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Stochastic processes

Let:
(Ω,F ,P) probability space.
I ⊂ R+ interval.
{Xt ; t ∈ I} family of random variables, Rn-valued

Then:
1 If ω 7→ Xt(ω) measurable, X is a stochastic process
2 t 7→ Xt(ω) is called a path
3 X is continuous if its paths are continuous a.s.

Definition 1.
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Modifications of processes

Let X and Y be two processes on (Ω,F ,P).
1 X is a modification of Y if

P (Xt = Yt) = 1, for all t ∈ I

2 X and Y are non-distinguishable if

P (Xt = Yt for all t ∈ I) = 1

Definition 2.

Remarks:
(i) Relation (2) implicitly means that (Xt = Yt for all t ∈ I) ∈ F
(ii) (2) is much stronger than (1)
(iii) If X and Y are continuous, (2) ⇐⇒ (1)
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Filtrations

Filtration: Increasing sequence of σ-algebras, i.e
↪→ If s < t, then Fs ⊂ Ft ⊂ F .

Interpretation: Ft summarizes an information obtained at time t

Negligible sets: N = {F ∈ F ; P(F ) = 0}

Complete filtration: Whenever N ⊂ Ft for all t ∈ I

Stochastic basis: (Ω,F , (Ft)t∈I ,P) with a complete (Ft)t∈I

Remark: Filtration (Ft)t∈I can always be thought of as complete
↪→ One replaces Ft by F̂t = σ(Ft ,N )
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Adaptation

Let
(Ω,F , (Ft)t∈I ,P) stochastic basis
{Xt ; t ∈ I} stochastic process

We say that X is Ft-adapted if for all t ∈ I :

Xt : (Ω,Ft) −→ (Rm,B(Rm)) is measurable

Definition 3.

Remarks:
(i) Let FX

t = σ{Xs ; s ≤ t} the natural filtration of X .
↪→ Process X is always FX

t -adapted.
(ii) A process X is Ft-adapted iff FX

t ⊂ Ft
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Definition of the Wiener process
Notation: For a function f , δfst ≡ ft − fs

Let
(Ω,F ,P) probability space
{Wt ; t ≥ 0} stochastic process, R-valued

We say that W is a Wiener process if:
1 W0 = 0 almost surely
2 Let n ≥ 1 and 0 = t0 < t1 < · · · < tn. The increments

δWt0t1 , δWt1t2 , . . . , δWtn−1tn are independent
3 For 0 ≤ s < t we have δWst ∼ N (0, t − s)
4 W has continuous paths almost surely

Definition 4.
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Illustration: chaotic path
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Illustration: random path
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Existence of the Wiener process

There exists a probability space (Ω,F ,P) on which one can
construct a Wiener process.

Theorem 5.

Classical constructions:
Kolmogorov’s extension theorem
Limit of a renormalized random walk
Lévy-Ciesilski’s construction
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Haar functions

We define a family of functions {hk : [0, 1]→ R; k ≥ 0}:

h0(t) = 1
h1(t) = 1[0,1/2](t)− 1(1/2,1](t),

and for n ≥ 1 and 2n ≤ k < 2n+1:

hk(t) = 2n/2 1[ k−2n
2n ,

k−2n+1/2
2n ](t)− 2n/2 1( k−2n+1/2

2n , k−2n+1
2n ](t)

Definition 6.

The functions {hk : [0, 1]→ R; k ≥ 0} form
an orthonormal basis of L2([0, 1]).

Lemma 7.
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Haar functions: illustration
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Proof
Norm: For 2n ≤ k < 2n+1, we have

∫ 1

0
h2

k(t) dt = 2n
∫ k−2n+1

2n

k−2n
2n

dt = 1.

Orthogonality: If k < l , we have two situations:
(i) Supp(hk) ∩ Supp(hl) = ∅.
Then trivially 〈hk , hl〉L2([0,1]) = 0
(ii) Supp(hl) ⊂ Supp(hk).
Then if 2n ≤ k < 2n+1 we have:

〈hk , hl〉L2([0,1]) = ±2n/2
∫ 1

0
hl(t) dt = 0.
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Proof (2)

Complete system: Let f ∈ L2([0, 1]) s.t 〈f , hk〉 = 0 for all k .
↪→ We will show that f = 0 almost everywhere.

Step 1: Analyzing the relations 〈f , hk〉 = 0
↪→ We show that

∫ t
s f (u) du = 0 for dyadic r , s.

Step 2: Since
∫ t

s f (u) du = 0 for dyadic r , s, we have

f (t) = ∂t

(∫ t

0
f (u) du

)
= 0, almost everywhere,

according to Lebesgue’s derivation theorem.
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Schauder functions

We define a family of functions {sk : [0, 1]→ R; k ≥ 0}:

sk(t) =
∫ t

0
hk(u) du

Definition 8.

Functions {sk : [0, 1]→ R; k ≥ 0} satisfy for 2n ≤ k < 2n+1:
1 Supp(sk) = Supp(hk) = [ k−2n

2n , k−2n+1
2n ]

2 ‖sk‖∞ = 1
2n/2+1

Lemma 9.
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Schauder functions: illustration
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Gaussian supremum

Let {Xk ; k ≥ 1} i.i.d sequence of N (0, 1) r.v. We set:

Mn ≡ sup {|Xk |; 1 ≤ k ≤ n} .

Then
Mn = O

(√
ln(n)

)
almost surely

Lemma 10.
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Proof
Gaussian tail: Let x > 0. We have:

P (|Xk | > x) = 2
(2π)1/2

∫ ∞
x

e− z2
4 e− z2

4 dz

≤ c1e−
x2
4

∫ ∞
x

e− z2
4 dz ≤ c2e−

x2
4 .

Application of Borel-Cantelli: Let Ak = (|Xk | ≥ 4(ln(k))1/2).
According to previous step we have:

P (Ak) ≤ c
k4 =⇒

∞∑
k=1

P (Ak) <∞ =⇒ P (lim sup Ak) = 0

Conclusion: ω-a.s there exists k0 = k0(ω) such that
↪→ |Xk(ω)| ≤ 4[ln(k)]1/2 for k ≥ k0.
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Concrete construction on [0, 1]

Let
{sk ; k ≥ 0} Schauder functions family
{Xk ; k ≥ 0} i.i.d sequence of N (0, 1) random variables.

We set:
Wt =

∑
k≥0

Xk sk(t).

Then W is a Wiener process on [0, 1]
↪→ In the sense of Definition 4.

Proposition 11.
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Proof: uniform convergence

Step 1: Show that ∑k≥0 Xk sk(t) converges
↪→ Uniformly in [0, 1], almost surely.
↪→ This also implies that W is continuous a.s

Problem reduction: See that for all ε > 0
↪→ there exists n0 = n0(ω) such that for all n0 ≤ m < n we have:∥∥∥∥∥

2n−1∑
k=2m

Xk sk

∥∥∥∥∥
∞

≤ ε.
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Proof: uniform convergence (2)

Useful bounds:
1 Let η > 0. We have (Lemma 10):

|Xk | ≤ c kη, with c = c(ω)

2 For 2p ≤ k < 2p+1, functions sk have disjoint support. Thus∥∥∥∥∥∥
2p+1−1∑
k=2p

sk

∥∥∥∥∥∥
∞

≤ 1
2 p

2 +1 .
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Proof: uniform convergence (3)

Uniform convergence: for all t ∈ [0, 1] we have:
∣∣∣∣∣

2n∑
k=2m

Xk sk(t)
∣∣∣∣∣ ≤ ∑

p≥m

2p+1−1∑
k=2p

|Xk | sk(t)

≤
∑
p≥m

(
sup

2p≤`≤2p+1−1
|X`|

) ∣∣∣∣∣∣
2p+1−1∑
k=2p

sk(t)

∣∣∣∣∣∣
≤ c1

∑
p≥m

1
2p( 1

2−η)

≤ c2

2m( 1
2−η)

,

which shows uniform convergence.
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Proof: law of δWrt
Step 2: Show that δWrt ∼ N (0, t − s) for 0 ≤ r < t.

Problem reduction: See that for all λ ∈ R,

E
[
eıλ δWrt

]
= e−

(t−r)λ2
2 .

Recall: δWrt = ∑
k≥0 Xk(sk(t)− sk(r))

Computation of a characteristic function:
Invoking independence of Xk ’s and dominated convergence,

E
[
eıλ δWrt

]
=

∏
k≥0

E
[
eıλXk (sk (t)−sk (r))

]
=

∏
k≥0

e−
λ2(sk (t)−sk (r))2

2 = e−
λ2
2
∑

k≥0(sk (t)−sk (r))2
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Proof: law of δWrt (2)

Inner product computation: For 0 ≤ r < t we have∑
k≥0

sk(r) sk(t) =
∑
k≥0

〈
hk , 1[0,r ]

〉 〈
hk , 1[0,t]

〉
=
〈
1[0,r ], 1[0,t]

〉
= r .

Thus: ∑
k≥0

[sk(t)− sk(r)]2 = t − r .

Computation of a characteristic function (2): We get

E
[
eıλ δWrt

]
= e−

λ2
2
∑

k≥0(sk (t)−sk (r))2
= e−

(t−r)λ2
2 .
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Proof: increment independence

Simple case: For 0 ≤ r < t, we show that Wr ⊥⊥ δWrt

Computation of a characteristic function: for λ1, λ2 ∈ R,

E
[
eı(λ1Wr +λ2 δWrt )

]
=
∏
k≥0

E
[
eıXk [λ1sk (r)+λ2(sk (t)−sk (r))]

]
= e−

1
2
∑

k≥0[λ1sk (r)+λ2(sk (t)−sk (r))]2 = e− 1
2 [λ2

1r+λ2
2(t−r)]

Conclusion: We have, for all λ1, λ2 ∈ R,

E
[
eı(λ1Wr +λ2 δWrt )

]
= E

[
eıλ1Wr

]
E
[
eıλ2 δWrt

]
,

and thus Wr ⊥⊥ δWrt .
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Effective construction on [0,∞)

Let:
For k ≥ 1, a space (Ωk ,Fk ,Pk)
↪→ On which a Wiener process W k on [0, 1] is defined
Ω̄ = ∏

k≥1 Ωk , F̄ = ⊗k≥1Fk , P̄ = ⊗k≥1Pk

We set W0 = 0 and recursively:

Wt = Wn + W n+1
t−n , if t ∈ [n, n + 1].

Then W is a Wiener process on R+
↪→ Defined on (Ω̄, F̄ , P̄).

Proposition 12.
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Partial proof
Aim: See that δWst ∼ N (0, t − s)
↪→ with m ≤ s < m + 1 ≤ n ≤ t < n + 1

Decomposition of δWst : We have

δWst =
n∑

k=1
W k

1 + W n+1
t−n −

( m∑
k=1

W k
1 + W m+1

s−m

)
= Z1 + Z2 + Z3,

with

Z1 =
n∑

k=m+2
W k

1 , Z2 = W m+1
1 −W m+1

s−m , Z3 = W n+1
t−n .

Law of δWst : The Zj ’s are independent centered Gaussian.
Thus δWst ∼ N (0, σ2), with:

σ2 = n − (m + 1) + 1− (s −m) + t − n = t − s.
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Wiener process in Rn

Let
(Ω,F ,P) probability space
{Wt ; t ≥ 0} Rn-valued stochastic process

We say that W is a Wiener process if:
1 W0 = 0 almost surely
2 Let n ≥ 1 and 0 = t0 < t1 < · · · < tn. The increments

δWt0t1 , δWt1t2 , . . . , δWtn−1tn are independent
3 For 0 ≤ s < t we have δWst ∼ N (0, (t − s)IdRn)
4 W continuous paths, almost surely

Definition 13.

Remark: One can construct W
↪→ from n independent real valued Brownian motions.
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Illustration: 2-d Brownian motion
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Wiener process in a filtration

Let
(Ω,F , (Ft)t≥0,P) stochastic basis
{Wt ; t ≥ 0} stochastic process with values in Rn

We say that W is a Wiener process
with respect to (Ω,F , (Ft)t≥0,P) if:

1 W0 = 0 almost surely
2 Let 0 ≤ s < t. Then δWst ⊥⊥ Fs .

3 For 0 ≤ s < t we have δWst ∼ N (0, (t − s)IdRn)
4 W has continuous paths almost surely

Definition 14.

Remark: A Wiener process according to Definition 13
is a Wiener process in its natural filtration.
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Brown

Some facts about Brown:
Scottish, Lived 1773-1858
Pioneer in the use of microscope
Detailed description of cell nucleus
Observed 2-d Brownian motion
↪→ Pollen particles in water
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Gaussian property

Let
(Ω,F ,P) probability space
{Xt ; t ≥ 0} stochastic process, with values in R

We say that X is a Gaussian process if
for all 0 ≤ t1 < · · · < tn we have:

(Xt1 , . . . ,Xtn) Gaussian vector.

Definition 15.

Let W be a real valued Brownian motion .
Then W is a Gaussian process.

Proposition 16.
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Proof
Notation: For 0 = t0 ≤ t1 < · · · < tn we set

Xn = (Wt1 , . . . ,Wtn)
Yn = (δWt0t1 , . . . , δWtn−1tn)

Vector Yn: Thanks to independence of increments of W
↪→ Yn is a Gaussian vector.

Vecteur Xn: There exists M ∈ Rn,n such that Xn = MYn
↪→ Xn Gaussian vector

Covariance matrix: We have E[WsWt ] = s ∧ t. Thus

(Wt1 , . . . ,Wtn) ∼ N (0, Γn), with Γij
n = ti ∧ tj .
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Consequence of Gaussian property

Characterization of a Gaussian process:
Let X Gaussian process. The law of X is characterized by:

µt = E[Xt ], and ρs,t = Cov(Xs ,Xt).

Another characterization of Brownian motion:
Let W real-valued Gaussian process with

µt = 0, and ρs,t = s ∧ t.

Then W is a Brownian motion.
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Brownian scaling

Let
W real-valued Brownian motion.
A constant a > 0.

We define a process W a by:

W a
t = a−1/2 Wat , for t ≥ 0.

Then W a is a Brownian motion.

Proposition 17.

Proof:
Gaussian characterization of Brownian motion.
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Canonical space

Let E = C([0,∞);Rn). We set:

d(f , g) =
∑
k≥1

‖f − g‖∞,k
2k (1 + ‖f − g‖∞,k)

where
‖f − g‖∞,k = sup {|ft − gt |; t ∈ [0, k]} .

Then E is a separable complete metric space.

Proposition 18.
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Borel σ-algebra on E

Let E = C([0,∞);Rn). For m ≥ 1 we consider:
0 ≤ t1 < · · · < tm

A1, . . . ,Am ∈ B(Rn)
Let A be the σ-algebra generated by rectangles:

Rt1,...,tm(A1, . . . ,Am) = {x ∈ E ; xt1 ∈ A1, . . . , xtm ∈ Am} .

Then A = B(E ), Borel σ-algebra on E .

Proposition 19.
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Wiener measure

Let
W Rn-valued Wiener process, defined on (Ω,F ,P).
T : (Ω,F)→ (E ,A), such that T (ω) = {Wt(ω); t ≥ 0}.

Then:
1 The application T is measurable
2 Let P0 = P ◦ T−1, measure on (E ,A).
P0 is called Wiener measure.

3 Under P0, the canonical process ω can be written as:

ωt = Wt , where W Brownian motion.

Proposition 20.
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Proof

Inverse image of rectangles: We have

T−1 (Rt1,...,tm(A1, . . . ,Am)) = (Wt1 ∈ A1, . . . ,Wtm ∈ Am) ∈ F .

Conclusion: T measurable, since A generated by rectangles.
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Einstein

Einstein and Brownian motion:
In 1905, 4 revolutionary papers
↪→ While Einstein was employee

at Patent Office in Zurich
One of the 4 papers explains BM
↪→ Action of water molecules on pollen
Lead to evidence for atoms
First elements about
transition kernel of Brownian motion
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Martingale property

Let
(Ω,F , (Ft)t≥0,P) stochastic basis
{Xt ; t ≥ 0} stochastic process, with values in Rn

We say that X is a Ft-martingale if
1 Xt ∈ L1(Ω) for all t ≥ 0.
2 X is Ft-adapted.
3 E[δXst | Fs ] = 0 for all 0 ≤ s < t.

Definition 21.

Let W a Ft-Brownian motion.
Then W is a Ft-martingale.

Proposition 22.
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Stopping time

Let
(Ω,F , (Ft)t≥0,P) stochastic basis.
S random variable, with values in [0,∞].

We say that S is a stopping time if for all t ≥ 0 we have:

(S ≤ t) ∈ Ft

Definition 23.

Interpretation 1: If we know X[0,t]
↪→ One also knows if S ≤ t or S > t
Interpretation 2: S ≡ instant for which one stops playing
↪→ Only depends on information up to current time.
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Typical examples of stopping time

Let:
X process with values in Rd , Ft-adapted and continuous.
G open set in Rd .
F closed set in Rd .

We set:

TG = inf {t ≥ 0; Xt ∈ G} , TF = inf {t ≥ 0; Xt ∈ F} .

Then:
TF is a stopping time.
TG is a stopping time when X is a Brownian motion.

Proposition 24.
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Proof for TG

First aim: prove that for t > 0 we have

(TG < t) ∈ Ft (1)

Problem reduction for (1): We show that

(TG < t) =
⋃

s∈Q∩[0,t)
(Xs ∈ G) . (2)

Since ∪s∈Q∩[0,t)(Xs ∈ G) ∈ Ft , this proves our claim.

First inclusion for (2):⋃
s∈Q∩[0,t)

(Xs ∈ G) ⊂ (TG < t) : trivial.
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Proof for TG (2)

Second inclusion for (2): If TG < t, then
There exist s < t such that Xs ∈ G . We set Xs ≡ x .
Let ε > 0 such that B(x , ε) ∈ G

Then:
There exists δ > 0 such that Xr ∈ B(x , ε) for all
r ∈ (s − δ, s + δ).
In particular, there exists q ∈ Q ∩ (s − δ, s] such that Xq ∈ G .

Since
(Q ∩ (s − δ, s]) ⊂ (Q ∩ [0, t)) ,

we have the second inclusion.
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Proof for TG (3)
Optional times: We say that T : Ω→ [0,∞] is an optional time if

(T < t) ∈ Ft .

Remark: Relation (1) proves that TG is optional.

Optional times and stopping times:
A stopping time is an optional time.
An optional time satisfies (T ≤ t) ∈ Ft+ ≡

⋂
ε>0Ft+ε.

When X is a Brownian motion, Ft+ = Ft (by Markov prop.).
When X is a Brownian motion, optional time = stopping time.

Conclusion: When X is a Brownian motion, TG is a stopping time.
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Simple properties of stopping times

Let S and T two stopping times. Then
1 S ∧ T
2 S ∨ T

are stopping times.

Proposition 25.

If T is a deterministic time (T = n almost surely)
↪→ then T is a stopping time.

Proposition 26.
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Information at time S

Let
(Ω,F , (Ft)t≥0,P) stochastic basis.
S stopping time.

The σ-algebra FS is defined by:

FS = {A ∈ F ; [A ∩ (S ≤ t)] ∈ Ft for all t ≥ 0} .

Definition 27.

Interpretation:
FS ≡ Information up to time S.
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Optional sampling theorem

Let
(Ω,F , (Ft)t≥0,P) stochastic basis.
S,T two stopping times, with S ≤ T .
X continuous martingale.

Hypothesis:
{Xt∧T ; t ≥ 0} uniformly integrable martingale.

Then:
E [XT | FS ] = XS .

In particular:
E [XT ] = E [XS ] = E [X0] .

Theorem 28.
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Remarks

Strategy of proof:
One starts from known discrete time result.
X is approximated by a discrete time martingale

Ym ≡ Xtm , with tm = m
2n .

Checking the assumption: Set Yt = Xt∧T .
{Yt ; t ≥ 0} uniformly integrable martingale in following cases:
|Yt | ≤ M with M deterministic constant independent of t.
supt≥0 E[|Yt |2] ≤ M.
supt≥0 E[|Yt |p] ≤ M with p > 1.
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Example of stopping time computation

Let:
B standard Brownian motion, with B0 = 0.
−a < 0 < b
Ta = inf{t ≥ 0 : Bt = −a} and
Tb = inf{t ≥ 0 : Bt = b}.
T = Ta ∧ Tb.

Then:

P (Ta < Tb) = b
b + a , and E [T ] = ab.

Proposition 29.
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Proof
Optional sampling for Mt = Bt : yields

P (Ta < Tb) = b
b + a .

Optional sampling for Mt = B2
t − t: yields, for a constant τ > 0,

E[B2
T∧τ ] = E [T ∧ τ ] .

Limiting procedure: by dominated and monotone convergence,

E[B2
T ] = E [T ] .

Conclusion: we get

E [T ] = E[B2
T ] = a2P (Ta < Tb) + b2P (Tb < Ta) = ab.
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Bachelier

Bachelier and Brownian motion:
Born 1870, son of a wine merchant
↪→ Used to business
In 1900 (predates Einstein) PhD thesis
↪→ Theory of speculation
Mathematical description of BM
↪→ Application to stock pricing
Not well perceived by academic
establishment
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Wiener measure indexed by Rd

Let:
x ∈ Rd .

There exists a probability measure Px on (E ,A) such that:
↪→ Under Px the canonical process ω can be written as:

ωt = x + Wt , where W Brownian motion.

Proposition 30.

Notations:
We consider {Px ; x ∈ Rd}.
Expected value under Px : Ex .
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Shift on paths

Let
E = C([0,∞);Rd), equipped with Borel A ≡ σ-algebra.
t ≥ 0.

We set:

θt : E → E , {ωs ; s ≥ 0} 7→ {ωt+s ; s ≥ 0}

Definition 31.

Shift and future: Let Y : E → R measurable.
↪→ Then Y ◦ θs depends on future after s.

Example: For n ≥ 1, f measurable and 0 ≤ t1 < · · · < tn,

Y (ω) = f (ωt1 , . . . , ωtn) =⇒ Y ◦ θs = f (Ws+t1 , . . . ,Ws+tn) .
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Markov property

Let:
W Wiener process, with values in Rd .
Y : E → R bounded measurable.
s ≥ 0.

Then:
Ex [Y ◦ θs | Fs ] = EWs [Y ].

Theorem 32.

Interpretation:
Future after s can be predicted with value of Ws only.
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Pseudo-proof
Very simple function: Consider Y ≡ f (Wt), let Y ◦ θs = f (Ws+t).
For 0 ≤ s < t, independence of increments for W gives

Ex [Y ◦ θs | Fs ] = Ex [f (Ws+t)| Fs ] = pt f (Ws)
= EWs [f (Wt)] = EWs [Y ] ,

with

ph : C(Rd)→ C(Rd), phf (x) ≡
∫
Rd

f (y)
exp

(
− |y−x |2

2h

)
(2πh)d/2 dy .

Extension:
1 Random variable Y = f (Wt1 , . . . ,Wtn).
2 General random variable: by π-λ-systems.
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π-systems and λ-systems

π-system: Let P family of sets in Ω. P is a π-system if:

A,B ∈ P =⇒ A ∩ B ∈ P

λ-system: Let L family of sets in Ω. L is a λ-system if:
1 Ω ∈ L
2 If A ∈ L, then Ac ∈ L
3 If for j ≥ 1 we have:

I Aj ∈ L
I Aj ∩ Ai = ∅ if j 6= i

Then ∪j≥1Aj ∈ L
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Dynkin’s π-λ lemma

Let P and L such that:
P is a π-system
L is a λ-system
P ⊂ L

Then σ(P) ⊂ L

Lemma 33.
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Links with analysis

Heat semi-group: We have set pt f (x) = Ex [f (Wt)]. Then:
The family {pt ; t ≥ 0} is a semi-group of operators.
Generator of the semi-group: ∆

2 , with ∆ ≡ Laplace operator.

Feynman-Kac formula: Let f ∈ Cb(Rd) and PDE on Rd :

∂tu(t, x) = 1
2∆u(t, x), u(0, x) = f (x).

Then
u(t, x) = Ex [f (Wt)] = pt f (x)
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Strong Markov property

Let:
W Wiener process in Rd .
Y : R+ × E → R bounded measurable.
S stopping time.

Then:

Ex [YS ◦ θS | FS ] 1(S<∞) = EWS [YS ] 1(S<∞).

Theorem 34.

Particular case: If S finite stopping time a.s. we have

Ex [YS ◦ θS | FS ] = EWS [YS ]
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Reflection principle

Let:
W real-valued Brownian motion.
a > 0.
Ta = inf{t ≥ 0; Wt = a}.

Then:
P0 (Ta < t) = 2P0 (Wt > a) .

Theorem 35.
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Intuitive proof

Independence: If W reaches a for s < t
↪→ Wt −WTa ⊥⊥ FTa .

Consequence:

P0 (Ta < t, Wt > a) = 1
2 P0 (Ta < t)

Furthermore:

(Wt > a) ⊂ (Ta < t) =⇒ P0 (Ta < t, Wt > a) = P0 (Wt > a) .

Thus:
P0 (Ta < t) = 2P0 (Wt > a) .
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Rigorous proof

Reduction: We have to show

P0 (Ta < t, Wt > a) = 1
2 P0 (Ta < t)

Functional: We set (with inf ∅ =∞)

S = inf {s < t; Ws = a} , Ys(ω) = 1(s<t, ω(t−s)>a).

Then:
1 (S <∞) = (Ta < t).
2 YS ◦ θS = 1(S<t) 1Wt>a = 1(Ta<t) 1Wt>a.
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Rigorous proof (2)
Application of strong Markov:

E0 [YS ◦ θS | FS ] 1(S<∞) = EWS [YS ] 1(S<∞) = ϕ(WS , S), (3)

with
ϕ(x , s) = Ex

[
1Wt−s>a

]
1(s<t).

Conclusion: Since WS = a if S <∞ and Ea[1Wt−s>a] = 1
2 ,

ϕ(WS , S) = 1
2 1(S<t).

Taking expectations in (3) we end up with:

P0 (Ta < t, Wt > a) = 1
2 P0 (Ta < t) .
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Hölder continuity

Let
f : [a, b] −→ Rn.

We say that f is γ-Hölder if ‖f ‖γ <∞ with:

‖f ‖γ = sup
s,t∈[a,b], s 6=t

|δfst |
|t − s|γ .

Definition 36.

Remark:
1 ‖ · ‖γ is a semi-norm.
2 Notation: Cγ
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Regularity of Brownian motion

Let
τ > 0
W Wiener process on [0, τ ]
γ ∈ (0, 1/2)

Then there exists a version Ŵ of W such that almost surely:
↪→ The paths of Ŵ are γ-Hölder.

Theorem 37.

Remark: Ŵ and W are usually denoted in the same way.
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Kolmogorov’s criterion

Let X = {Xt ; t ∈ [0, τ ]} process defined on (Ω,F ,P),
such that:

E [|δXst |α] ≤ c|t − s|1+β, for s, t ∈ [0, τ ], c , α, β > 0

Then there exists a modification X̂ of X satisfying
↪→ Almost surely X̂ ∈ Cγ for all γ < β/α, i.e:

P
(
ω; ‖X̂ (ω)‖γ <∞

)
= 1.

Theorem 38.
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Proof of Theorem 37

Law of δBst : We have δBst ∼ N (0, t − s).

Moments of δBst :
Using expression for the moments of N (0, 1)
↪→ for m ≥ 1, we have

E
[
|δBst |2m

]
= cm|t − s|m i.e E

[
|δBst |2m

]
= cm|t − s|1+(m−1)

Application of Kolmogorov’s criterion:
B is γ-Hölder for γ < m−1

2m = 1
2 −

1
2m

Taking limits m→∞, the proof is finished.
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Levy’s modulus of continuity

Let τ > 0 and W Wiener process on [0, τ ].
Then almost surely W satisfies:

lim sup
δ→0+

sup
0≤s<t≤τ,|t−s|≤δ

|δWst |
(2δ ln(1/δ))1/2 = 1.

Theorem 39.

Interpretation: W has Hölder-regularity = 1
2 at each point

↪→ up to a logarithmic factor.
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Variations of a function

Interval partitions: Let a < b two real numbers.
We denote by π a set {t0, . . . , tm} with a = t0 < . . . < tm = b
We say that π is a partition of [a, b].
Write Πa,b for the set of partitions of [a, b].

Let a < b and f : [a, b]→ R. The variation of f on [a, b] is:

Va,b(f ) = lim
π∈Πa,b , |π|→0

∑
ti ,ti+1∈π

|δfti ti+1| .

If Va,b(f ) <∞, we say that f has finite variation on [a, b].

Definition 40.
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Quadratic variation

Let a < b and f : [a, b]→ R.
The quadratic variation of f on [a, b] is:

V 2
a,b(f ) = lim

π∈Πa,b , |π|→0

∑
ti ,ti+1∈π

|δfti ti+1|
2 .

If V 2
a,b(f ) <∞,

↪→ We say that f has a finite quadratic variation on [a, b].

Definition 41.

Remark: The limits for Va,b(f ) and V 2
a,b(f )

↪→ do not depend on the sequence of partitions
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Variations of Brownian motion

Let W Wiener process.
Then almost surely W satisfies:

1 For 0 ≤ a < b <∞ we have V 2
a,b(W ) = b − a.

2 For 0 ≤ a < b <∞ we have Va,b(W ) =∞.

Theorem 42.

Interpretation: The paths of W have:
Infinite variation
Finite quadractic variation,

on any interval of R+.
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Proof
Notations: Let π = {t0, . . . , tm} ∈ Πa,b. We set:

Sπ = ∑m−1
k=0 |δWtk tk+1|2.

Xk = |δWtk tk+1|2 − (tk+1 − tk).
Yk = Xk

tk+1−tk
.

Step 1: Show that

L2(Ω)− lim
|π|→0

Sπ = b − a.

Decomposition: We have

Sπ − (b − a) =
m−1∑
k=0

Xk
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Proof (2)
Variance computation: The r.v Xk are centered and indep. Thus

E
[
(Sπ − (b − a))2

]
= Var

(m−1∑
k=0

Xk

)

=
m−1∑
k=0

Var (Xk) =
m−1∑
k=0

(tk+1 − tk)2 Var (Yk)

Since δWtk tk+1
(tk+1−tk )1/2 ∼ N (0, 1), we get:

E
[
(Sπ − (b − a))2

]
= 2

m−1∑
k=0

(tk+1 − tk)2 ≤ 2|π|(b − a).

Conclusion: We have, for a subsequence πn,

L2(Ω)− lim
|π|→0

Sπ = b − a =⇒ a.s− lim
n→∞

Sπn = b − a.
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Proof (3)
Step 2: Verify Va,b(W ) =∞ for fixed a < b.
We proceed by contradiction. Let:

ω ∈ Ω0 such that P(Ω0) = 1 and limn→∞ Sπn(ω) = b − a > 0.
Assume Va,b(W (ω)) <∞.

Bound on increments: Thanks to continuity of W :
1 supn≥1

∑mn−1
k=0 |δWtk tk+1(ω)| ≤ c(ω)

2 limn→∞max0≤k≤mn−1 |δWtk tk+1(ω)| = 0
Thus

Sπn(ω) ≤ max
0≤k≤mn−1

|δWtk tk+1(ω)|
mn−1∑
k=0
|δWtk tk+1(ω)| −→ 0.

Contradiction: with limn→∞ Sπn(ω) = b − a > 0.
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Proof (4)

Step 3: Verify Va,b(W ) =∞ for all couple (a, b) ∈ R2
+

↪→ It is enough to check Va,b(W ) =∞ for all couple (a, b) ∈ Q2
+

Recall: For all couple (a, b) ∈ Q2
+, we have found:

↪→ ∃ Ωa,b s.t P(Ωa,b) = 1 and Va,b(W (ω)) =∞ for all ω ∈ Ωa,b.

Full probability set: Let

Ω0 =
⋂

(a,b)∈Q2
+

Ωa,b.

Then:
P(Ω0) = 1.
If ω ∈ Ω0, for all couple (a, b) ∈ Q2

+ we have Va,b(W (ω)) =∞.
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Irregularity of W

Let:
W Wiener process
γ > 1/2 and 0 ≤ a < b

Then almost surely W does not belong to Cγ([a, b]).

Proposition 43.
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Proof

Strategy: Proceed by contradiction. Let:
ω ∈ Ω0 such that P(Ω0) = 1 and limn→∞ Sπn(ω) = b − a > 0.
Suppose W ∈ Cγ with γ > 1/2, i.e |δWst | ≤ L|t − s|γ
↪→ With L random variable.

Bound on quadratic variation: We have:

Sπn(ω) ≤ L2
mn−1∑
k=0
|tk+1 − tk |2γ ≤ L2|πn|2γ−1(b − a) −→ 0.

Contradiction: with limn→∞ Sπn(ω) = b − a > 0.
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Irregularity of W at each point

Let:
W Wiener process
γ > 1/2 and τ > 0

Then
1 Almost surely the paths of W

are not γ-Hölder continuous at each point s ∈ [0, τ ].
2 In particular, W is nowhere differentiable.

Theorem 44.
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