Modes of convergence for random variables

Samy Tindel

Purdue University

Probability Theory 1 - MA 538

Mostly taken from Probability and Random Processes (Sections 7.1-7.2) by Grimmett-Stirzaker

Introduction

- 1.1 Basic probability structures
- 1.2 Buffon's needle
- 1.3 Convergence of functions

2 Modes of convergence

- 2.1 Reviewing the modes of convergence
- 2.2 Results for P and L^p convergences
- 2.3 Results for almost sure convergence
- 2.4 Cases of inverse relations for modes of convergence
- 2.5 Inverse method for simulation
- 2.6 Results for convergence in distribution

Introduction

- 1.1 Basic probability structures
- 1.2 Buffon's needle
- 1.3 Convergence of functions

2 Modes of convergence

- 2.1 Reviewing the modes of convergence
- 2.2 Results for P and L^p convergences
- 2.3 Results for almost sure convergence
- 2.4 Cases of inverse relations for modes of convergence
- 2.5 Inverse method for simulation
- 2.6 Results for convergence in distribution

3/118

Introduction

- 1.1 Basic probability structures
- 1.2 Buffon's needle
- 1.3 Convergence of functions

2 Modes of convergence

- 2.1 Reviewing the modes of convergence
- 2.2 Results for P and L^p convergences
- 2.3 Results for almost sure convergence
- 2.4 Cases of inverse relations for modes of convergence
- 2.5 Inverse method for simulation
- 2.6 Results for convergence in distribution

4/118

Introduction

1.1 Basic probability structures

- 1.2 Buffon's needle
- 1.3 Convergence of functions

2 Modes of convergence

- 2.1 Reviewing the modes of convergence
- 2.2 Results for P and L^p convergences
- 2.3 Results for almost sure convergence
- 2.4 Cases of inverse relations for modes of convergence
- 2.5 Inverse method for simulation
- 2.6 Results for convergence in distribution

5/118

< □ > < □ > < □ > < □ > < □ > < □ >

Probability space

Probability space: $(\Omega, \mathcal{F}, \mathbf{P})$ with

- Ω set
- \mathcal{F} a σ -algebra
- P probability measure

3

イロト イポト イヨト イヨト

Complete probability space

Hypothesis: We assume that **P** is complete, i.e.

$$A \in \mathcal{F}$$
 such that $\mathbf{P}(A) = 0$, and $B \subset A$
 \Longrightarrow
 $B \in \mathcal{F}$ and $\mathbf{P}(B) = 0$.

Remark: A probability can always be completed

Image: A matrix

э

7/118

Simple examples (1)

Tossing 2 dice:

Ω = {1, 2, 3, 4, 5, 6}²
F = P(Ω)
P(A) = |A|/36

Uniform distribution on [0, 1]:

- $\Omega = [0, 1]$
- $\mathcal{F} = \mathcal{B}([0,1])$
- $\mathbf{P} = \lambda$, Lebesgue measure

э

Simple examples (2)

Gaussian law on \mathbb{R} :

- $\Omega = \mathbb{R}$
- $\mathcal{F} = \mathcal{B}(\mathbb{R})$
- $\mathbf{P}(A) = rac{1}{(2\pi)^{1/2}} \int_A e^{-rac{(x-\mu)^2}{2\sigma^2}} dx$, for $A \in \mathcal{F}$

3

< □ > < □ > < □ > < □ > < □ > < □ >

Typical example for this course

Let $\Omega = \ell^p$ with $p \in (1, \infty)$. We set:

$$d(u,v) = \left(\sum_{n\geq 1} |u_n - v_n|^p\right)^{1/p}$$

Then Ω is a complete metric separable space.

Random variables

Definition 2.

Let

- $(\Omega, \mathcal{F}, \mathbf{P})$ complete probability space
- A function $X : \Omega \to \mathbb{R}$

Then

X is said to be a random variable if X is measurable

Independence (1)

Independence of r.v: Let $(X_j)_{j \in J}$ r.v in \mathbb{R}^n . Those r.v are said to be independent if for all $m \geq 2$:

• For every
$$j_1,\ldots,j_m\in J$$
, the r.v (X_{j_1},\ldots,X_{j_m}) are ${\perp\!\!\!\perp}$

• Otherwise stated: for all $A_1, \ldots, A_m \in \mathcal{B}(\mathbb{R}^n)$ we have

$$\mathbf{P}\left(X_{j_1} \in A_1, \ldots, X_{j_m} \in A_m\right) = \prod_{k=1}^m \mathbf{P}\left(X_{j_k} \in A_k\right)$$

Independence (2)

Independence of σ -algebras: Let $(\mathcal{F}_j)_{j \in J} \sigma$ -algebras, $\mathcal{F}_j \subset \mathcal{F}$. Those σ -algebras are said to be independent if for all $m \geq 2$:

• For all $j_1, \ldots, j_m \in J$, the σ -algebras $(\mathcal{F}_{j_1}, \ldots, \mathcal{F}_{j_m})$ are $\bot\!\!\!\bot$

 \bullet Otherwise stated: for all $B_1 \in \mathcal{F}_{j_1}, \ldots, B_m \in \mathcal{F}_{j_m}$ we have

$$\mathbf{P}\left(\bigcap_{k=1}^{m}B_{k}\right)=\prod_{k=1}^{m}\mathbf{P}\left(B_{k}\right)$$

13/118

π -systems and λ -systems

 π -system: Let \mathcal{P} family of subsets of Ω . \mathcal{P} is a π -system if:

 $A, B \in \mathcal{P} \implies A \cap B \in \mathcal{P}$

 λ -system: Let \mathcal{L} family of subsets of Ω . \mathcal{L} is a λ -system if:

- $\ \, \Omega \in \mathcal{L}$
- **2** If $A \in \mathcal{L}$, then $A^c \in \mathcal{L}$
- 3 If for $j \ge 1$ we have:

• $A_j \in \mathcal{L}$ • $A_j \cap A_i = \emptyset$ if $j \neq i$

Then $\cup_{j\geq 1}A_j \in \mathcal{L}$

3

Dynkin's π - λ lemma

Proposition 3.

Let \mathcal{P} et \mathcal{L} such that:

- \mathcal{P} is a π -system
- ${\mathcal L}$ is a $\lambda\text{-system}$
- $\mathcal{P} \subset \mathcal{L}$

Then $\sigma(\mathcal{P}) \subset \mathcal{L}$

э

A B A A B A

< 47 ▶

Application of Dynkin's π - λ lemma

Proposition 4. Let: • X_1, \ldots, X_n r.v with values in \mathbb{R}^m . • $X \equiv (X_1, \ldots, X_n) \in \mathbb{R}^{m \times n}$. • $\mu_{X_i} = \mathcal{L}(X_i)$ and $\mu_X = \mathcal{L}(X)$. Then the two following assertions are equivalent: • X_1, \ldots, X_n are independent 2 $\mu_X = \mu_{X_1} \otimes \cdots \otimes \mu_{X_n}$ on $\mathcal{B}(\mathbb{R}^{m \times n})$

16/118

Definition of two systems: We set

$$\mu_1=\mu_X, \quad \text{and} \quad \mu_2=\mu_{X_1}\otimes \cdots \otimes \mu_{X_n},$$
 and

$$\mathcal{P} \equiv \left\{ A \in \mathcal{B}(\mathbb{R}^{m \times n}); \ A = A_1 \times \cdots \times A_n, \text{ where } A_j \in \mathcal{B}(\mathbb{R}^m) \right\}$$
$$\mathcal{L} \equiv \left\{ B \in \mathcal{B}(\mathbb{R}^{m \times n}); \ \mu_1(B) = \mu_2(B) \right\}.$$

・ロト ・四ト ・ヨト ・ヨト

3

Proof (2)

Application of Dynkin's lemma: We have

- \mathcal{P} is a π -system
- \mathcal{L} is a λ -system

•
$$\mu_1(\mathcal{C}) = \mu_2(\mathcal{C})$$
 for all $\mathcal{C} \in \mathcal{P}$

Thus
$$\sigma(\mathcal{P}) \subset \mathcal{L}$$
, and $\sigma(\mathcal{P}) = \mathcal{B}(\mathbb{R}^{m \times n})$

Conclusion:

$$\mu_1(A) = \mu_2(A)$$
 for all $A \in \mathcal{B}(\mathbb{R}^{m imes n})$

э

1 Introduction

1.1 Basic probability structures

1.2 Buffon's needle

1.3 Convergence of functions

2 Modes of convergence

- 2.1 Reviewing the modes of convergence
- 2.2 Results for P and L^p convergences
- 2.3 Results for almost sure convergence
- 2.4 Cases of inverse relations for modes of convergence
- 2.5 Inverse method for simulation
- 2.6 Results for convergence in distribution

< □ > < □ > < □ > < □ > < □ > < □ >

Experiment

Procedure:

- Consider a plane ruled by lines y = k, with $k \in \mathbb{Z}$
- Take a needle with length 1
- Fling the needle *n* times on the plane

Outcome: We record, for $i = 1, \ldots, n$,

- $X_i \equiv \mathbf{1}_{A_i}$, where $A_i = (i$ -th needle intersect a line)
- $S_n \equiv \#$ times the needle intersects the line

Simulation:

This website from UIUC

3

Proposition 5.

Samy T

Under the above conditions we have

$$\mathbf{P}(A_i) = \frac{2}{\pi}$$
$$\frac{S_n}{n} \longrightarrow \frac{2}{\pi}$$

э

★ ∃ ► < ∃ ►</p>

< □ > < 同 >

Bernoulli random variable (1)

Notation:

$$X \sim \mathcal{B}(p)$$
 with $p \in (0, 1)$

State space:

 $\{0,1\}$

Pmf:

$$P(X = 0) = 1 - p, P(X = 1) = p$$

Expected value, variance, generating function:

$$\mathbf{E}[X] = p,$$
 $\mathbf{Var}(X) = p(1-p),$ $G_X(s) = (1-p) + ps$

< A

э

Bernoulli random variable (2)

Use 1, success in a binary game:

- Example 1: coin tossing
 - ► X = 1 if H, X = 0 if T
 - We get $X \sim \mathcal{B}(1/2)$
- Example 2: dice rolling
 - X = 1 if outcome = 3, X = 0 otherwise
 - We get $X \sim \mathcal{B}(1/6)$

Use 2, answer yes/no in a poll

- X = 1 if a person feels optimistic about the future
- X = 0 otherwise
- We get $X \sim \mathcal{B}(p)$, with unknown p

э.

A B < A B </p>

Jacob Bernoulli

Some facts about Bernoulli:

- Lifespan: 1654-1705, in Switzerland
- Discovers constant e
- Establishes divergence of $\sum \frac{1}{n}$
- Contributions in diff. eq
- First law of large numbers
- Bernoulli: family of 8 prominent mathematicians
- Fierce math fights between brothers

Binomial random variable (1)

Notation:

$$X \sim \mathsf{Bin}(n, p)$$
, for $n \geq 1$, $p \in (0, 1)$

State space:

$$\{0, 1, \ldots, n\}$$

Pmf:

$$\mathbf{P}(X=k) = \binom{n}{k} p^k (1-p)^{n-k}, \quad 0 \le k \le n$$

Expected value, variance and generating function:

$$\mathbf{E}[X] = np,$$
 $\mathbf{Var}(X) = np(1-p),$ $G_X(s) = [(1-p) + ps]^n$

Image: Image:

э

Binomial random variable (2)

Use 1, Number of successes in a Bernoulli trial:

- Example: Roll a dice 9 times.
- X = # of 3 obtained
- We get $X \sim Bin(9, 1/6)$
- P(X = 2) = 0.28

Use 2: Counting a feature in a repeated trial:

- Example: stock of 1000 pants with 10% defects
- Draw 15 times a pant at random
- X = # of pants with a defect
- We get $X \sim Bin(15, 1/10)$

э

26 / 118

Binomial random variable (3)

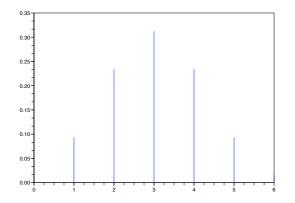


Figure: Pmf for Bin(6; 0.5). x-axis: k. y-axis: P(X = k)

< ∃⇒

Binomial random variable (4)

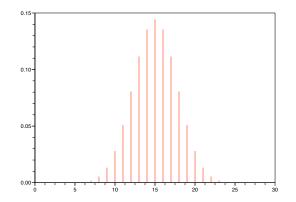


Figure: Pmf for Bin(30; 0.5). x-axis: k. y-axis: P(X = k)

H 5

Uniform random variable (1)

Notation:

$$X \sim \mathcal{U}([\alpha, \beta])$$
, with $\alpha < \beta$

State space:

 $[\alpha, \beta]$

Density:

$$f(x) = \frac{1}{\beta - \alpha} \mathbf{1}_{[\alpha,\beta]}(x)$$

Expected value and variance:

$$\mathbf{E}[X] = rac{lpha + eta}{2}, \qquad \mathbf{Var}(X) = rac{(eta - lpha)^2}{12}$$

э

29/118

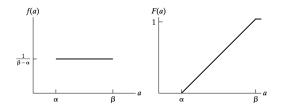
Uniform random variable (2)

Use:

• $\mathcal{U}([0,1])$ only r.v directly accessible on a computer \hookrightarrow rand function

Example of computation: if $X \sim \mathcal{U}([8, 10])$, then

$$\mathbf{P}(7.5 < X < 9.5) = \frac{1}{2} \int_{8}^{9.5} dx = \frac{9.5 - 8}{2} = \frac{3}{4}$$



Experiment (repeated)

Procedure:

- Consider a plane ruled by lines y = k, with $k \in \mathbb{Z}$
- Take a needle with length 1
- Fling the needle *n* times on the plane

Outcome: We record, for $i = 1, \ldots, n$,

- $X_i \equiv \mathbf{1}_{A_i}$, where $A_i = (i$ -th needle intersects a line)
- $S_n \equiv \#$ times the needle intersects the line

Proof of Proposition 5 (1)

Notation: We define

- $(X_i, Y_i) \equiv$ Coordinates of the center of the *i*-th needle
- $\Theta_i \equiv \text{angle } (i\text{-th needle}, x\text{-axis})$
- $Z_i = d((X_i, Y_i))$, nearest line underneath) = $Y_i \lfloor Y_i \rfloor$

Model: We assume

- **1** $Z_i \sim U([0,1])$
- $\Theta_i \sim \mathcal{U}([0,\pi])$
- 3 Z_i ⊥⊥ Θ_i
- $\{Z_i; i \ge 1\}$ i.i.d sequence
- $\{\Theta_i; i \ge 1\}$ i.i.d sequence

3

A B < A B </p>

Proof of Proposition 5 (2)

Expression for A_i : We have

$$A_i = A_i^- \cup A_i^+$$

with

$$\begin{array}{lll} \mathcal{A}_i^- &=& \left\{ Z_i \leq \frac{1}{2}, \ \text{and} \ \ Z_i < \frac{1}{2} \sin\left(\Theta_i\right) \right\} \\ \mathcal{A}_i^+ &=& \left\{ Z_i > \frac{1}{2}, \ \text{and} \ \ 1 - Z_i < \frac{1}{2} \sin\left(\Theta_i\right) \right\} \end{array}$$

э

33 / 118

イロト イポト イヨト イヨト

Proof of Proposition 5 (3)

Computing $\mathbf{P}(A_i)$: We write

$$\mathbf{P}(A_i) = \mathbf{P}(A_i^-) + \mathbf{P}(A_i^+)$$
$$= 2\mathbf{P}(A_i^-)$$
$$= \frac{2}{\pi} \int_0^{\pi} d\theta \int_0^{\frac{1}{2}\sin(\theta)} dz$$
$$\mathbf{P}(A_i) = \frac{2}{\pi}$$

 π

Thus

イロト イヨト イヨト

3

Proof of Proposition 5 (4)

Some laws: We have

$$X_i \sim \mathcal{B}\left(\frac{2}{\pi}\right)$$

 $S_n \sim \operatorname{Bin}\left(n,\frac{2}{\pi}\right)$

Limit: By De Moivre,

$$\frac{S_n}{n} \longrightarrow \frac{2}{\pi}$$

Samv	

イロト イボト イヨト イヨト

3

Introduction

- 1.1 Basic probability structures
- 1.2 Buffon's needle
- 1.3 Convergence of functions

2 Modes of convergence

- 2.1 Reviewing the modes of convergence
- 2.2 Results for P and L^p convergences
- 2.3 Results for almost sure convergence
- 2.4 Cases of inverse relations for modes of convergence
- 2.5 Inverse method for simulation
- 2.6 Results for convergence in distribution

< □ > < □ > < □ > < □ > < □ > < □ >

Aim of this chapter

Problem with limit statement:

- For every $n \geq 1$, we have $S_n : \Omega \to \mathbb{R}$
- S_n is thus a function
- We don't know exactly what $\frac{S_n}{n} \longrightarrow \frac{2}{\pi}$ means!

Aim of this chapter:

• Explore different modes of convergence for random variables

Preliminary step:

• Explore different modes of convergence for functions

Setting for convergence of functions

Sequence of functions: We consider

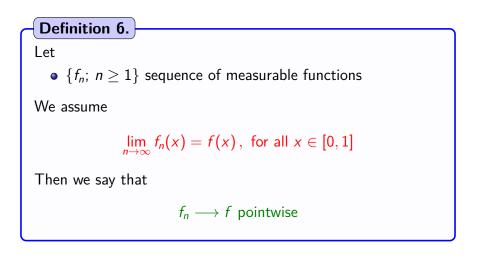
• A sequence $\{f_n; n \ge 1\}$ with

 $f_n:[0,1]\longrightarrow\mathbb{R}$

Aim of subsection: Review modes for

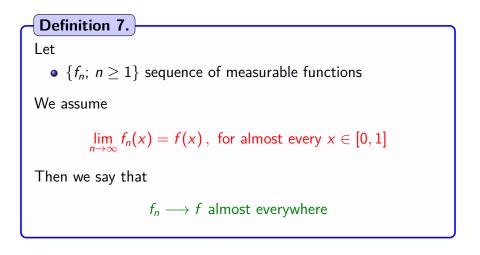
 $\lim_{n\to\infty}f_n$

Pointwise convergence



→ ∃ →

Almost everywhere convergence



Samy	

L^p convergence

Definition 8.

Let

•
$$\{f_n; n \ge 1\}$$
 sequence of measurable functions

We assume

$$\lim_{n\to\infty} \|f_n - f\|_{L^p([0,1])} = 0$$

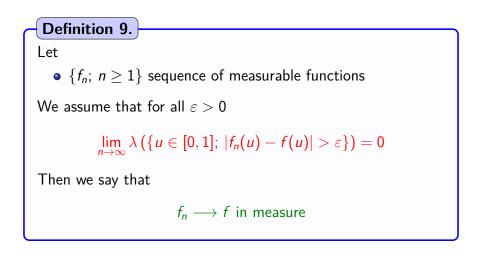
Then we say that

 $f_n \longrightarrow f$ in $L^p([0,1])$

æ

イロト イポト イヨト イヨト

Convergence in measure



Samy	

Relations between convergences (1)

Examples of relations for functions on [0, 1]:

•
$$f_n(x) = x^n$$

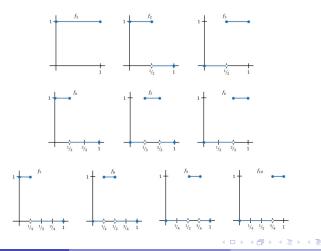
 \hookrightarrow converges almost everywhere, not pointwise

•
$$g_n(x) = n \mathbf{1}_{[0,1/n]}(x)$$

 \hookrightarrow converges almost everywhere, not in L^1

Relations between convergences (2)Another example of relation for functions on [0, 1]:

• $h_n = \mathbf{1}_{[0,1]}, \mathbf{1}_{[0,1/2]}, \mathbf{1}_{[1/2,1]}, \mathbf{1}_{[0,1/3]}, \mathbf{1}_{[1/3,2/3]}, \dots$ \hookrightarrow converges in measure, not almost everywhere



Outline

1 Introduction

- 1.1 Basic probability structures
- 1.2 Buffon's needle
- 1.3 Convergence of functions

2 Modes of convergence

- 2.1 Reviewing the modes of convergence
- 2.2 Results for P and L^p convergences
- 2.3 Results for almost sure convergence
- 2.4 Cases of inverse relations for modes of convergence
- 2.5 Inverse method for simulation
- 2.6 Results for convergence in distribution

45 / 118

Outline

Introduction

- 1.1 Basic probability structures
- 1.2 Buffon's needle
- 1.3 Convergence of functions

2 Modes of convergence

2.1 Reviewing the modes of convergence

- 2.2 Results for P and L^p convergences
- 2.3 Results for almost sure convergence
- 2.4 Cases of inverse relations for modes of convergence
- 2.5 Inverse method for simulation
- 2.6 Results for convergence in distribution

46 / 118

Almost sure convergence

Definition 10.

Let

- { X_n ; $n \ge 1$ } sequence of random variables on $(\Omega, \mathcal{F}, \mathbf{P})$
- Another random variable X defined on $(\Omega, \mathcal{F}, \mathbf{P})$

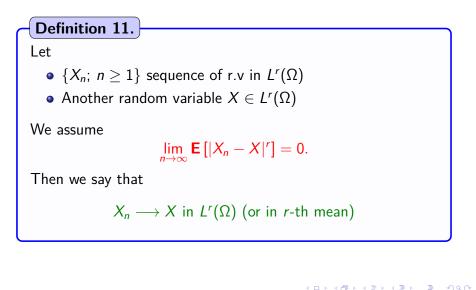
We assume

$$\mathbf{P}\left(\left\{\omega\in\Omega;\ \lim_{n\to\infty}X_n(\omega)=X(\omega)\right\}\right)=1.$$

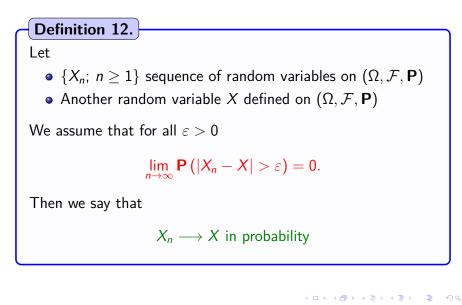
Then we say that

 $X_n \longrightarrow X$ almost surely

Convergence in L^p



Convergence in probability



Convergence in distribution

Definition 13.

Let

- $\{X_n; n \ge 1\}$ sequence of random variables on $(\Omega, \mathcal{F}, \mathbf{P})$
- Another random variable X defined on $(\Omega, \mathcal{F}, \mathbf{P})$

We assume that for all points $x \in \mathbb{R}$ such that F_X is continuous,

 $\lim_{n\to\infty}F_{X_n}(x)=F_X(x).$

Then we say that

 $X_n \longrightarrow X$ in distribution

Remarks about convergence in distribution

- The central limit theorem
 - \hookrightarrow is a convergence in distribution
- Segodic theorems for Markov chains → are convergences in distributions
- Solution \hookrightarrow does not refer to a specific $(\Omega, \mathcal{F}, \mathbf{P})$

A Bernoulli example

A Bernoulli sequence: We consider

Convergences:

We have

$$X_n \xrightarrow{(d)} X$$

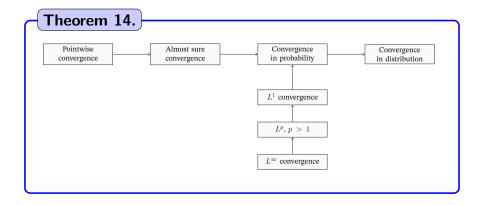
2 X_n does not converge to X in any other mode

→ ∃ →

э

Relations between modes of convergence

Sam



ιу Т.	Convergence of r.v	Probability Theory	53 / 118

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Outline

Introduction

- 1.1 Basic probability structures
- 1.2 Buffon's needle
- 1.3 Convergence of functions

2 Modes of convergence

2.1 Reviewing the modes of convergence

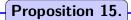
2.2 Results for P and L^p convergences

- 2.3 Results for almost sure convergence
- 2.4 Cases of inverse relations for modes of convergence
- 2.5 Inverse method for simulation
- 2.6 Results for convergence in distribution

54 / 118

< □ > < □ > < □ > < □ > < □ > < □ >

Convergence in probability and in distribution



Let

• X_n sequence of random variables

• Assume
$$X_n \xrightarrow{\mathsf{P}} X$$

Then

 $X_n \xrightarrow{(d)} X$

	m		

Proof of Proposition 15 (1)

Notation: Set

$$F_n(x) = \mathbf{P}(X_n \le x), \qquad F(x) = \mathbf{P}(X \le x)$$

Aim: Prove that

 $\lim_{n\to\infty} F_n(x) = F(x)$ if F is continuous at x

э

イロト イポト イヨト イヨト

Proof of Proposition 15 (2)

1st decomposition: We have

$$F_n(x) = \mathbf{P}(X_n \le x, X \le x + \varepsilon) + \mathbf{P}(X_n \le x, X > x + \varepsilon)$$

$$\le F(x + \varepsilon) + \mathbf{P}(|X_n - X| > \varepsilon)$$

2nd decomposition: We have

$$\begin{array}{rcl} F(x-\varepsilon) &=& \mathbf{P}\left(X \leq x-\varepsilon, \, X_n \leq x\right) + \mathbf{P}\left(X \leq x-\varepsilon, \, X_n > x\right) \\ &\leq& F_n(x) + \mathbf{P}\left(|X_n - X| > \varepsilon\right) \end{array}$$

Summary:

 $F(x-\varepsilon) - \mathbf{P}(|X_n - X| > \varepsilon) \le F_n(x) \le F(x+\varepsilon) + \mathbf{P}(|X_n - X| > \varepsilon)$

= nar

Proof of Proposition 15 (3)

Limits as $n \to \infty$: Since $X_n \xrightarrow{(P)} X$, we have

$$F(x-\varepsilon) \leq \liminf_{n\to\infty} F_n(x) \leq \limsup_{n\to\infty} F_n(x) \leq F(x+\varepsilon)$$

Limits as $\varepsilon \to 0$: If F is continuous at x, we get

$$F(x) = \liminf_{n \to \infty} F_n(x) = \limsup_{n \to \infty} F_n(x) = F(x)$$

Image: A matrix

э

Convergence in $L^{p}(\Omega)$

Proposition 16.

Let

• X_n sequence of random variables

• Assume
$$X_n \xrightarrow{L^s} X$$
 for $s > r$

Then

$$X_n \xrightarrow{L^r} X$$

Samy	

< 47 ▶

э

Proof of Proposition 16

Inequality on norms: We have

 $||X_n - X||_r \le ||X_n - X||_s$

am	

3

イロト イボト イヨト イヨト

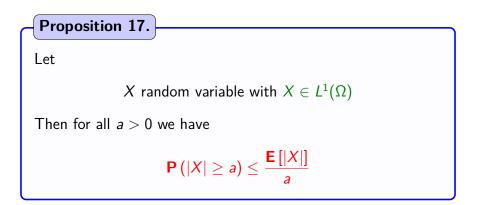
Definition of a sequence: We consider independent r.v with

$$\mathbf{P}(X_n = n) = \frac{1}{n^{\frac{1}{2}(r+s)}}, \qquad \mathbf{P}(X_n = 0) = 1 - \frac{1}{n^{\frac{1}{2}(r+s)}}$$

Convergence: If r < s we have

- $X_n \xrightarrow{L^r} 0$
- 2 X_n does not converge in L^s

Markov's inequality



Samy	

62 / 118

Andrey Markov

Andrey Markov's life:

- Lifespan: 1856-1922, \simeq St Petersburg
- Not a very good student
 → except in math
- Contributions in analysis and probability
- Used chains for
 - \hookrightarrow appearance of vowels
- Professor in St Petersburg
 - Suspended after 1908 students riots
 - Resumed teaching in 1917

Fact: More than 50 mathematical objects named after Markov!!

Proof of Proposition 17

Deterministic inequality: Set

$$A = \{|X| \ge a\}$$

Then we have

 $|X| > a \mathbf{1}_A$, almost surely

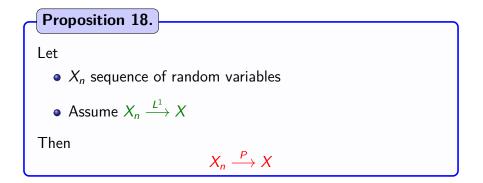
Expectations: Taking expectations above, we get

 $\mathbf{E}[|X|] > a \mathbf{P}(A)$

Image: Image:

э

Convergence in $L^{p}(\Omega)$ and in probablity



э

< □ > < □ > < □ > < □ > < □ > < □ >

Proof of Proposition 18

Applying Markov's inequality: For $\varepsilon > 0$, we have

$$\mathsf{P}(|X_n - X| > \varepsilon) \le \frac{\mathsf{E}[|X_n - X|]}{\varepsilon}$$

Then take $n \to \infty$

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Definition of a sequence: We consider independent r.v with

$$\mathbf{P}(X_n = n^3) = \frac{1}{n^2}, \qquad \mathbf{P}(X_n = 0) = 1 - \frac{1}{n^2}$$

Convergence: We have

- $X_n \xrightarrow{P} 0$
- 2 X_n does not converge in L^1

Proof of counter-example for X_n (1)

Some notation: For $\varepsilon > 0$ and X = 0 set:

$$A_k(\varepsilon) = \{|X_k - X| > \varepsilon\}$$

Convergence in probability: We have

$$\lim_{n \to \infty} \mathbf{P} (A_n(\varepsilon)) = \lim_{n \to \infty} \mathbf{P} (X_n = n^3)$$
$$= \lim_{n \to \infty} \frac{1}{n^2}$$
$$= 0$$

Thus

Samy	

 $X_n \xrightarrow{\mathsf{P}} 0$

Image: A matrix

э

Proof of counter-example for X_n (2)

Non convergence in L^1 : We have

$$\mathsf{E}[|X_n|] = \mathsf{E}[X_n] = n$$

Thus

 $X_n \not\rightarrow^{L^1} 0$

Samv	

Outline

Introduction

- 1.1 Basic probability structures
- 1.2 Buffon's needle
- 1.3 Convergence of functions

2 Modes of convergence

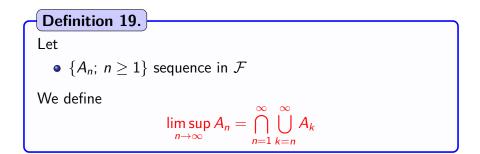
- 2.1 Reviewing the modes of convergence
- 2.2 Results for P and L^p convergences

2.3 Results for almost sure convergence

- 2.4 Cases of inverse relations for modes of convergence
- 2.5 Inverse method for simulation
- 2.6 Results for convergence in distribution

< □ > < □ > < □ > < □ > < □ > < □ >

Limsup of sets



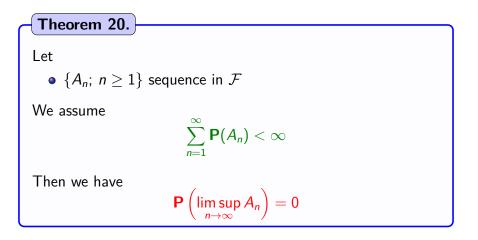
Interpretation: We also have

 $\limsup_{n\to\infty} A_n = \{\omega \in \Omega; \ \omega \text{ belongs to an infinity of } A_n\text{'s}\}$

Samv	

イロト イポト イヨト イヨト

Borel-Cantelli lemma



Samy	

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

э

Emile Borel

Emile Borel's life:

- Lifespan: 1872-1956, \simeq Paris
- # 1 student in France
 → for his academic year
- Contributions in analysis and probability
- Active in politics
- Minister of Navy in 1924-25
- Resistance against nazi occupation
- $\bullet\,$ Introduced the ∞ monkey theorem

Fact: "Only" 14 mathematical objects named after Borel

Proof of Theorem 20 (1)

A non-increasing sequence: For $N \ge 1$ define

$$B_N = \bigcup_{k=N}^{\infty} A_k$$

Then

- **1** $N \mapsto B_N$ is non-increasing
- $Iim \sup_{n \to \infty} A_n = \bigcap_{N=1}^{\infty} B_N$

э

A B M A B M

Image: A matrix

Proof of Theorem 20 (2)

Computing the probability: We have

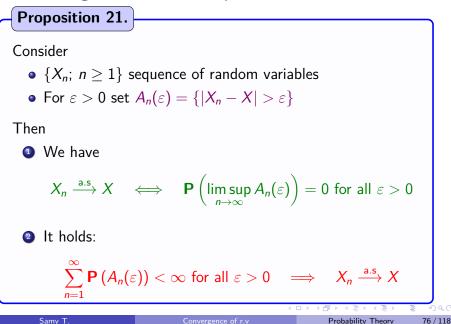
$$\mathbf{P}\left(\limsup_{n\to\infty}A_n\right) = \mathbf{P}\left(\bigcap_{N=1}^{\infty}B_N\right) \\
= \lim_{N\to\infty}\mathbf{P}\left(B_N\right) \\
= \lim_{N\to\infty}\mathbf{P}\left(\bigcup_{k=N}^{\infty}A_k\right) \\
\leq \lim_{N\to\infty}\sum_{k=N}^{\infty}\mathbf{P}\left(A_k\right) \\
= 0$$

∃ ⇒

э

< □ > < 同 >

A.s convergence and limsup



Proof of Proposition 21 (1)

Claim: Let

$$C = \left\{ \omega \in \Omega; \lim_{n \to \infty} X_n(\omega) = X(\omega) \right\}$$
$$A(\varepsilon) = \limsup_{n \to \infty} A_n(\varepsilon)$$

Then we have

$$C = \bigcap_{\varepsilon > 0} \left(A(\varepsilon) \right)^{c} = \bigcap_{m \ge 1} \left(A\left(\frac{1}{m}\right) \right)^{c}$$

э

77 / 118

・ロト ・四ト ・ヨト ・ヨト

Proof of Proposition 21 (2)

Application for almost sure convergence: We have

$$\mathbf{P}(C^{c}) = 0 \iff \mathbf{P}\left(\bigcup_{m \ge 1} A\left(\frac{1}{m}\right)\right) = 0$$
$$\iff \lim_{n \to \infty} \mathbf{P}\left(A\left(\frac{1}{m}\right)\right) = 0$$
$$\iff \mathbf{P}\left(A\left(\frac{1}{m}\right)\right) = 0, \text{ for all } m \ge 1$$

This proves item 1

< □ > < 同 >

э

Proof of Proposition 21 (3)

Proof of item 2: We write

$$\sum_{n=1}^{\infty} \mathbf{P}(A_n(\varepsilon)) < \infty \text{ for all } \varepsilon > 0$$
$$\implies \mathbf{P}\left(\limsup_{n \to \infty} A_n(\varepsilon)\right) = 0 \text{ for all } \varepsilon > 0$$
$$\implies \mathbf{P}\left(\lim_{n \to \infty} X_n = X\right) = 1$$

3

・ロト ・四ト ・ヨト ・ヨト

A.s convergence and convergence in probability

Proposition 22.

 Consider

 •
$$\{X_n; n \ge 1\}$$
 sequence of random variables

 Then we have:

 $X_n \xrightarrow{a.s} X \implies X_n \xrightarrow{P} X$

→ ∃ →

э

Proof of Proposition 22

Defining some sets: For $\varepsilon > 0$ set:

$$\begin{array}{lll} A_k(\varepsilon) &=& \{|X_k - X| > \varepsilon\} \\ B_n(\varepsilon) &=& \bigcup_{k \ge n} A_k(\varepsilon) \end{array}$$

Evaluating some probabilities: We have seen

$$X_n \xrightarrow{a.s} X \implies \lim_{n \to \infty} \mathbf{P}(B_n(\varepsilon)) = 0$$

Thus

$$\lim_{n\to\infty} \mathbf{P}\left(A_n(\varepsilon)\right) = 0, \text{ for all } \varepsilon > 0$$

Image: Image:

э

Definition of a sequence: We consider independent r.v with

$$X_n \sim \mathcal{B}\left(\frac{1}{n}\right)$$

Convergence: We have

$$X_n \xrightarrow{\mathsf{P}} 0$$

2 X_n does not converge almost surely

Proof of counter-example

Recalling notation: For $\varepsilon > 0$ set:

$$\begin{array}{lll} A_k(\varepsilon) &=& \{|X_k - X| > \varepsilon\} \\ B_n(\varepsilon) &=& \bigcup_{k \ge n} A_k(\varepsilon) \end{array}$$

Convergence in probability: We have

$$\lim_{n \to \infty} \mathbf{P} (A_n(\varepsilon)) = \lim_{n \to \infty} \mathbf{P} (X_n = 1)$$
$$= \lim_{n \to \infty} \frac{1}{n}$$
$$= 0$$

Thus

э

Proof of counter-example

Almost sure convergence: We have

$$\mathbf{P}(B_n(\varepsilon)) = 1 - \mathbf{P}((B_n(\varepsilon))^c)$$

= $1 - \mathbf{P}\left(\bigcap_{k \ge n} (A_k(\varepsilon))^c\right)$
= $1 - \mathbf{P}\left(\bigcap_{k \ge n} (X_k = 0)\right)$
= $1 - \prod_{k=n}^{\infty} \left(1 - \frac{1}{k}\right)$
= 1

Thus

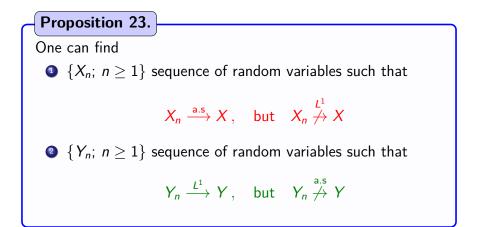
 $X_n \stackrel{\mathrm{a.s}}{\not\rightarrow} 0$

amv	

< ∃⇒

э

Non comparison between a.s and L^1 -convergence



Proof of counter-example for X_n (1)

Definition of a sequence (repeated): We consider independent r.v with

$$\mathbf{P}(X_n = n^3) = \frac{1}{n^2}, \qquad \mathbf{P}(X_n = 0) = 1 - \frac{1}{n^2}$$

Convergence: We have

$$X_n \stackrel{\text{a.s}}{\longrightarrow} 0$$

2 X_n does not converge in L^1

Proof of counter-example for X_n (2)

Some notation: For $\varepsilon > 0$ set:

$$A_k(\varepsilon) = \{|X_k - X| > \varepsilon\}$$

Almost sure convergence: We have

$$\sum_{n=1}^{\infty} \mathbf{P} (A_n(\varepsilon)) = \sum_{n=1}^{\infty} \mathbf{P} (X_n = n^3)$$
$$= \sum_{n=1}^{\infty} \frac{1}{n^2}$$
$$< \infty$$

Thus

Samv	

Image: A matrix

э

87 / 118

Proof of counter-example for X_n (3)

Non convergence in $L^1(\Omega)$: We have already seen that

$$\mathsf{E}[|X_n|] = \mathsf{E}[X_n] = n$$

Thus

 $X_n \not\rightarrow^{L^1} 0$

Samy	

Outline

Introduction

- 1.1 Basic probability structures
- 1.2 Buffon's needle
- 1.3 Convergence of functions

2 Modes of convergence

- 2.1 Reviewing the modes of convergence
- 2.2 Results for P and L^p convergences
- 2.3 Results for almost sure convergence

2.4 Cases of inverse relations for modes of convergence

- 2.5 Inverse method for simulation
- 2.6 Results for convergence in distribution

89/118

Case for which
$$\stackrel{(d)}{\longrightarrow}$$
 yields $\stackrel{\mathsf{P}}{\longrightarrow}$

Proposition 24.

 Consider

 • {
$$X_n$$
; $n \ge 1$ } sequence of random variables

 Assume

 $X_n \xrightarrow{(d)} c$, where c is a constant

 Then we have:

 $X_n \xrightarrow{P} c$

4	ロンスロンスロンスロン	≣
Convergence of r.v	Probability Theory	90 / 118

Proof of Proposition 24

Expression in terms of cdf: We have

$$\mathbf{P}(|X_n - c| > \varepsilon) = \mathbf{P}(X_n < c - \varepsilon) + \mathbf{P}(X_n > c + \varepsilon)$$

=
$$\mathbf{P}(X_n < c - \varepsilon) + 1 - \mathbf{P}(X_n \le c + \varepsilon)$$

Convergence: Since $X_n \xrightarrow{(d)} X$, we get

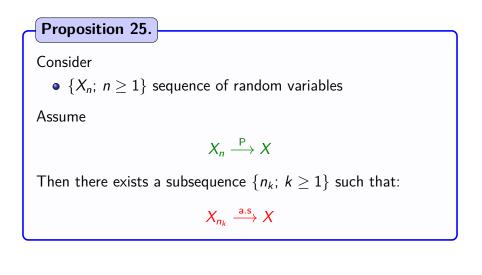
 $\lim_{n\to\infty}\mathbf{P}\left(|X_n-c|>\varepsilon\right)=0$

э

A B M A B M

Image: A matrix

Case for which \xrightarrow{P} yields $\xrightarrow{a.s}$



92 / 118

Proof of Proposition 25 (1)

Definition of n_k : Recursively we set

$$n_k = \inf\left\{n > n_{k-1}; \ \mathbf{P}\left(|X_n - X| > \frac{1}{k}
ight) \le \frac{1}{k^2}
ight\}$$

Some notation: For $\varepsilon > 0$ define:

$$\begin{array}{rcl} Y_k &=& X_{n_k} \\ A_k(\varepsilon) &=& \{|Y_k - X| > \varepsilon\} \end{array}$$

э

< □ > < 同 >

Proof of Proposition 25 (2)

Almost sure convergence: We have

$$\sum_{k=\varepsilon^{-1}}^{\infty} \mathbf{P} \left(A_k(\varepsilon) \right) = \sum_{k=\varepsilon^{-1}}^{\infty} \mathbf{P} \left(|X_{n_k} - X| > \frac{1}{k} \right)$$
$$\leq \sum_{k=1}^{\infty} \frac{1}{k^2}$$
$$< \infty$$

Thus

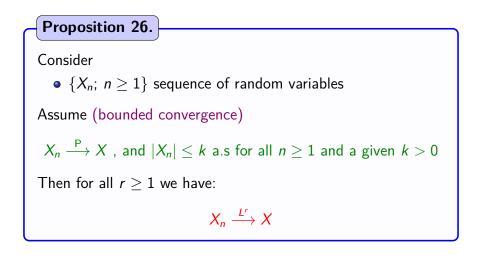
 $Y_k \xrightarrow{a.s} X$

Samy	

э

< □ > < 同 >

Case for which
$$\xrightarrow{\mathsf{P}}$$
 yields $\xrightarrow{L^r}$



Proof of Proposition 26 (1)

Boundedness of X: For $\delta > 0$, set

 $B_{\delta} = (|X| \le k + \delta)$

Then for all $n \ge 1$ we have

$$\begin{array}{rcl} \mathbf{P}\left(B_{\delta}\right) & \geq & \mathbf{P}\left(|X-X_{n}| \leq \delta, \ |X_{n}| \leq k\right) \\ & \geq & \mathbf{P}\left(|X_{n}| \leq k\right) - \mathbf{P}\left(|X-X_{n}| > \delta\right) \\ & = & 1 - \mathbf{P}\left(|X-X_{n}| > \delta\right) \end{array}$$

Taking limits in n, δ we get

 $\mathsf{P}(|X| \le k) = 1$

3

イロト 不得 トイヨト イヨト

Proof of Proposition 26 (2)

Decomposition of $X_n - X$: For $\varepsilon > 0$ and $n \ge 1$ set

$$A_{n,\varepsilon} = \{|X_n - X| > \varepsilon\}$$

Then

$$|X_n - X|^r \leq \varepsilon^r \, \mathbf{1}_{A_{n,\varepsilon}^c} + (2k)^r \, \mathbf{1}_{A_{n,\varepsilon}}$$

Taking expectations: We obtain

$$\mathsf{E}\left[|X_n - X|^r
ight] \leq arepsilon^r \, \mathbf{1}_{A_{n,arepsilon}^c} + (2k)^r \, \mathsf{P}\left(A_{n,arepsilon}
ight)$$

Taking limits: With $n \to \infty$ and $\varepsilon \to 0$ we end up with

$$\lim_{n\to\infty}\mathbf{E}\left[|X_n-X|^r\right]=0$$

Image: A matrix

Outline

Introduction

- 1.1 Basic probability structures
- 1.2 Buffon's needle
- 1.3 Convergence of functions

2 Modes of convergence

- 2.1 Reviewing the modes of convergence
- 2.2 Results for P and L^p convergences
- 2.3 Results for almost sure convergence
- 2.4 Cases of inverse relations for modes of convergence
- 2.5 Inverse method for simulation
- 2.6 Results for convergence in distribution

98 / 118

< □ > < □ > < □ > < □ > < □ > < □ >

Definition 27.

Let $F:\mathbb{R} \to [0,1]$ continuous cdf We define the right inverse F^{-1} as

$$\mathcal{F}^{-1}:(0,1) o\mathbb{R},\quad y\mapsto \inf\left\{a\in\mathbb{R};\ \mathcal{F}(a)\geq y
ight\}$$

A B A A B A

< 1 k

Right inverse (2)

Remarks on right inverse:

(i) If F is strictly increasing, F^{-1} is the inverse of F \hookrightarrow i.e. $F \circ F^{-1} = F^{-1} \circ F = Id$

(ii) Graphical method to construct F^{-1} :

- Symmetry wrt diagonal
- 2 Then erase vertical parts

Example:
$$F(x) = (x - 1)\mathbf{1}_{[1,2)}(x) + \mathbf{1}_{[2,\infty)}(x)$$

 $\hookrightarrow F^{-1}(y) = (1 + y)\mathbf{1}_{(0,1)}(y)$

э.

100 / 118

Right inverse (3)

More remarks:

(iii) Interpretation:

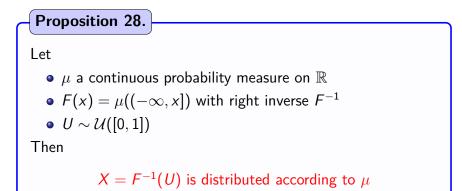
- In above example, $F \equiv \operatorname{cdf} \operatorname{of} \mathcal{U}([1,2])$
- Domain of interest: $x \in [1, 2]$
- In this domain, we do have $F^{-1}(F(x)) = x$

(iv) Generalization:

If $\mu(dx) = f(x) dx$ with $\operatorname{Supp}(f) = [a, b]$, then

- F is strictly increasing on [a, b]
- $F:(a,b) \rightarrow (0,1)$ is invertible
- One can ignore the set $(a, b)^c$ in order to compute F^{-1}

Inverse method for simulation



102 / 118

Proof of Proposition 28 (1)

Strategy: We will prove that

$$\begin{aligned} \mathbf{P}(X \leq x) &= \mathbf{P}(F^{-1}(U) \leq x) \\ &\stackrel{(*)}{=} \mathbf{P}(U \leq F(x)) = F(x) \end{aligned}$$

2

イロト イボト イヨト イヨト

Details for (*)

We wish to show that for $x \in \mathbb{R}$,

$$\left\{ u \in (0,1); \ F^{-1}(u) \le x \right\} = \left\{ u \in (0,1); \ u \le F(x) \right\}$$

Inclusion \subset :

$$F^{-1}(u) \le x \implies \inf \{a; F(a) \ge u\} \le x$$

$$\Rightarrow \text{ There exists } a_1 \le x \text{ such that } F(a_1) \ge u$$

$$\Rightarrow F(x) \ge F(a_1) \ge u$$

Inclusion \supset :

$$u \le F(x) \Rightarrow F(x) \ge u$$

 $\Rightarrow \inf \{a; F(a) \ge u\} \le x$
 $\Rightarrow F^{-1}(u) \le x$

A B A A B A

< □ > < 同 >

э

Examples

Example 1: Let $\mu = \mathcal{U}([a, b])$. Then on [a, b]

$$F(x)=rac{x-a}{b-a}, \quad ext{and} \quad F^{-1}(y)=a+(b-a)y$$

One can check that $X = a + (b - a)U \sim \mathcal{U}([a, b])$

Example 2: Let $\mu = \mathcal{E}(\lambda)$. Then on \mathbb{R}_+

$$F(x) = \int_0^x \lambda e^{-\lambda u} du = 1 - e^{-\lambda x}$$
, and $F^{-1}(y) = -\frac{\ln(1-y)}{\lambda}$

One can check that $X = -\frac{\ln(1-U)}{\lambda} \sim \mathcal{E}(\lambda)$

< □ > < /□ >

э.

Comments on inverse method

Pros:

- Unique call to rand
- Excellent simulation method ... when it works!

Cons:

- Explicit computation of F, F^{-1} not always possible
- Typical example: $\mathcal{N}(0,1)$

Examples of application:

Exponential, Weibull, Cauchy

Outline

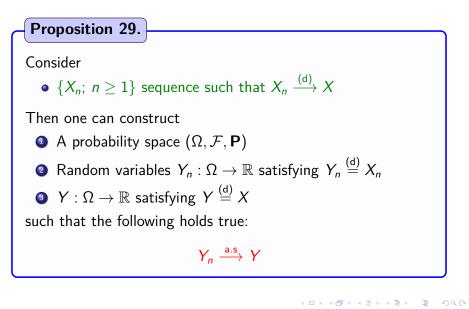
Introduction

- 1.1 Basic probability structures
- 1.2 Buffon's needle
- 1.3 Convergence of functions

2 Modes of convergence

- 2.1 Reviewing the modes of convergence
- 2.2 Results for P and L^p convergences
- 2.3 Results for almost sure convergence
- 2.4 Cases of inverse relations for modes of convergence
- 2.5 Inverse method for simulation
- 2.6 Results for convergence in distribution

Skorohod's representation theorem



Proof of Proposition 29 (1)

Definition of $(\Omega, \mathcal{F}, \mathbf{P})$: We take

 $\Omega = [0, 1], \quad \mathcal{F} = \text{Borel } \sigma \text{-algebra}, \quad \mathbf{P} = \lambda$

Definition of Y_n and Y: We take

$$Y_n(\omega) = F_n^{-1}(\omega), \qquad Y(\omega) = F^{-1}(\omega)$$

Distributions of Y_n and Y: According to Proposition 28,

 $Y_n \sim F_n, \qquad Y \sim F$

Proof of Proposition 29 (2)

Claim 1: If ω is a point of continuity of F^{-1} , we have

$$\lim_{n \to \infty} Y_n(\omega) = \lim_{n \to \infty} F_n^{-1}(\omega) = F^{-1}(\omega) = Y(\omega)$$
(1)

Proof of claim 1: Consider

• $\omega \in [0,1]$

• x point of continuity of F such that $Y(\omega) - \varepsilon < x < Y(\omega)$ We have

$$F^{-1}(\omega) > x \implies F(x) < \omega$$

$$\implies F_n(x) < \omega, \text{ for large } n$$

$$\implies x < F_n^{-1}(\omega), \text{ for large } n$$

Image: A matrix

э

Proof of Proposition 29 (3)

Proof of claim 1 - ctd: We have seen, for *n* large enough,

$$Y(\omega) - arepsilon < x < F_n^{-1}(\omega) \quad \left(\Longrightarrow \quad F_n^{-1}(\omega) > Y(\omega) - arepsilon
ight)$$

Partial conclusion: We get

$$\liminf_{n \to \infty} Y_n(\omega) > Y(\omega) - \varepsilon, \quad \text{for all } \varepsilon > 0$$
$$\implies \liminf_{n \to \infty} Y_n(\omega) \ge Y(\omega)$$

Image: Image:

< ∃⇒

111 / 118

Proof of Proposition 29 (4)

Proof of claim 1 - ctd: We have proved

 $\liminf_{n\to\infty} Y_n(\omega) \geq Y(\omega)$

Along the same lines, for $\omega' > \omega$ one has

$$\limsup_{n\to\infty} Y_n(\omega) \leq Y(\omega')$$

Conclusion: Claim 1 is true, that is \hookrightarrow If ω is a point of continuity of F^{-1} , we have

$$\lim_{n \to \infty} Y_n(\omega) = Y(\omega) \tag{2}$$

Proof of Proposition 29 (5)

Almost sure convergence: Let

$$D = \left\{ \text{points of discontinuity of } F^{-1} \right\}$$

Since F^{-1} non decreasing,

$$\mathbf{P}(D) = \lambda(D) = 0$$

Hence

$$Y_n \xrightarrow{a.s} Y$$

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Characterization of convergence in distribution

Proposition 30.

Consider

•
$$\{X_n; n \ge 1\}$$
 sequence of random variables

Then the statements 1-2-3 are equivalent:

 $X_n \xrightarrow{(d)} X$ 2 For any $f \in C_b(\mathbb{R})$, we have $\lim_{n\to\infty}\mathbf{E}\left[f(X_n)\right]=\mathbf{E}\left[f(X)\right]$ **3** $u \mapsto \mathbf{E} |e^{\iota u X}|$ cont. at 0, and for every $u \in \mathbb{R}$ we have $\lim_{n \to \infty} \mathbf{E} \left[e^{\imath u X_n} \right] = \mathbf{E} \left[e^{\imath u X} \right]$

Proof of Proposition 30 (1) Application of Skorohod: One can find

$$Y_n \stackrel{(d)}{=} X_n, \qquad Y \stackrel{(d)}{=} X$$

such that

$$Y_n \xrightarrow{a.s} Y$$

Convergence of $g(Y_n)$: Since g is continuous, we have

$$g(Y_n) \stackrel{\mathrm{a.s.}}{\longrightarrow} g(Y)$$

Proof of $1 \Longrightarrow 2$: By bounded convergence,

$$\mathsf{E}\left[g\left(Y_{n}\right)\right]\longrightarrow\mathsf{E}\left[g(Y)\right]$$

Proof of Proposition 30 (2) Next step:

 $\mathsf{Proof} \text{ of } 1 \Longrightarrow 2$

Approximation of $\mathbf{1}_{(-\infty,x]}$: For $\varepsilon > 0$ we set

$$g_{arepsilon,x}(y) = egin{cases} 1, & ext{if } y \leq x \ 0, & ext{if } y \geq x + arepsilon \ ext{linear}, & ext{if } x \leq y \leq x + arepsilon \end{cases}$$

Upper bound for F_n : For $x \in \mathbb{R}$ we have

$$g_{x,\varepsilon}(y) \ge \mathbf{1}_{(y \le x)}$$

 $\implies F_n(x) = \mathbf{E} \left[\mathbf{1}_{(X_n \le x)} \right] \le \mathbf{E} \left[g_{\varepsilon,x}(X_n) \right]$

Image: A matrix

→ < ∃ →</p>

э

116 / 118

Proof of Proposition 30 (3)

Taking lim sup: Since we assume 2 holds,

$$\limsup_{n \to \infty} F_n(x) \leq \limsup_{n \to \infty} \mathbf{E} \left[g_{x,\varepsilon}(X_n) \right]$$
$$\leq \mathbf{P} \left(X \leq x + \varepsilon \right)$$
$$= F(x + \varepsilon)$$

Taking limits in ε : For all x we end up with

 $\limsup_{n\to\infty}F_n(x)\leq F(x)$

Image: Image:

4 E b

Proof of Proposition 30 (4)

Taking lim inf: By considering $g_{x-\varepsilon,\varepsilon}$ we obtain

$$\liminf_{n \to \infty} F_n(x) \geq \liminf_{n \to \infty} \mathbf{E} \left[g_{x-\varepsilon,\varepsilon}(X_n) \right]$$
$$\geq \mathbf{P} \left(X \leq x - \varepsilon \right)$$
$$= F(x-\varepsilon)$$

Taking limits in ε : For a continuity point x of F, we get

$$\liminf_{n\to\infty}F_n(x)\geq F(x)$$

Conclusion: For a continuity point x of F, we have

 $\lim_{n\to\infty}F_n(x)=F(x)$

Image: A matrix