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Generalized Markov's inequality

,—[Proposition 1.]

Let
@ h:R — [0, 00) non-negative function
@ X random variable with h(X) € L*(%Q)
Then for all a > 0 we have
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Proof of Proposition 1

Deterministic inequality: Set
A= {h(X) > a}

Then we have
h(X) > alA

Expectations: Taking expectations above, we get

E[h(X)] > aP(A)
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Particular cases of Proposition 1:

Case h(X) = |X|: We get Markov's inequality,

_E[X]

P(IX] = a)

Case h(X) = X?: We get Chebyshev's inequality,

P(IX]=>a) <

E[1X]°]
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Reversed Markov type inequality

,—[Proposition 2.] \

Let
@ h:R — [0, M) non-negative bounded function
@ X random variable

Then for all 0 < a < M we have

- E[h(X)] —a

P (h(X) = a)

— a4
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Proof of Proposition 2

Deterministic inequality: Set
A={h(X) > a}

Then we have
h(X) < M1y+ alj

Expectations: Taking expectations above, we get

E[h(X)] < MP(A) + a(1— P(A))
E[h(X)] —a

P(A) <
— P(A) = M— a
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Holder's inequality

,—[Proposition 3.} \

Let
e X, Y random variables
@ p,g>1lsuchthat p ! +qgt=1

Then we have

IX Yl < IXNee 1Y 1]
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Minkowski's inequality

,—[Proposition 4.} \

Let
@ X, Y random variables
ep>1

Then we have

X+ Yo < IX[lee + 1Y e

\.

Remark:
(LP(2), || - ||ze) is @ Banach space
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Stefan Banach

Some facts about Banach:
o Lifespan: 1892-1945, in Krakow and Lviv

@ Among greatest 20-th century
mathematicians

@ Founder of a new field
— Functional Analysis

@ Survived 2 world wars in tough
conditions

@ Then dies in 1945 from lung cancer
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Limits of sums

,—[Proposition 5.}

Let
@ X.Y random variables

e X,, Y, sequences of random variables

Then we have

0 X, XandV,25Y — X,+VY, 25 X+Y
09X, L XandV, LY — X,+VY, S X+Y
90X, B XandV, Y — X,+V, 5 X+Y

0 X Lxandy, Ly £ x,+v, Lxiy
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Counter-example for Proposition 5 - item 4

Example of sequence: Consider
o X,=Xr~DB(3)
oY, =Y=1-X

Convergences: We have

However

Samy T. Laws of large numbers Probability Theory 15/72



Outline

© Ancillary results

1.2 0-1 laws

=] & = E DA
Samy T. Laws of large numbers



Limsup of sets

—~ Definition 6. N

Let
e {A,; n> 1} sequence in F
We define o .
limsup A, = ﬂ U Ay
n—o00

n=1 k=n

\. J

Interpretation: We also have

limsup A, = {w € Q; w belongs to an infinity of A,'s}

n—o0
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Borel-Cantelli lemma

~ Theorem 7. \

Let
e {A,; n> 1} sequence in F

We assume

oo

> P(A,) < o0

Then we have
P (Iim sup A,,) =0

n—oo
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Reversed Borel-Cantelli lemma

~ Theorem 8. \

Let
e {A,; n> 1} sequence in F

We assume

> P(A,) =00, and A,’s independent
n=1

Then we have

n—oo

P (Iim supA,,) =l
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Proof of Theorem 8 (1)

Notation: We set
A= limsup A,

n—o0

Complement of A: We have

w=U N A

n=1 k=n

Monotone convergence: We will use

P (A%) = lim P (Ni2,A%) (1)
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Proof of Theorem 8 (2)

Computation: We have
P(OR,A) = fim P (N ,A%)
= H P (A7)
= H [1 — P (Ad]

IN

[T ee(-P(A)
oo (- 3P (a0)

=0

IN
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Proof of Theorem 8 (3)

Conclusion: Taking limits in (1) we get

P(A) =0

o = = £ DA
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Remarks about Borel-Cantelli (1)

Recovering a result on Markov chains: Assume the following,
@ X, Markov chain with Xy =/
o A, ={X,=1i}
© 32y pa(isi) < oo

Then by Borel-Cantelli,
P(A, occurs i.o) =0

However, one cannot apply reversed Borel-Cantelli
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Remarks about Borel-Cantelli (2)

First case of 0-1 law: If the A,'s independent, we have obtain
P (Iim sup A,,) €{0,1}
n—00

We will see generalizations of this kind of statement
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Tail o-field
— Definition 9. | \

We consider

e {X,; n> 1} sequence of random variables
o Fl =0 (Xs; k> n)

We set
T=N7F

n>1

| The o-field 7 is called Tail o-field

Interpretation: We have

A € T if changing a finite number of X,,'s
does not change the occurence of A.
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Examples of events in T

General setting: We consider

e {X,;, n> 1} sequence of random variables

e 5, =>7,4X

Then we have

Q (X,>0i0)eT

(lim,_00 S, exists) € T

(limsup,_,.. X, >0)e T

(limsup, ..o S >0) & T

(limsup, o 5-Sp > 0) € T if lim, o0 @y = 00
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Kolmogorov's 0-1 law

r—[Theorem 10.]

We consider
e {X,; n> 1} sequence of independent random variables
@ The tail o-field T

Then T is trivial, that is:
Q If A€ T we have

P(A) €{0,1}
@ If Y € T, there exists k € [—00, o0] such that

P(Y=k) =1

\ J
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Recalling m-systems and \-systems

m-system: Let P family of subsets of 2. P is a m-system if:

ABeP = ANBEeP

A-system: Let £ family of subsets of Q2. L is a A-system if:
Q Qc’l
Q@ IfAc L, then A€ L
© If for j > 1 we have:
> Aj eL
s ANA =2 ifj£i
Then U 1Aj € £
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Recalling Dynkin's -\ lemma

,—{Proposition 11.]
Let P et L such that:
@ P is a m-system

@ L is a A-system
e PCL
Then o(P) C L
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Proof of Theorem 10 (1)

Strategy: For Ac T,
@ We will prove A 1L A
Q@ If AL1L A, then

P(A)? = P(A), thus P(A)c {0,1}
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Proof of Theorem 10 (2)

Step 1: We will prove that

Ac O'(Xl, ,Xk), B e O'(Xk+1,

)

— AlB
o = = E DA
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Proof of Theorem 10 (3)

Proof of Step 1: We have
o Let K = o(Xks1,. .-, Xksj). Then U5y is a m-system

o Let Ac o(Xy,..., Xk) and
L={B; P(AnB)=P(A)P(B)}
Then L is a A\-system such that £ D (Uj>0Kx )

Thus
LDo (szoleJ) = O’(Xk+1, .. )
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Proof of Theorem 10 (4)

Step 2: We will prove that

Beo(Xy,..., and AcT = AlB

Conclusion: If A € T we have

Aco(Xy,...), and Ac€T. Thus AL A
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Proof of Theorem 10 (5)

Proof of Step 2: We have
o Let Fy = o(Xi,...,Xk). Then Uy>1Fy is a m-system

o Let Ac T and
L={B; P(AnB)=P(A)P(B)}
Then L is a A-system such that £ D (Ux>1F%)

Thus
LD O'(szolc_,') = O'(Xl, .. )

Proof that £ D (Ux>1Fx): If B€ Fx and A€ T, then

A€ Kky1, andthus A1l B
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Application to law of large numbers
r—[Theorem 12.]

We consider
e {X,; n> 1} sequence of independent random variables
@ 5, =X"1.X
o Z; =liminf, %5,,, and Z, = limsup,_, %5,,
Then the following holds true:
@ There exists ki, ky € [—00, 00| such that

Zl = kl, and 22 = k2 a.S

Q If A= (limy_ 1S, exists), we have

P(A) € {0,1}

\ J
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Statement of the problem

General problem: We consider
e {X,; n> 1} sequence of random variables
o Sn - 27:1 Xi

Then we wish to investigate a convergence of the form

5 _ a, — S
n
To be specified:
@ Constants a,, b,
@ Random variable S
© Mode of convergence
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Reviewing old results

,—{Proposition 13.]

We consider
e {X,; n> 1} sequence of i.i. d random variables
e E[Xi] = p and Var(X;) =
0 S, =", X and X, = %5

Then

Samy T. Laws of large numbers Probability Theory 38/72



Proof of Proposition 13 (1)

Characteristic functions: For t, u € R set

o(u) = E[exp (euXy)], and ¢,(t) = [exp( tX )} ,

o= o (8)]

Expansion for ¢,: We get

Gn(t) = (1+zu—|—o(,17>)n

Then we have
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Proof of Proposition 13 (2)

Limit for ¢,: By Taylor expansions arguments, for all t € R we have

lim n(t) = exp (11t)
Conclusion: By characteristic function method,

X, 2

Method for CLT part:
— Expansions of order 2 for characteristic functions
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A first improvement: weak LLN

,—{Proposition 14.]

We consider
e {X,; n> 1} sequence of i.i.d random variables
e Hyp: X; € L}(Q) and E[X;] = p
° S, =YY", X and X, =15,

Then B
X, < M
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Proof of Proposition 14

Quick proof: The result stems from
o X, 9

@ /i is a constant

o = = £ DA
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Strong LLN under L? conditions

,—[Proposition 15.}

We consider
e {X,; n> 1} sequence of i.i.d random variables
e Hyp: X; € L?(Q) and E[Xi] = p, Var(X;) = o2
° S, =YY", X and X, =15,

Then B o,
X, 2%, and X, - p
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Proof of Proposition 15 (1)

L2 convergence: We compute

E [()?,,—u)z] .

Conclusion:
lim E | (X, — u)°| =0
n—oo n /J/ o
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Proof of Proposition 15 (2)

, v P
General result for a subsequence: Since X,, — u, we have:

There exists a subsequence {ny; k > 1} such that X, = u
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Proof of Proposition 15 (3)

A more concrete subsequence: Set n, = k? and

Ae) = {1 %, i > <}

Then by Chebyshev,

E [(sz - ”)2] _ Var(X)
— k2€2

P (Ak(e)) <

e2

Almost sure convergence: We have

Z ) < oo foralle >0, and thus X2 =55 11
k=1
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Proof of Proposition 15 (4)

Case of a positive sequence: If X, > 0, then if k> < n < (k + 1)2

Sie <5, < Spesyp

Skz < S < 5(k+1)2
(k+1p == "R
Taking n — oo we get B
X, 22 1
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Proof of Proposition 15 (5)

Signed sequence case: For a general X, we argue as follows:
Q@ Write X, = X" — X~

@ Apply positive sequence case to both X and X

@ This is allowed since X\ i.i.d with Var(X{") < oo

Conclusion: We still have
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The strong law

r—[Theorem 16.} \

We consider
e {X,; n> 1} sequence of i.i.d random variables
S, =YY", X and X, =15,

Then
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Nsc for weak convergence

r—[Theorem 17.}

We consider
e {X,; n> 1} sequence of i.i.d random variables
° S, =YY", X and X, =15,

Then
X, —s <= Condition (2) or (3) holds,
with

lim nP (1Xa| > n) =0, and lim E [X Lx<n| =4 (2)
¢ differentiable at 0, and ¢'(0) = p (3)

\

J
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Example of WLLN without SLLN

,—{Proposition 18.} \

We consider

e {X,; n> 1} sequence of i.i.d random variables
° S, =YY", X and X, =15,

@ X; symmetric random variable

@ Common cdf satisfies 1 — F(x) ~ TGy 3 X = 00
Then
X, LN 0, but X, does not converge a.s
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Cauchy random variable (1)

Notation:
Cauchy(«), with o € R

State space:
Density:

Expected value and variance:

Not defined (divergent integrals)!
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Cauchy random variable (2)

Use 1: Trigonometric function of a uniform r.v

Namely if
o X ~U([-3,3])
e Y =tan(X)

Then Y ~ Cauchy = Cauchy(0)

Use 2:
Typical example of r.v with no mean

Samy T. Laws of large numbers Probability Theory 54 /72



Example: beam (1)

Experiment:
@ Narrow-beam flashlight spun around its center
@ Center located a unit distance from the x-axis

@ X = point at which the beam intersects the x-axis
when the flashlight has stopped spinning

Xx-axis
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Example: beam (2)

Model:
o We assume 6 ~ U([-3.3])
@ We have X ~ tan(f)
Conclusion:
X ~ Cauchy
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Example with no WLLN

,—[Proposition 19.] \

We consider

e {X,; n> 1} sequence of i.i.d random variables
S, =", X and X, = %5,,
o X; ~ Cauchy

Then

X, LN Cauchy, but X, does not converge in P
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Proof of Theorem 16 (1)

Particular case: We assume
X1 >0 as, E[|Xi]] = E[Xi] = p <
Truncation: For n > 1 we set
Yo = Xn 1(x,<n)

Claim about the truncation: Define
A, =Xy # Ya)
Then
P (A, occursi.o) =0 (4)
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Proof of Theorem 16 (2)

Proof of claim (4): We have

i_o:lP(A,,) = iP(ann)

Thus (4) holds thanks to Borel-Cantelli
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Proof of Theorem 16 (3)

Reduction of the proof: According to (4), we have
1 u a.s
— Z (Xk — Yk) =0
M=

Hence we just need to show

Y, = i
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Proof of Theorem 16 (4)

Elementary relation: Let o > 1 and 8k = |aX].
Then there exists A > 0 such that

>~ 1
2 s

A
5z,

Brief proof of (5): Stems from

B < ok, for large k's

Samy T. Laws of large numbers
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Proof of Theorem 16 (5)

L
Bn

Claim 2 about the truncation: Write S}, = >"¢_; Yk. Then

(5;3" —E [sgn}) 250

=] & = E DA
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Proof of Theorem 16 (6)

Proof of (6): For € > 0, set

n

Bule) = (515, ELS> <)

Then the following yields (6) by Borel-Cantelli:

> 121
SP(B() £ 5 Var(Sh)
n=1 n=1/"~n
< iii s Var (Y))
N 82 n:lﬁg k=1 ‘
A 0 1 2 Claim 3
< ayEElY T
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Proof of Theorem 16 (7)

Proof of Claim 3: This is where we use the truncation,

ikl [ } - %zk:E[Yklekj]

k=1 k=1""j
1

Z pZJZP(Bkj)
= i %2 ZJQP(BIJ

1
= ZJ (By) Zk_

k=j

NE

=1
k

8

IN

AN

SR (B) S 1430~ VP (8y)
< 1+ E[Xl] < 0
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Proof of Theorem 16 (8)

From (6) to the theorem: The missing steps are

Q@ We have E[Y,] — u
< by monotone convergence

© Fill the gaps between 3,'s
— Similar to Proposition 15

© Signed sequence, also like in Proposition 15:
Q@ Write X, = X — X

@ Apply positive sequence case to both X" and X,
@ This is allowed since X7 i.i.d with E[X{"] < oo

Conclusion: We have

X1€[_1 - Xni,u
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Proof of Theorem 16 (9)

Converse result: We have

< a.s results on series Xn a.s
Xo = 2

—0

o
[e%s)
reversg%orel—C Z P (lX | > n < 00
"
Z P(|X1| > n < 0

Hence
Problem 4.14.3

Efxl] R LS P (X 2 n) < oo

n=1
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The law of iterated logarithm

r—[Theorem 20.}

We consider
e {X,; n> 1} sequence of i.i.d random variables
e Hyp: X; € L?(Q) and E[X;] =0, Var(X;) =1
e 5, =", X%

Then

P (IimsupSnl/2 = 1> — |
n—oo (2nlInin(n))

P (Iiminfsn12 = —1> !
=" (2n1nIn(n))Y
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LIL — second version

r—[Theorem 21.]

We consider
e {X,; n> 1} sequence of i.i.d random variables
e Hyp: X; € L?(Q) and E[X;] = p, Var(X;) = o2
S, =YY", X and X, =15,

Then

P(Iimsup ﬁ(Xn_M) —1> =1

oo (2Inln(n))? o

P(Iiminf Vi (% — 1) :—1) = 1

= (21n1In(n))? o

\
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Interpretation of LIL

Heuristics: We have
@ LLN states that

@ CLT states that

@ LIL states that

. 2Inln(n))*/?
X, = i+ rare fluctuations of order (2Inin(n))" "o
Vn
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Hints about the proof of Theorem 20 (1)

0-1 law: Asserts that if

. Sn
U=limsup —————7,
n—co (2nInin(n))

then there exists k € [—00, 00| such that
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Hints about the proof of Theorem 20 (2)

Global strategy: For av > 0 set
An(@) = (S, > a(2nInin(n))*?)
Then with help of Borel-Cantelli we prove

P(A,(a) occursio) = 1, ifa<l
P (A,(a) occursio) = 0, ifa>1
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