| > ε) = P (Xn < c − ε) + P (Xn > c + ε)
= P (Xn < c − ε) + 1 − P (Xn ≤ c + ε)

Convergence: Since Xn
(d)−→ X , we get

lim
n→∞

P (|Xn − c| > ε) = 0
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Case for which P−→ yields a.s−→

Consider
{Xn; n ≥ 1} sequence of random variables

Assume

Xn
P−→ X

Then there exists a subsequence {nk ; k ≥ 1} such that:

Xnk
a.s−→ X

Proposition 25.
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Proof of Proposition 25 (1)

Definition of nk : Recursively we set

nk = inf
{

n > nk−1; P
(

|Xn − X | >
1
k

)
≤ 1

k2

}

Some notation: For ε > 0 define:

Yk = Xnk

Ak(ε) = {|Yk − X | > ε}
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Proof of Proposition 25 (2)

Almost sure convergence: We have
∞∑

k=ε−1

P (Ak(ε)) =
∞∑

k=ε−1

P
(

|Xnk − X | >
1
k

)

≤
∞∑

k=1

1
k2

< ∞

Thus
Yk

a.s−→ X
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Case for which P−→ yields Lr
−→

Consider
{Xn; n ≥ 1} sequence of random variables

Assume (bounded convergence)

Xn
P−→ X , and |Xn| ≤ k a.s for all n ≥ 1 and a given k > 0

Then for all r ≥ 1 we have:

Xn
Lr

−→ X

Proposition 26.
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Proof of Proposition 26 (1)

Boundedness of X : For δ > 0, set

Bδ = (|X | ≤ k + δ)

Then for all n ≥ 1 we have

P (Bδ) ≥ P (|X − Xn| ≤ δ, |Xn| ≤ k)
≥ P (|Xn| ≤ k) − P (|X − Xn| > δ)
= 1 − P (|X − Xn| > δ)

Taking limits in n, δ we get

P (|X | ≤ k) = 1
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Proof of Proposition 26 (2)
Decomposition of Xn − X : For ε > 0 and n ≥ 1 set

An,ε = {|Xn − X | > ε}

Then
|Xn − X |r ≤ εr 1Ac

n,ε
+ (2k)r 1An,ε

Taking expectations: We obtain

E [|Xn − X |r ] ≤ εr 1Ac
n,ε

+ (2k)r P (An,ε)

Taking limits: With n → ∞ and ε → 0 we end up with

lim
n→∞

E [|Xn − X |r ] = 0
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Right inverse (1)

Let F : R → [0, 1] continuous cdf
We define the right inverse F −1 as

F −1 : (0, 1) → R, y 7→ inf {a ∈ R; F (a) ≥ y}

Definition 27.
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Right inverse (2)

Remarks on right inverse:
(i) If F is strictly increasing, F −1 is the inverse of F
↪→ i.e. F ◦ F −1 = F −1 ◦ F = Id
(ii) Graphical method to construct F −1:

1 Symmetry wrt diagonal
2 Then erase vertical parts

Example: F (x) = (x − 1)1[1,2)(x) + 1[2,∞)(x)
↪→ F −1(y) = (1 + y)1(0,1)(y)
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Right inverse (3)

More remarks:
(iii) Interpretation:

In above example, F ≡ cdf of U([1, 2])
Domain of interest: x ∈ [1, 2]
In this domain, we do have F −1(F (x)) = x

(iv) Generalization:
If µ(dx) = f (x) dx with Supp(f ) = [a, b], then

F is strictly increasing on [a, b]
F : (a, b) → (0, 1) is invertible
One can ignore the set (a, b)c in order to compute F −1
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Inverse method for simulation

Let
µ a continuous probability measure on R
F (x) = µ((−∞, x ]) with right inverse F −1

U ∼ U([0, 1])
Then

X = F −1(U) is distributed according to µ

Proposition 28.
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Proof of Proposition 28 (1)

Strategy: We will prove that

P(X ≤ x) = P(F −1(U) ≤ x)
(∗)= P(U ≤ F (x))= F (x)
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Details for (∗)
We wish to show that for x ∈ R,{

u ∈ (0, 1); F −1(u) ≤ x
}

= {u ∈ (0, 1); u ≤ F (x)}

Inclusion ⊂:

F −1(u) ≤ x ⇒ inf {a; F (a) ≥ u} ≤ x
⇒ There exists a1 ≤ x such that F (a1) ≥ u
⇒ F (x) ≥ F (a1) ≥ u

Inclusion ⊃:
u ≤ F (x) ⇒ F (x) ≥ u

⇒ inf {a; F (a) ≥ u} ≤ x
⇒ F −1(u) ≤ x
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Examples

Example 1:
Let µ = U([a, b]). Then on [a, b]

F (x) = x − a
b − a , and F −1(y) = a + (b − a)y

One can check that X = a + (b − a)U ∼ U([a, b])
Example 2:
Let µ = E(λ). Then on R+

F (x) =
∫ x

0
λe−λu du = 1 − e−λx , and F −1(y) = − ln(1 − y)

λ

One can check that X = − ln(1−U)
λ

∼ E(λ)
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Comments on inverse method

Pros:
Unique call to rand
Excellent simulation method . . . when it works!

Cons:
Explicit computation of F , F −1 not always possible
Typical example: N (0, 1)

Examples of application:
Exponential, Weibull, Cauchy

Samy T. Convergence of r.v Probability Theory 106 / 118



Outline

1 Introduction
1.1 Basic probability structures
1.2 Buffon’s needle
1.3 Convergence of functions

2 Modes of convergence
2.1 Reviewing the modes of convergence
2.2 Results for P and Lp convergences
2.3 Results for almost sure convergence
2.4 Cases of inverse relations for modes of convergence
2.5 Inverse method for simulation
2.6 Results for convergence in distribution

Samy T. Convergence of r.v Probability Theory 107 / 118



Skorohod’s representation theorem

Consider
{Xn; n ≥ 1} sequence such that Xn

(d)−→ X

Then one can construct
1 A probability space (Ω, F , P)
2 Random variables Yn : Ω → R satisfying Yn

(d)= Xn

3 Y : Ω → R satisfying Y (d)= X
such that the following holds true:

Yn
a.s−→ Y

Proposition 29.
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Proof of Proposition 29 (1)

Definition of (Ω, F , P): We take

Ω = [0, 1], F = Borel σ-algebra, P = λ

Definition of Yn and Y : We take

Yn(ω) = F −1
n (ω), Y (ω) = F −1(ω)

Distributions of Yn and Y : According to Proposition 28,

Yn ∼ Fn, Y ∼ F
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Proof of Proposition 29 (2)
Claim 1: If ω is a point of continuity of F −1, we have

lim
n→∞

Yn(ω) = lim
n→∞

F −1
n (ω) = F −1(ω) = Y (ω) (1)

Proof of claim 1: Consider
ω ∈ [0, 1]
x point of continuity of F such that Y (ω) − ε < x < Y (ω)

We have

F −1(ω) > x =⇒ F (x) < ω

=⇒ Fn(x) < ω, for large n
=⇒ x < F −1

n (ω), for large n
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Proof of Proposition 29 (3)

Proof of claim 1 - ctd: We have seen, for n large enough,

Y (ω) − ε < x < F −1
n (ω)

(
=⇒ F −1

n (ω) > Y (ω) − ε
)

Partial conclusion: We get

lim inf
n→∞

Yn(ω) > Y (ω) − ε, for all ε > 0

=⇒ lim inf
n→∞

Yn(ω) ≥ Y (ω)
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Proof of Proposition 29 (4)

Proof of claim 1 - ctd: We have proved

lim inf
n→∞

Yn(ω) ≥ Y (ω)

Along the same lines, for ω′ > ω one has

lim sup
n→∞

Yn(ω) ≤ Y (ω′)

Conclusion: Claim 1 is true, that is
↪→ If ω is a point of continuity of F −1, we have

lim
n→∞

Yn(ω) = Y (ω) (2)
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Proof of Proposition 29 (5)

Almost sure convergence: Let

D =
{
points of discontinuity of F −1

}
Since F −1 non decreasing,

P(D) = λ(D) = 0

Hence
Yn

a.s−→ Y
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Characterization of convergence in distribution

Consider
{Xn; n ≥ 1} sequence of random variables

Then the statements 1-2-3 are equivalent:
1 Xn

(d)−→ X
2 For any f ∈ Cb(R), we have

lim
n→∞

E [f (Xn)] = E [f (X )]

3 u 7→ E
[
eıuX

]
cont. at 0, and for every u ∈ R we have

lim
n→∞

E
[
eıuXn

]
= E

[
eıuX

]

Proposition 30.
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Proof of Proposition 30 (1)
Application of Skorohod: One can find

Yn
(d)= Xn, Y (d)= X

such that
Yn

a.s−→ Y

Convergence of g(Yn): Since g is continuous, we have

g (Yn) a.s−→ g(Y )

Proof of 1 =⇒ 2: By bounded convergence,

E [g (Yn)] −→ E [g(Y )]
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Proof of Proposition 30 (2)
Next step:

Proof of 1 =⇒ 2

Approximation of 1(−∞,x ]: For ε > 0 we set

gε,x(y) =


1, if y ≤ x
0, if y ≥ x + ε

linear, if x ≤ y ≤ x + ε

Upper bound for Fn: For x ∈ R we have

gx ,ε(y) ≥ 1(y≤x)

=⇒ Fn(x) = E
[
1(Xn≤x)

]
≤ E [gε,x(Xn)]
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Proof of Proposition 30 (3)

Taking lim sup: Since we assume 2 holds,

lim sup
n→∞

Fn(x) ≤ lim sup
n→∞

E [gx ,ε(Xn)]

≤ P (X ≤ x + ε)
= F (x + ε)

Taking limits in ε: For all x we end up with

lim sup
n→∞

Fn(x) ≤ F (x)
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Proof of Proposition 30 (4)
Taking lim inf: By considering gx−ε,ε we obtain

lim inf
n→∞

Fn(x) ≥ lim inf
n→∞

E [gx−ε,ε(Xn)]
≥ P (X ≤ x − ε)
= F (x − ε)

Taking limits in ε: For a continuity point x of F , we get

lim inf
n→∞

Fn(x) ≥ F (x)

Conclusion: For a continuity point x of F , we have

lim
n→∞

Fn(x) = F (x)
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