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Generalized Markov’s inequality

Let
h : R → [0, ∞) non-negative function
X random variable with h(X ) ∈ L1(Ω)

Then for all a > 0 we have

P (h(X ) ≥ a) ≤ E [h(X )]
a

Proposition 1.
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Proof of Proposition 1

Deterministic inequality: Set

A = {h(X ) ≥ a}

Then we have
h(X ) ≥ a 1A

Expectations: Taking expectations above, we get

E [h(X )] ≥ a P(A)
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Particular cases of Proposition 1:

Case h(X ) = |X |: We get Markov’s inequality,

P (|X | ≥ a) ≤ E [|X |]
a

Case h(X ) = X 2: We get Chebyshev’s inequality,

P (|X | ≥ a) ≤ E [|X |2]
a2
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Reversed Markov type inequality

Let
h : R → [0, M) non-negative bounded function
X random variable

Then for all 0 < a < M we have

P (h(X ) ≥ a) ≥ E [h(X )] − a
M − a

Proposition 2.
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Proof of Proposition 2

Deterministic inequality: Set

A = {h(X ) ≥ a}

Then we have
h(X ) ≤ M 1A + a 1Ac

Expectations: Taking expectations above, we get

E [h(X )] ≤ M P(A) + a (1 − P(A))

=⇒ P (A) ≤ E [h(X )] − a
M − a
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Hölder’s inequality

Let
X , Y random variables
p, q > 1 such that p−1 + q−1 = 1

Then we have

∥X Y ∥L1 ≤ ∥X∥Lp ∥Y ∥Lq

Proposition 3.
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Minkowski’s inequality

Let
X , Y random variables
p ≥ 1

Then we have

∥X + Y ∥Lp ≤ ∥X∥Lp + ∥Y ∥Lp

Proposition 4.

Remark:
(Lp(Ω), ∥ · ∥Lp ) is a Banach space
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Stefan Banach

Some facts about Banach:
Lifespan: 1892-1945, in Krakow and Lviv
Among greatest 20-th century
mathematicians
Founder of a new field
↪→ Functional Analysis
Survived 2 world wars in tough
conditions
Then dies in 1945 from lung cancer
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Limits of sums

Let
X , Y random variables
Xn, Yn sequences of random variables

Then we have
1 Xn

a.s−→ X and Yn
a.s−→ Y =⇒ Xn + Yn

a.s−→ X + Y
2 Xn

Lp
−→ X and Yn

Lp
−→ Y =⇒ Xn + Yn

Lp
−→ X + Y

3 Xn
P−→ X and Yn

P−→ Y =⇒ Xn + Yn
P−→ X + Y

4 Xn
(d)−→ X and Yn

(d)−→ Y ̸⇒ Xn + Yn
(d)−→ X + Y

Proposition 5.
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Counter-example for Proposition 5 - item 4

Example of sequence: Consider
Xn = X ∼ B(1

2)
Yn = Y = 1 − X

Convergences: We have

Xn
(d)−→ X , Yn

(d)−→ X .

However
Xn + Yn

(d)−→ 1
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Limsup of sets

Let
{An; n ≥ 1} sequence in F

We define
lim sup

n→∞
An =

∞⋂
n=1

∞⋃
k=n

Ak

Definition 6.

Interpretation: We also have

lim sup
n→∞

An = {ω ∈ Ω; ω belongs to an infinity of An’s}
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Borel-Cantelli lemma

Let
{An; n ≥ 1} sequence in F

We assume ∞∑
n=1

P(An) < ∞

Then we have
P
(

lim sup
n→∞

An

)
= 0

Theorem 7.
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Reversed Borel-Cantelli lemma

Let
{An; n ≥ 1} sequence in F

We assume
∞∑

n=1
P(An) = ∞, and An’s independent

Then we have
P
(

lim sup
n→∞

An

)
= 1

Theorem 8.
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Proof of Theorem 8 (1)

Notation: We set
A = lim sup

n→∞
An

Complement of A: We have

Ac =
∞⋃

n=1

∞⋂
k=n

Ac
k

Monotone convergence: We will use

P (Ac) = lim
n→∞

P (∩∞
k=nAc

k) (1)
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Proof of Theorem 8 (2)
Computation: We have

P (∩∞
k=nAc

k) = lim
r→∞

P (∩r
k=nAc

k)

=
∞∏

k=n
P (Ac

k)

=
∞∏

k=n
[1 − P (Ak)]

≤
∞∏

k=n
exp (−P (Ak))

≤ exp
(

−
∞∑

k=n
P (Ak)

)
= 0
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Proof of Theorem 8 (3)

Conclusion: Taking limits in (1) we get

P(A) = 0
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Remarks about Borel-Cantelli (1)

Recovering a result on Markov chains: Assume the following,
Xn Markov chain with X0 = i
An = {Xn = i}∑∞

n=1 pn(i , i) < ∞

Then by Borel-Cantelli,

P(An occurs i.o) = 0

However, one cannot apply reversed Borel-Cantelli

Samy T. Laws of large numbers Probability Theory 23 / 72



Remarks about Borel-Cantelli (2)

First case of 0-1 law: If the An’s independent, we have obtain

P
(

lim sup
n→∞

An

)
∈ {0, 1}

We will see generalizations of this kind of statement
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Tail σ-field

We consider
{Xn; n ≥ 1} sequence of random variables
F ′

n = σ (Xk ; k ≥ n)

We set
T =

⋂
n≥1

F ′
n

The σ-field T is called Tail σ-field

Definition 9.

Interpretation: We have
A ∈ T if changing a finite number of Xn’s

does not change the occurence of A.
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Examples of events in T

General setting: We consider
{Xn; n ≥ 1} sequence of random variables
Sn = ∑n

k=1 Xi

Then we have
1 (Xn > 0 i.o) ∈ T
2 (limn→∞ Sn exists) ∈ T
3 (lim supn→∞ Xn > 0) ∈ T
4 (lim supn→∞ Sn > 0) ̸∈ T
5 (lim supn→∞

1
an

Sn > 0) ∈ T if limn→∞ an = ∞

Samy T. Laws of large numbers Probability Theory 26 / 72



Kolmogorov’s 0-1 law

We consider
{Xn; n ≥ 1} sequence of independent random variables
The tail σ-field T

Then T is trivial, that is:
1 If A ∈ T we have

P(A) ∈ {0, 1}

2 If Y ∈ T , there exists k ∈ [−∞, ∞] such that

P(Y = k) = 1

Theorem 10.
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Recalling π-systems and λ-systems

π-system: Let P family of subsets of Ω. P is a π-system if:

A, B ∈ P =⇒ A ∩ B ∈ P

λ-system: Let L family of subsets of Ω. L is a λ-system if:
1 Ω ∈ L
2 If A ∈ L, then Ac ∈ L
3 If for j ≥ 1 we have:

▶ Aj ∈ L
▶ Aj ∩ Ai = ∅ if j ̸= i

Then ∪j≥1Aj ∈ L
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Recalling Dynkin’s π-λ lemma

Let P et L such that:
P is a π-system
L is a λ-system
P ⊂ L

Then σ(P) ⊂ L

Proposition 11.
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Proof of Theorem 10 (1)

Strategy: For A ∈ T ,
i We will prove A ⊥⊥ A
ii If A ⊥⊥ A, then

P(A)2 = P(A), thus P(A) ∈ {0, 1}
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Proof of Theorem 10 (2)

Step 1: We will prove that

A ∈ σ(X1, . . . , Xk), B ∈ σ(Xk+1, . . .) =⇒ A ⊥⊥ B
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Proof of Theorem 10 (3)

Proof of Step 1: We have
Let Kk,j = σ(Xk+1, . . . , Xk+j). Then ∪j≥0Kk,j is a π-system

Let A ∈ σ(X1, . . . , Xk) and

L = {B; P(A ∩ B) = P(A) P(B)}

Then L is a λ-system such that L ⊃ (∪j≥0Kk,j)

Thus
L ⊃ σ (∪j≥0Kk,j) = σ(Xk+1, . . .)
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Proof of Theorem 10 (4)

Step 2: We will prove that

B ∈ σ(X1, . . .), and A ∈ T =⇒ A ⊥⊥ B

Conclusion: If A ∈ T we have

A ∈ σ(X1, . . .), and A ∈ T . Thus A ⊥⊥ A
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Proof of Theorem 10 (5)
Proof of Step 2: We have

Let Fk = σ(X1, . . . , Xk). Then ∪k≥1Fk is a π-system

Let A ∈ T and

L = {B; P(A ∩ B) = P(A) P(B)}

Then L is a λ-system such that L ⊃ (∪k≥1Fk)

Thus
L ⊃ σ (∪j≥0Kj) = σ(X1, . . .)

Proof that L ⊃ (∪k≥1Fk): If B ∈ Fk and A ∈ T , then

A ∈ Kk+1, and thus A ⊥⊥ B
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Application to law of large numbers

We consider
{Xn; n ≥ 1} sequence of independent random variables
Sn = ∑n

i=1 Xi

Z1 = lim infn→∞
1
nSn, and Z2 = lim supn→∞

1
nSn

Then the following holds true:
1 There exists k1, k2 ∈ [−∞, ∞] such that

Z1 = k1, and Z2 = k2 a.s

2 If A ≡ (limn→∞
1
nSn exists), we have

P(A) ∈ {0, 1}

Theorem 12.
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Statement of the problem

General problem: We consider
{Xn; n ≥ 1} sequence of random variables
Sn = ∑n

i=1 Xi

Then we wish to investigate a convergence of the form

Sn

n − an −→ S

To be specified:
1 Constants an, bn
2 Random variable S
3 Mode of convergence
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Reviewing old results

We consider
{Xn; n ≥ 1} sequence of i.i.d random variables
E[X1] = µ and Var(X1) = σ2

Sn = ∑n
i=1 Xi and X̄n = 1

nSn

Then

X̄n
(d)−→ µ, and

√
n (X̄n − µ)

σ

(d)−→ N (0, 1)

Proposition 13.
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Proof of Proposition 13 (1)

Characteristic functions: For t, u ∈ R set

ϕ(u) = E [exp (ıuX1)] , and ϕn(t) = E
[
exp

(
ıtX̄n

)]
,

Then we have
ϕn(t) =

[
ϕ
( t

n

)]n

Expansion for ϕn: We get

ϕn(t) =
(

1 + ı
µ t
n + o

(1
n

))n
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Proof of Proposition 13 (2)

Limit for ϕn: By Taylor expansions arguments, for all t ∈ R we have

lim
n→∞

ϕn(t) = exp (ıµt)

Conclusion: By characteristic function method,

X̄n
(d)−→ µ

Method for CLT part:
↪→ Expansions of order 2 for characteristic functions

Samy T. Laws of large numbers Probability Theory 40 / 72



A first improvement: weak LLN

We consider
{Xn; n ≥ 1} sequence of i.i.d random variables
Hyp: X1 ∈ L1(Ω) and E[X1] = µ

Sn = ∑n
i=1 Xi and X̄n = 1

nSn

Then
X̄n

P−→ µ,

Proposition 14.
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Proof of Proposition 14

Quick proof: The result stems from

X̄n
(d)−→ µ

µ is a constant
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Strong LLN under L2 conditions

We consider
{Xn; n ≥ 1} sequence of i.i.d random variables
Hyp: X1 ∈ L2(Ω) and E[X1] = µ, Var(X1) = σ2

Sn = ∑n
i=1 Xi and X̄n = 1

nSn

Then
X̄n

a.s−→ µ, and X̄n
L2

−→ µ

Proposition 15.
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Proof of Proposition 15 (1)
L2 convergence: We compute

E
[(

X̄n − µ
)2
]

= 1
n2 E

( n∑
i=1

(Xi − µ)
)2


= 1
n2 Var

( n∑
i=1

(Xi − µ)
)

= 1
n2

n∑
i=1

Var (Xi)

= 1
n Var (X1)

Conclusion:
lim

n→∞
E
[(

X̄n − µ
)2
]

= 0
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Proof of Proposition 15 (2)

General result for a subsequence: Since X̄n
P−→ µ, we have:

There exists a subsequence {nk ; k ≥ 1} such that X̄nk
a.s−→ µ
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Proof of Proposition 15 (3)

A more concrete subsequence: Set nk = k2 and

Ak(ε) =
{
|X̄nk − µ| > ε

}
Then by Chebyshev,

P (Ak(ε)) ≤
E
[(

X̄k2 − µ
)2
]

ε2 ≤ Var(X1)
k2ε2

Almost sure convergence: We have
∞∑

k=1
P (Ak(ε)) < ∞ for all ε > 0, and thus X̄k2

a.s−→ µ
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Proof of Proposition 15 (4)

Case of a positive sequence: If Xn ≥ 0, then if k2 ≤ n ≤ (k + 1)2

Sk2 ≤ Sn ≤ S(k+1)2

Sk2

(k + 1)2 ≤ Sn
n ≤

S(k+1)2

k2

Taking n → ∞ we get
X̄n

a.s−→ µ

Samy T. Laws of large numbers Probability Theory 47 / 72



Proof of Proposition 15 (5)

Signed sequence case: For a general Xn we argue as follows:
1 Write Xn = X +

n − X −
n

2 Apply positive sequence case to both X +
n and X −

n

3 This is allowed since X +
n i.i.d with Var(X +

1 ) < ∞

Conclusion: We still have

X̄n
a.s−→ µ
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The strong law

We consider
{Xn; n ≥ 1} sequence of i.i.d random variables
Sn = ∑n

i=1 Xi and X̄n = 1
nSn

Then
X̄n

a.s−→ µ, ⇐⇒ X1 ∈ L1(Ω)

Theorem 16.
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Nsc for weak convergence

We consider
{Xn; n ≥ 1} sequence of i.i.d random variables
Sn = ∑n

i=1 Xi and X̄n = 1
nSn

Then

X̄n
P−→ µ ⇐⇒ Condition (2) or (3) holds,

with

lim
n→∞

n P (|X1| > n) = 0, and lim
n→∞

E
[
X1 1(|X1|≤n)

]
= µ (2)

ϕ differentiable at 0, and ϕ′(0) = ı µ (3)

Theorem 17.
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Example of WLLN without SLLN

We consider
{Xn; n ≥ 1} sequence of i.i.d random variables
Sn = ∑n

i=1 Xi and X̄n = 1
nSn

X1 symmetric random variable
Common cdf satisfies 1 − F (x) ∼ 1

x ln(x) as x → ∞

Then

X̄n
P−→ 0, but X̄n does not converge a.s

Proposition 18.
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Cauchy random variable (1)
Notation:

Cauchy(α), with α ∈ R

State space:

R

Density:
f (x) = 1

π

1
1 + (x − α)2

Expected value and variance:

Not defined (divergent integrals)!
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Cauchy random variable (2)

Use 1: Trigonometric function of a uniform r.v
Namely if

X ∼ U([−π
2 , π

2 ])
Y = tan(X )

Then Y ∼ Cauchy ≡ Cauchy(0)

Use 2:
Typical example of r.v with no mean
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Example: beam (1)

Experiment:
Narrow-beam flashlight spun around its center
Center located a unit distance from the x -axis
X = point at which the beam intersects the x -axis

when the flashlight has stopped spinning
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Example: beam (2)

Model:
We assume θ ∼ U([−π

2 , π
2 ])

We have X ∼ tan(θ)

Conclusion:
X ∼ Cauchy
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Example with no WLLN

We consider
{Xn; n ≥ 1} sequence of i.i.d random variables
Sn = ∑n

i=1 Xi and X̄n = 1
nSn

X1 ∼ Cauchy

Then

X̄n
(d)−→ Cauchy, but X̄n does not converge in P

Proposition 19.
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Proof of Theorem 16 (1)
Particular case: We assume

X1 ≥ 0 a.s, E[|X1|] = E[X1] = µ < ∞

Truncation: For n ≥ 1 we set

Yn = Xn 1(Xn<n)

Claim about the truncation: Define

An = (Xn ̸= Yn)

Then
P (An occurs i.o) = 0 (4)
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Proof of Theorem 16 (2)

Proof of claim (4): We have
∞∑

n=1
P(An) =

∞∑
n=1

P(Xn ≥ n)

≤ E[X1] < ∞

Thus (4) holds thanks to Borel-Cantelli
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Proof of Theorem 16 (3)

Reduction of the proof: According to (4), we have

1
n

n∑
k=1

(Xk − Yk) a.s−→ 0

Hence we just need to show

Ȳn
a.s−→ µ
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Proof of Theorem 16 (4)

Elementary relation: Let α > 1 and βk = ⌊αk⌋.
Then there exists A > 0 such that

∞∑
k=m

1
β2

k
≤ A

β2
m

(5)

Brief proof of (5): Stems from

βk ≍ αk , for large k ’s

Samy T. Laws of large numbers Probability Theory 61 / 72



Proof of Theorem 16 (5)

Claim 2 about the truncation: Write S ′
n = ∑n

k=1 Yk . Then

1
βn

(
S ′

βn − E
[
S ′

βn

]) a.s−→ 0 (6)
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Proof of Theorem 16 (6)
Proof of (6): For ε > 0, set

Bn(ε) =
(

1
βn

|S ′
n − E [S ′

n]| > ε

)

Then the following yields (6) by Borel-Cantelli:
∞∑

n=1
P (Bβn(ε)) ≤ 1

ε2

∞∑
n=1

1
β2

n
Var

(
S ′

βn

)

≤ 1
ε2

∞∑
n=1

1
β2

n

βn∑
k=1

Var (Yk)

≤ A
ε2

∞∑
k=1

1
k2 E

[
Y 2

k

] Claim 3
< ∞
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Proof of Theorem 16 (7)
Proof of Claim 3: This is where we use the truncation,

∞∑
k=1

1
k2 E

[
Y 2

k

]
=

∞∑
k=1

1
k2

k∑
j=1

E
[
Y 2

k 1Bkj

]

≤
∞∑

k=1

1
k2

k∑
j=1

j2P (Bkj)

=
∞∑

k=1

1
k2

k∑
j=1

j2P (B1j)

=
∞∑

j=1
j2P (B1j)

∞∑
k=j

1
k2

≲
∞∑

j=1
jP (B1j) ≲ 1 +

∞∑
j=1

(j − 1)P (B1j)

≲ 1 + E[X1] < ∞
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Proof of Theorem 16 (8)
From (6) to the theorem: The missing steps are

1 We have E[Yn] → µ
↪→ by monotone convergence

2 Fill the gaps between βn’s
↪→ Similar to Proposition 15

3 Signed sequence, also like in Proposition 15:
i Write Xn = X+

n − X−
n

ii Apply positive sequence case to both X+
n and X−

n

iii This is allowed since X±
n i.i.d with E[X±

1 ] < ∞

Conclusion: We have

X1 ∈ L1 =⇒ X̄n
a.s−→ µ
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Proof of Theorem 16 (9)

Converse result: We have

X̄n
a.s−→ µ

results on series=⇒ Xn

n
a.s−→ 0

reversed Borel-C=⇒
∞∑

n=1
P (|Xn| ≥ n) < ∞

i.i.d Hyp=⇒
∞∑

n=1
P (|X1| ≥ n) < ∞

Hence
E[|X1|]

Problem 4.14.3
≤ 1 +

∞∑
n=1

P (|X1| ≥ n) < ∞
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The law of iterated logarithm

We consider
{Xn; n ≥ 1} sequence of i.i.d random variables
Hyp: X1 ∈ L2(Ω) and E[X1] = 0, Var(X1) = 1
Sn = ∑n

i=1 Xi

Then

P
(

lim sup
n→∞

Sn

(2n ln ln(n))1/2 = 1
)

= 1

P
(

lim inf
n→∞

Sn

(2n ln ln(n))1/2 = −1
)

= 1

Theorem 20.
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LIL – second version

We consider
{Xn; n ≥ 1} sequence of i.i.d random variables
Hyp: X1 ∈ L2(Ω) and E[X1] = µ, Var(X1) = σ2

Sn = ∑n
i=1 Xi and X̄n = 1

nSn

Then

P
lim sup

n→∞

√
n
(
X̄n − µ

)
(2 ln ln(n))1/2 σ

= 1
 = 1

P
lim inf

n→∞

√
n
(
X̄n − µ

)
(2 ln ln(n))1/2 σ

= −1
 = 1

Theorem 21.
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Interpretation of LIL

Heuristics: We have
1 LLN states that

X̄n −→ µ

2 CLT states that
X̄n ≃ µ + σ√

n N (0, 1)

3 LIL states that

X̄n = µ + rare fluctuations of order (2 ln ln(n))1/2 σ√
n
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Hints about the proof of Theorem 20 (1)

0-1 law: Asserts that if

U ≡ lim sup
n→∞

Sn

(2n ln ln(n))1/2 ,

then there exists k ∈ [−∞, ∞] such that

P(U = k) = 1
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Hints about the proof of Theorem 20 (2)

Global strategy: For α > 0 set

An(α) =
(
Sn ≥ α (2n ln ln(n))1/2

)
Then with help of Borel-Cantelli we prove

P (An(α) occurs i.o) = 1 , if α < 1
P (An(α) occurs i.o) = 0 , if α > 1
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