Brownian motion

Samy Tindel

Purdue University

Probability Theory 2 - MA 539

Mostly taken from *Brownian Motion and Stochastic Calculus* by I. Karatzas and S. Shreve

Samy T.

Outline

Stochastic processes

- 2 Definition and construction of the Wiener process
- ③ First properties
- Martingale property
- 5 Markov property
- 6 Pathwise properties

Outline

Stochastic processes

- 2 Definition and construction of the Wiener process
- 3 First properties
- 4 Martingale property
- 5 Markov property
- 6 Pathwise properties

< □ > < 同 > < 回 > < 回 > < 回 >

Stochastic processes

Modifications of processes

(i) Relation (2) implicitly means that $(X_t = Y_t \text{ for all } t \in I) \in \mathcal{F}$

(ii) (2) is much stronger than (1)

(iii) If X and Y are continuous, $(2) \iff (1)$

Filtrations

Filtration: Increasing sequence of σ -algebras, i.e \hookrightarrow If s < t, then $\mathcal{F}_s \subset \mathcal{F}_t \subset \mathcal{F}$.

Interpretation: \mathcal{F}_t summarizes an information obtained at time t

- Negligible sets: $\mathcal{N} = \{F \in \mathcal{F}; \mathbf{P}(F) = 0\}$
- Complete filtration: Whenever $\mathcal{N} \subset \mathcal{F}_t$ for all $t \in I$
- Stochastic basis: $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \in I}, \mathbf{P})$ with a complete $(\mathcal{F}_t)_{t \in I}$

Remark: Filtration $(\mathcal{F}_t)_{t \in I}$ can always be thought of as complete \hookrightarrow One replaces \mathcal{F}_t by $\hat{\mathcal{F}}_t = \sigma(\mathcal{F}_t, \mathcal{N})$

Adaptation

Let • $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \in I}, \mathbf{P})$ stochastic basis • $\{X_t; t \in I\}$ stochastic process We say that X is \mathcal{F}_t -adapted if for all $t \in I$: $X_t : (\Omega, \mathcal{F}_t) \longrightarrow (\mathbb{R}^m, \mathcal{B}(\mathbb{R}^m))$ is measurable

Remarks:

(i) Let *F*^X_t = σ{X_s; s ≤ t} the natural filtration of X.
→ Process X is always *F*^X_t-adapted.
(ii) A process X is *F*_t-adapted iff *F*^X_t ⊂ *F*_t

Outline

2 Definition and construction of the Wiener process

< 47 ▶

Definition of the Wiener process Notation: For a function f, $\delta f_{st} \equiv f_t - f_s$

Definition 4. Let • $(\Omega, \mathcal{F}, \mathbf{P})$ probability space • { W_t ; t > 0} stochastic process, \mathbb{R} -valued We say that W is a Wiener process if: • $W_0 = 0$ almost surely 2 Let $n \ge 1$ and $0 = t_0 < t_1 < \cdots < t_n$. The increments $\delta W_{t_0t_1}, \delta W_{t_1t_2}, \ldots, \delta W_{t_{n-1}t_n}$ are independent 3 For 0 < s < t we have $\delta W_{st} \sim \mathcal{N}(0, t-s)$ W has continuous paths almost surely

Illustration: chaotic path

Illustration: random path

Existence of the Wiener process

Theorem 5.

There exists a probability space $(\Omega, \mathcal{F}, \mathbf{P})$ on which one can construct a Wiener process.

Classical constructions:

- Kolmogorov's extension theorem
- Limit of a renormalized random walk
- Lévy-Ciesilski's construction

Haar functions

Definition 6.

We define a family of functions $\{h_k : [0,1] \rightarrow \mathbb{R}; k \ge 0\}$:

$$\begin{array}{rcl} h_0(t) &=& {\bf 1} \\ h_1(t) &=& {\bf 1}_{[0,1/2]}(t) - {\bf 1}_{(1/2,1]}(t), \end{array}$$

and for $n \ge 1$ and $2^n \le k < 2^{n+1}$:

$$h_k(t) = 2^{n/2} \mathbf{1}_{\left[\frac{k-2^n}{2^n}, \frac{k-2^n+1/2}{2^n}\right]}(t) - 2^{n/2} \mathbf{1}_{\left(\frac{k-2^n+1/2}{2^n}, \frac{k-2^n+1}{2^n}\right]}(t)$$

Lemma 7.

The functions $\{h_k : [0,1] \to \mathbb{R}; k \ge 0\}$ form an orthonormal basis of $L^2([0,1])$.

< □ > < 同 > < 三 > < 三 >

Haar functions: illustration

3 N 3

Haar functions: illustration

3 N 3

Haar functions: illustration

H 5

Proof

Norm: For $2^n \leq k < 2^{n+1}$, we have

$$\int_0^1 h_k^2(t) \, dt = 2^n \int_{\frac{k-2^n}{2^n}}^{\frac{k-2^n+1}{2^n}} dt = 1.$$

Orthogonality: If k < l, we have two situations:

(i)
$$\operatorname{Supp}(h_k) \cap \operatorname{Supp}(h_l) = \emptyset$$
.
Then trivially $\langle h_k, h_l \rangle_{L^2([0,1])} = 0$
(ii) $\operatorname{Supp}(h_l) \subset \operatorname{Supp}(h_k)$.
Then if $2^n \leq k < 2^{n+1}$ we have:

$$\langle h_k, h_l \rangle_{L^2([0,1])} = \pm 2^{n/2} \int_0^1 h_l(t) dt = 0.$$

イロト 不得 トイヨト イヨト

ж

Proof (2)

Complete system: Let $f \in L^2([0,1])$ s.t $\langle f, h_k \rangle = 0$ for all k. \hookrightarrow We will show that f = 0 almost everywhere.

Step 1: Analyzing the relations $\langle f, h_k \rangle = 0$ \hookrightarrow We show that $\int_s^t f(u) du = 0$ for dyadic r, s.

Step 2: Since $\int_{s}^{t} f(u) du = 0$ for dyadic r, s, we have

$$f(t) = \partial_t \left(\int_0^t f(u) \, du \right) = 0,$$
 almost everywhere,

according to Lebesgue's derivation theorem.

Schauder functions

Definition 8.

We define a family of functions $\{s_k : [0,1] \rightarrow \mathbb{R}; k \ge 0\}$:

$$s_k(t) = \int_0^t h_k(u) \, du$$

< □ > < □ > < □ > < □ > < □ > < □ >

Schauder functions: illustration

3. 3

Gaussian supremum

Lemma 10.

Let $\{X_k; k \ge 1\}$ i.i.d sequence of $\mathcal{N}(0,1)$ r.v. We set:

 $M_n \equiv \sup\left\{|X_k|; \ 1 \le k \le n\right\}.$

Then

$$M_n = O\left(\sqrt{\ln(n)}\right)$$
 almost surely

~	_
5 a may	
. Jaille	v

Proof

Gaussian tail: Let x > 0. We have:

$$\mathbf{P}(|X_k| > x) = \frac{2}{(2\pi)^{1/2}} \int_x^\infty e^{-\frac{z^2}{4}} e^{-\frac{z^2}{4}} dz \\ \leq c_1 e^{-\frac{x^2}{4}} \int_x^\infty e^{-\frac{z^2}{4}} dz \leq c_2 e^{-\frac{x^2}{4}}.$$

Application of Borel-Cantelli: Let $A_k = (|X_k| \ge 4(\ln(k))^{1/2})$. According to previous step we have:

$$\mathbf{P}(A_k) \leq \frac{c}{k^4} \implies \sum_{k=1}^{\infty} \mathbf{P}(A_k) < \infty \implies \mathbf{P}(\limsup A_k) = 0$$

Conclusion: ω -a.s there exists $k_0 = k_0(\omega)$ such that $\hookrightarrow |X_k(\omega)| \le 4[\ln(k)]^{1/2}$ for $k \ge k_0$.

Concrete construction on [0, 1]

Proposition 11.

Let

- $\{s_k; k \ge 0\}$ Schauder functions family
- $\{X_k; k \ge 0\}$ i.i.d sequence of $\mathcal{N}(0,1)$ random variables.

We set:

$$W_t = \sum_{k\geq 0} X_k \, s_k(t).$$

Then W is a Wiener process on [0, 1] \hookrightarrow In the sense of Definition 4.

Proof: uniform convergence

Step 1: Show that $\sum_{k\geq 0} X_k s_k(t)$ converges \hookrightarrow Uniformly in [0, 1], almost surely. \hookrightarrow This also implies that W is continuous a.s

Problem reduction: See that for all $\varepsilon > 0$ \hookrightarrow there exists $n_0 = n_0(\omega)$ such that for all $n_0 \le m < n$ we have:

$$\left\|\sum_{k=2^m}^{2^n-1} X_k \, s_k\right\|_{\infty} \leq \varepsilon$$

Proof: uniform convergence (2)

Useful bounds:

• Let $\eta > 0$. We have (Lemma 10):

$$|X_k| \leq c \, k^\eta, \quad ext{with} \quad c = c(\omega)$$

2 For $2^p \le k < 2^{p+1}$, functions s_k have disjoint support. Thus

$$\left\|\sum_{k=2^p}^{2^{p+1}-1} s_k\right\|_{\infty} \le \frac{1}{2^{\frac{p}{2}+1}}$$

イロト 不得 トイヨト イヨト

23 / 86

Proof: uniform convergence (3)

Uniform convergence: for all $t \in [0, 1]$ we have:

$$egin{aligned} & \left|\sum_{k=2^m}^{2^n} X_k \, s_k(t)
ight| &\leq \sum_{p\geq m} \sum_{k=2^p}^{2^{p+1}-1} |X_k| \, s_k(t) \ &\leq & \sum_{p\geq m} \left(\sup_{2^p\leq \ell\leq 2^{p+1}-1} |X_\ell|
ight) \left|\sum_{k=2^p}^{2^{p+1}-1} s_k(t)
ight| \ &\leq & c_1 \sum_{p\geq m} rac{1}{2^{p\left(rac{1}{2}-\eta
ight)}} \ &\leq & rac{c_2}{2^{m\left(rac{1}{2}-\eta
ight)}}, \end{aligned}$$

which shows uniform convergence.

→

Proof: law of δW_{rt}

Step 2: Show that $\delta W_{rt} \sim \mathcal{N}(0, t-s)$ for $0 \leq r < t$.

Problem reduction: See that for all $\lambda \in \mathbb{R}$,

$$\mathsf{E}\left[e^{i\lambda\,\delta W_{rt}}\right]=e^{-\frac{(t-r)\lambda^2}{2}}.$$

Recall:
$$\delta W_{rt} = \sum_{k\geq 0} X_k(s_k(t) - s_k(r))$$

Computation of a characteristic function: Invoking independence of X_k 's and dominated convergence,

Proof: law of δW_{rt} (2)

Inner product computation: For $0 \le r < t$ we have

$$\sum_{k\geq 0} s_k(r) s_k(t) = \sum_{k\geq 0} \left\langle h_k, \mathbf{1}_{[0,r]} \right\rangle \left\langle h_k, \mathbf{1}_{[0,t]} \right\rangle = \left\langle \mathbf{1}_{[0,r]}, \mathbf{1}_{[0,t]} \right\rangle = r.$$

Thus:

$$\sum_{k\geq 0} [s_k(t) - s_k(r)]^2 = t - r.$$

Computation of a characteristic function (2): We get

$$\mathsf{E}\left[e^{i\lambda\,\delta W_{rt}}\right] = e^{-\frac{\lambda^2}{2}\sum_{k\geq 0}(s_k(t)-s_k(r))^2} = e^{-\frac{(t-r)\lambda^2}{2}}.$$

э

26 / 86

イロト 不得 トイヨト イヨト

Proof: increment independence

Simple case: For $0 \le r < t$, we show that $W_r \perp \perp \delta W_{rt}$

Computation of a characteristic function: for $\lambda_1, \lambda_2 \in \mathbb{R}$,

$$\mathbf{E} \left[e^{i(\lambda_1 W_r + \lambda_2 \,\delta W_{rt})} \right] = \prod_{k \ge 0} \mathbf{E} \left[e^{i \,X_k [\lambda_1 s_k(r) + \lambda_2 (s_k(t) - s_k(r))]} \right]$$

= $e^{-\frac{1}{2} \sum_{k \ge 0} [\lambda_1 s_k(r) + \lambda_2 (s_k(t) - s_k(r))]^2} = e^{-\frac{1}{2} [\lambda_1^2 r + \lambda_2^2(t-r)]}$

Conclusion: We have, for all $\lambda_1, \lambda_2 \in \mathbb{R}$,

$$\mathbf{E}\left[e^{i(\lambda_1 W_r + \lambda_2 \,\delta W_r)}\right] = \mathbf{E}\left[e^{i\lambda_1 W_r}\right] \,\mathbf{E}\left[e^{i\lambda_2 \,\delta W_r}\right],$$

and thus $W_r \perp \perp \delta W_{rt}$.

27 / 86

Effective construction on $[0,\infty)$

Partial proof Aim: See that $\delta W_{st} \sim \mathcal{N}(0, t-s)$ \hookrightarrow with $m \leq s < m+1 \leq n \leq t < n+1$

Decomposition of δW_{st} : We have

$$\delta W_{st} = \sum_{k=1}^{n} W_1^k + W_{t-n}^{n+1} - \left(\sum_{k=1}^{m} W_1^k + W_{s-m}^{m+1}\right) = Z_1 + Z_2 + Z_3,$$

with

$$Z_1 = \sum_{k=m+2}^{n} W_1^k, \quad Z_2 = W_1^{m+1} - W_{s-m}^{m+1}, \quad Z_3 = W_{t-n}^{n+1}.$$

Law of δW_{st} : The Z_j 's are independent centered Gaussian. Thus $\delta W_{st} \sim \mathcal{N}(0, \sigma^2)$, with:

$$\sigma^2 = n - (m+1) + 1 - (s - m) + t - n = t - s.$$

29 / 86

Wiener process in \mathbb{R}^n

Remark: One can construct W

 \hookrightarrow from *n* independent real valued Brownian motions.

Samy T.

Illustration: 2-d Brownian motion

Wiener process in a filtration

Remark: A Wiener process according to Definition 13 is a Wiener process in its natural filtration.

32 / 86

Brown

Some facts about Brown:

- Scottish, Lived 1773-1858
- Pioneer in the use of microscope
- Detailed description of cell nucleus
- Observed 2-d Brownian motion
 → Pollen particles in water

Outline

First properties 3

< 🗗 🕨
Gaussian property

Proposition 16.

Let W be a real valued Brownian motion . Then W is a Gaussian process.

Proof

Notation: For $0 = t_0 \le t_1 < \cdots < t_n$ we set • $X_n = (W_{t_1}, \dots, W_{t_n})$ • $Y_n = (\delta W_{t_0 t_1}, \dots, \delta W_{t_{n-1} t_n})$

Vector Y_n : Thanks to independence of increments of $W \hookrightarrow Y_n$ is a Gaussian vector.

Vecteur X_n : There exists $M \in \mathbb{R}^{n,n}$ such that $X_n = MY_n$ $\hookrightarrow X_n$ Gaussian vector

Covariance matrix: We have $\mathbf{E}[W_s W_t] = s \wedge t$. Thus

$$(W_{t_1},\ldots,W_{t_n})\sim \mathcal{N}(0,\Gamma_n), \text{ with } \Gamma_n^{ij}=t_i\wedge t_j.$$

Consequence of Gaussian property

Characterization of a Gaussian process:

Let X Gaussian process. The law of X is characterized by:

$$\mu_t = \mathbf{E}[X_t], \text{ and } \rho_{s,t} = \mathbf{Cov}(X_s, X_t).$$

Another characterization of Brownian motion: Let W real-valued Gaussian process with

$$\mu_t = 0$$
, and $\rho_{s,t} = s \wedge t$.

Then W is a Brownian motion.

Brownian scaling

Proof: Gaussian characterization of Brownian motion.

Samy T.

Canonical space

Proposition 18.

Let $E = \mathcal{C}([0,\infty); \mathbb{R}^n)$. We set:

$$d(f,g) = \sum_{k\geq 1} rac{\|f-g\|_{\infty,k}}{2^k (1+\|f-g\|_{\infty,k})}$$

where

$$\|f - g\|_{\infty,k} = \sup \{|f_t - g_t|; t \in [0,k]\}.$$

Then E is a separable complete metric space.

Borel σ -algebra on E

Proposition 19.

Let $E = \mathcal{C}([0,\infty); \mathbb{R}^n)$. For $m \ge 1$ we consider:

•
$$0 \leq t_1 < \cdots < t_m$$

•
$$A_1, \ldots, A_m \in \mathcal{B}(\mathbb{R}^n)$$

Let \mathcal{A} be the σ -algebra generated by rectangles:

 $R_{t_1,\ldots,t_m}(A_1,\ldots,A_m) = \{x \in E; x_{t_1} \in A_1,\ldots,x_{t_m} \in A_m\}.$ Then $\mathcal{A} = \mathcal{B}(E)$, Borel σ -algebra on E.

Wiener measure

Proposition 20.

Let

- $W \mathbb{R}^n$ -valued Wiener process, defined on $(\Omega, \mathcal{F}, \mathbf{P})$.
- $T: (\Omega, \mathcal{F}) \to (E, \mathcal{A})$, such that $T(\omega) = \{W_t(\omega); t \ge 0\}$.

Then:

- The application T is measurable
- Solution Let $\mathbf{P}_0 = \mathbf{P} \circ T^{-1}$, measure on (E, \mathcal{A}) . \mathbf{P}_0 is called Wiener measure.

③ Under \mathbf{P}_0 , the canonical process ω can be written as:

 $\omega_t = W_t$, where W Brownian motion.

Inverse image of rectangles: We have

$$T^{-1}\left(R_{t_1,\ldots,t_m}(A_1,\ldots,A_m)
ight)=\left(W_{t_1}\in A_1,\ldots,W_{t_m}\in A_m
ight)\in\mathcal{F}.$$

Conclusion: T measurable, since A generated by rectangles.

I ∃ ►

Einstein

Einstein and Brownian motion:

- In 1905, 4 revolutionary papers
 → While Einstein was employee at Patent Office in Zurich
- One of the 4 papers explains BM
 → Action of water molecules on pollen
- Lead to evidence for atoms
- First elements about transition kernel of Brownian motion

Outline

- Martingale property

~	_
Samu	
Janny	

- ∢ 🗗 ▶

Martingale property

Proposition 22.

Let W a \mathcal{F}_t -Brownian motion. Then W is a \mathcal{F}_t -martingale.

Stopping time

Definition 23.

Let

- $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \geq 0}, \mathbf{P})$ stochastic basis.
- *S* random variable, with values in $[0, \infty]$.

We say that S is a stopping time if for all $t \ge 0$ we have:

 $(S \leq t) \in \mathcal{F}_t$

Interpretation 1: If we know $X_{[0,t]}$ \hookrightarrow One also knows if $S \le t$ or S > t

Interpretation 2: $S \equiv$ instant for which one stops playing \hookrightarrow Only depends on information up to current time.

Typical examples of stopping time

Proposition 24. Let: X process with values in R^d, F_t-adapted and continuous. G open set in R^d. F closed set in R^d.

We set:

 $T_G = \inf \{t \ge 0; X_t \in G\}, \quad T_F = \inf \{t \ge 0; X_t \in F\}.$

Then:

- T_F is a stopping time.
- T_G is a stopping time when X is a Brownian motion.

Proof for T_G

First aim: prove that for t > 0 we have

$$(\mathcal{T}_G < t) \in \mathcal{F}_t \tag{1}$$

Problem reduction for (1): We show that

$$(T_G < t) = \bigcup_{s \in \mathbb{Q} \cap [0,t)} (X_s \in G).$$
⁽²⁾

Since $\cup_{s\in\mathbb{Q}\cap[0,t)}(X_s\in G)\in\mathcal{F}_t$, this proves our claim.

First inclusion for (2):

$$\bigcup_{s \in \mathbb{Q} \cap [0,t)} (X_s \in G) \subset (T_G < t) \colon \text{trivial}.$$

э

イロト 不得 トイヨト イヨト

Proof for T_G (2)

Second inclusion for (2): If $T_G < t$, then

- There exist s < t such that $X_s \in G$. We set $X_s \equiv x$.
- Let $\varepsilon > 0$ such that $B(x, \varepsilon) \in G$

Then:

- There exists $\delta > 0$ such that $X_r \in B(x, \varepsilon)$ for all $r \in (s \delta, s + \delta)$.
- In particular, there exists $q \in \mathbb{Q} \cap (s \delta, s]$ such that $X_q \in G$.

Since

$$(\mathbb{Q} \cap (s - \delta, s]) \subset (\mathbb{Q} \cap [0, t)),$$

we have the second inclusion.

Proof for
$$T_G$$
 (3)

Optional times: We say that $T : \Omega \to [0, \infty]$ is an optional time if

$$(T < t) \in \mathcal{F}_t.$$

Remark: Relation (1) proves that T_G is optional.

Optional times and stopping times:

- A stopping time is an optional time.
- An optional time satisfies $(T \leq t) \in \mathcal{F}_{t+} \equiv \bigcap_{\varepsilon > 0} \mathcal{F}_{t+\varepsilon}$.
- When X is a Brownian motion, $\mathcal{F}_{t+} = \mathcal{F}_t$ (by Markov prop.).
- When X is a Brownian motion, optional time = stopping time.

Conclusion: When X is a Brownian motion, T_G is a stopping time.

Simple properties of stopping times

Proposition 26. If T is a deterministic time (T = n almost surely) \hookrightarrow then T is a stopping time.

~	_
5 a may	
Janiv	

< ロト < 同ト < ヨト < ヨト

Information at time S

Interpretation:

 $\mathcal{F}_{S} \equiv$ Information up to time S.

Optional sampling theorem

Theorem 28.

Let

- $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \geq 0}, \mathbf{P})$ stochastic basis.
- S, T two stopping times, with $S \leq T$.
- X continuous martingale.

Hypothesis:

• $\{X_{t \wedge T}; t \ge 0\}$ uniformly integrable martingale.

Then:

 $\mathbf{E}\left[X_{\mathcal{T}} \middle| \mathcal{F}_{\mathcal{S}}\right] = X_{\mathcal{S}}.$

In particular:

$$\mathbf{E}\left[X_{T}\right] = \mathbf{E}\left[X_{S}\right] = \mathbf{E}\left[X_{0}\right].$$

Remarks

Strategy of proof:

- One starts from known discrete time result.
- X is approximated by a discrete time martingale

$$Y_m \equiv X_{t_m}, \quad ext{with} \quad t_m = rac{m}{2^n}.$$

Checking the assumption: Set $Y_t = X_{t \wedge T}$.

 $\{Y_t; t \ge 0\}$ uniformly integrable martingale in following cases:

- $|Y_t| \leq M$ with M deterministic constant independent of t.
- $\sup_{t\geq 0} \mathbf{E}[|Y_t|^2] \leq M.$

•
$$\sup_{t\geq 0} \mathsf{E}[|Y_t|^p] \leq M$$
 with $p>1$.

Example of stopping time computation

Proof

Optional sampling for $M_t = B_t$: yields

$$\mathbf{P}(T_a < T_b) = \frac{b}{b+a}$$

Optional sampling for $M_t = B_t^2 - t$: yields, for a constant $\tau > 0$,

$$\mathbf{E}[B_{T\wedge\tau}^2] = \mathbf{E}\left[T\wedge\tau\right].$$

Limiting procedure: by dominated and monotone convergence,

$$\mathbf{E}[B_T^2] = \mathbf{E}[T].$$

Conclusion: we get

$$\mathbf{E}[T] = \mathbf{E}[B_T^2] = a^2 \mathbf{P} \left(T_a < T_b\right) + b^2 \mathbf{P} \left(T_b < T_a\right) = ab.$$

56 / 86

Bachelier

Bachelier and Brownian motion:

- Born 1870, son of a wine merchant \hookrightarrow Used to business
- In 1900 (predates Einstein) PhD thesis \hookrightarrow Theory of speculation
- Mathematical description of BM
 → Application to stock pricing
- Not well perceived by academic establishment

Outline

- Markov property

~	_
Samu	
Janny	

- ∢ /⊐ >

Wiener measure indexed by \mathbb{R}^d

Notations:

- We consider $\{\mathbf{P}_x; x \in \mathbb{R}^d\}$.
- Expected value under \mathbf{P}_x : \mathbf{E}_x .

Shift on paths

Shift and future: Let $Y : E \to \mathbb{R}$ measurable. \hookrightarrow Then $Y \circ \theta_s$ depends on future after *s*.

Example: For $n \ge 1$, f measurable and $0 \le t_1 < \cdots < t_n$,

$$Y(\omega) = f(\omega_{t_1}, \ldots, \omega_{t_n}) \implies Y \circ \theta_s = f(W_{s+t_1}, \ldots, W_{s+t_n}).$$

Markov property

Interpretation:

Future after s can be predicted with value of W_s only.

Pseudo-proof

Very simple function: Consider $Y \equiv f(W_t)$, let $Y \circ \theta_s = f(W_{s+t})$. For $0 \le s < t$, independence of increments for W gives

$$\begin{aligned} \mathbf{E}_{x}\left[\boldsymbol{Y} \circ \theta_{s} | \, \mathcal{F}_{s}\right] &= \mathbf{E}_{x}\left[f(W_{s+t}) | \, \mathcal{F}_{s}\right] = p_{t}f(W_{s}) \\ &= \mathbf{E}_{W_{s}}\left[f(W_{t})\right] = \mathbf{E}_{W_{s}}\left[\boldsymbol{Y}\right], \end{aligned}$$

with

$$p_h: \mathcal{C}(\mathbb{R}^d) \to \mathcal{C}(\mathbb{R}^d), \quad p_h f(x) \equiv \int_{\mathbb{R}^d} f(y) \, \frac{\exp\left(-\frac{|y-x|^2}{2h}\right)}{(2\pi h)^{d/2}} \, dy.$$

Extension:

- S Random variable $Y = f(W_{t_1}, \ldots, W_{t_n})$.
- 2 General random variable: by π - λ -systems.

π -systems and λ -systems

 π -system: Let \mathcal{P} family of sets in Ω . \mathcal{P} is a π -system if:

$$A, B \in \mathcal{P} \implies A \cap B \in \mathcal{P}$$

 λ -system: Let \mathcal{L} family of sets in Ω . \mathcal{L} is a λ -system if:

- $\ \, \Omega \in \mathcal{L}$
- **2** If $A \in \mathcal{L}$, then $A^c \in \mathcal{L}$
- 3 If for $j \ge 1$ we have:

• $A_j \in \mathcal{L}$ • $A_j \cap A_i = \emptyset$ if $j \neq i$

Then $\cup_{j\geq 1}A_j \in \mathcal{L}$

Dynkin's π - λ lemma

Lemma 33.

Let \mathcal{P} and \mathcal{L} such that:

- ${\mathcal P}$ is a $\pi\text{-system}$
- ${\mathcal L}$ is a $\lambda\text{-system}$
- $\mathcal{P} \subset \mathcal{L}$

Then $\sigma(\mathcal{P}) \subset \mathcal{L}$

・ 何 ト ・ ヨ ト ・ ヨ ト

Links with analysis

Heat semi-group: We have set $p_t f(x) = \mathbf{E}_x[f(W_t)]$. Then:

- The family $\{p_t; t \ge 0\}$ is a semi-group of operators.
- Generator of the semi-group: $\frac{\Delta}{2}$, with $\Delta \equiv$ Laplace operator.

Feynman-Kac formula: Let $f \in C_b(\mathbb{R}^d)$ and PDE on \mathbb{R}^d :

$$\partial_t u(t,x) = \frac{1}{2} \Delta u(t,x), \qquad u(0,x) = f(x).$$

Then

$$u(t,x) = \mathbf{E}_x[f(W_t)] = p_t f(x)$$

Strong Markov property

Particular case: If S finite stopping time a.s. we have

$$\mathbf{E}_{x}\left[Y_{S}\circ\theta_{S}\right|\mathcal{F}_{S}\right]=\mathbf{E}_{W_{S}}[Y_{S}]$$

Reflection principle

Theorem 35.

Let:

• W real-valued Brownian motion.

•
$$T_a = \inf\{t \ge 0; W_t = a\}.$$

Then:

$$\mathbf{P}_0\left(\mathcal{T}_a < t\right) = 2 \, \mathbf{P}_0\left(\mathcal{W}_t > a\right).$$

Image: A matrix

Intuitive proof

Independence: If W reaches a for s < t $\hookrightarrow W_t - W_{T_2} \perp \mathcal{F}_{T_2}$.

Consequence:

$$\mathbf{P}_{0}(T_{a} < t, W_{t} > a) = \frac{1}{2} \mathbf{P}_{0}(T_{a} < t)$$

Furthermore:

$$(W_t > a) \subset (T_a < t) \implies \mathbf{P}_0 (T_a < t, W_t > a) = \mathbf{P}_0 (W_t > a).$$

Thus:

$$\mathbf{P}_0(T_a < t) = 2 \, \mathbf{P}_0(W_t > a).$$

э

Image: A matrix

Rigorous proof

Reduction: We have to show

$${f P}_0 \left({{\it T}_{\sf a}} < t, \; {\it W}_t > {\it a}
ight) = rac{1}{2} \, {f P}_0 \left({{\it T}_{\sf a}} < t
ight)$$

Functional: We set (with $\inf \emptyset = \infty$)

$$S = \inf \{ s < t; W_s = a \}, \qquad Y_s(\omega) = \mathbf{1}_{(s < t, \omega(t-s) > a)}.$$

Then:

1
$$(S < \infty) = (T_a < t).$$

2 $Y_S \circ \theta_S = \mathbf{1}_{(S < t)} \mathbf{1}_{W_t > a} = \mathbf{1}_{(T_a < t)} \mathbf{1}_{W_t > a}.$

→

Rigorous proof (2) Application of strong Markov:

$$\mathbf{E}_{0}\left[Y_{S} \circ \theta_{S} \middle| \mathcal{F}_{S}\right] \mathbf{1}_{(S < \infty)} = \mathbf{E}_{W_{S}}[Y_{S}] \mathbf{1}_{(S < \infty)} = \varphi(W_{S}, S), \quad (3)$$

with

$$\varphi(x,s) = \mathsf{E}_{x} \left[\mathbf{1}_{W_{t-s} > \mathsf{a}} \right] \, \mathbf{1}_{(s < t)}.$$

Conclusion: Since $W_S = a$ if $S < \infty$ and $\mathbf{E}_a[\mathbf{1}_{W_{t-s}>a}] = \frac{1}{2}$,

$$\varphi(W_S,S) = \frac{1}{2} \mathbf{1}_{(S < t)}.$$

Taking expectations in (3) we end up with:

$$\mathbf{P}_{0}(T_{a} < t, W_{t} > a) = \frac{1}{2} \mathbf{P}_{0}(T_{a} < t).$$

Image: Image:
Outline

Stochastic processes

- 2 Definition and construction of the Wiener process
- 3 First properties
- 4 Martingale property
- 5 Markov property
- 6 Pathwise properties

< □ > < 同 > < 回 > < 回 > < 回 >

Hölder continuity

Remark:

) Notation: \mathcal{C}^γ

	_
Samu	
Janny	

Regularity of Brownian motion

Remark: \hat{W} and W are usually denoted in the same way.

Kolmogorov's criterion

Theorem 38.

Let $X = \{X_t; t \in [0, \tau]\}$ process defined on $(\Omega, \mathcal{F}, \mathbf{P})$, such that:

 $\mathbf{E}\left[|\delta X_{st}|^{\alpha}\right] \leq c|t-s|^{1+\beta}, \quad \text{for} \quad s,t \in [0,\tau], \ c,\alpha,\beta > 0$

Then there exists a modification \hat{X} of X satisfying \hookrightarrow Almost surely $\hat{X} \in C^{\gamma}$ for all $\gamma < \beta/\alpha$, i.e:

$$\mathbf{P}\left(\omega; \|\hat{X}(\omega)\|_{\gamma} < \infty\right) = 1.$$

Proof of Theorem 37

Law of
$$\delta B_{st}$$
: We have $\delta B_{st} \sim \mathcal{N}(0, t - s)$.

Moments of δB_{st} :

Using expression for the moments of $\mathcal{N}(0,1)$ \hookrightarrow for $m \geq 1$, we have

$$\mathbf{E}[|\delta B_{st}|^{2m}] = c_m |t - s|^m$$
 i.e $\mathbf{E}[|\delta B_{st}|^{2m}] = c_m |t - s|^{1+(m-1)}$

Application of Kolmogorov's criterion: *B* is γ -Hölder for $\gamma < \frac{m-1}{2m} = \frac{1}{2} - \frac{1}{2m}$ Taking limits $m \to \infty$, the proof is finished.

Levy's modulus of continuity

Interpretation: W has Hölder-regularity $=\frac{1}{2}$ at each point \hookrightarrow up to a logarithmic factor.

Variations of a function

Interval partitions: Let a < b two real numbers.

- We denote by π a set {t₀,..., t_m} with a = t₀ < ... < t_m = b
 We say that π is a partition of [a, b].
- Write $\Pi_{a,b}$ for the set of partitions of [a, b].

Definition 40.

Let a < b and $f : [a, b] \rightarrow \mathbb{R}$. The variation of f on [a, b] is:

$$V_{a,b}(f) = \lim_{\pi \in \Pi_{a,b}, |\pi| \to 0} \sum_{t_i, t_{i+1} \in \pi} |\delta f_{t_i t_{i+1}}|.$$

If $V_{a,b}(f) < \infty$, we say that f has finite variation on [a, b].

~	_
5 a may /	
Janny	

Quadratic variation

Definition 41. Let a < b and $f : [a, b] \to \mathbb{R}$. The quadratic variation of f on [a, b] is: $V_{a,b}^2(f) = \lim_{\pi \in \Pi_{a,b}, |\pi| \to 0} \sum_{t_i, t_{i+1} \in \pi} |\delta f_{t_i t_{i+1}}|^2$. If $V_{a,b}^2(f) < \infty$, \hookrightarrow We say that f has a finite quadratic variation on [a, b].

Remark: The limits for $V_{a,b}(f)$ and $V_{a,b}^2(f)$ \hookrightarrow do not depend on the sequence of partitions

Variations of Brownian motion

Theorem 42.

Let W Wiener process. Then almost surely W satisfies:

• For
$$0 \le a < b < \infty$$
 we have $V_{a,b}^2(W) = b - a$.

2 For
$$0 \le a < b < \infty$$
 we have $V_{a,b}(W) = \infty$.

Interpretation: The paths of W have:

- Infinite variation
- Finite quadractic variation,

on any interval of $\mathbb{R}_+.$

Proof

Notations: Let $\pi = \{t_0, \dots, t_m\} \in \Pi_{a,b}$. We set: • $S_{\pi} = \sum_{k=0}^{m-1} |\delta W_{t_k t_{k+1}}|^2$. • $X_k = |\delta W_{t_k t_{k+1}}|^2 - (t_{k+1} - t_k)$. • $Y_k = \frac{X_k}{t_{k+1} - t_k}$.

Step 1: Show that

$$L^2(\Omega) - \lim_{|\pi| \to 0} S_{\pi} = b - a.$$

Decomposition: We have

$$S_{\pi}-(b-a)=\sum_{k=0}^{m-1}X_k$$

Proof (2)

Variance computation: The r.v X_k are centered and indep. Thus

$$\begin{split} \mathbf{E} \left[\left(S_{\pi} - (b-a) \right)^2 \right] &= \mathbf{Var} \left(\sum_{k=0}^{m-1} X_k \right) \\ &= \sum_{k=0}^{m-1} \mathbf{Var} \left(X_k \right) = \sum_{k=0}^{m-1} (t_{k+1} - t_k)^2 \, \mathbf{Var} \left(Y_k \right) \end{split}$$

Since
$$\frac{\delta W_{t_k t_{k+1}}}{(t_{k+1} - t_k)^{1/2}} \sim \mathcal{N}(0, 1)$$
, we get:

$$\mathbf{E} \left[(S_{\pi} - (b - a))^2 \right] = 2 \sum_{k=0}^{m-1} (t_{k+1} - t_k)^2 \le 2|\pi|(b - a).$$

Conclusion: We have, for a subsequence π_n ,

$$L^2(\Omega) - \lim_{|\pi| \to 0} S_{\pi} = b - a \implies \text{a.s} - \lim_{n \to \infty} S_{\pi_n} = b - a.$$

Proof (3)

Step 2: Verify $V_{a,b}(W) = \infty$ for fixed a < b. We proceed by contradiction. Let:

• $\omega \in \Omega_0$ such that $\mathbf{P}(\Omega_0) = 1$ and $\lim_{n \to \infty} S_{\pi_n}(\omega) = b - a > 0$.

• Assume
$$V_{a,b}(W(\omega)) < \infty$$
.

Bound on increments: Thanks to continuity of W:

Sup_{n≥1}
$$\sum_{k=0}^{m_n-1} |\delta W_{t_k t_{k+1}}(\omega)| \leq c(\omega)$$
Im_{n→∞} $\max_{0 \leq k \leq m_n-1} |\delta W_{t_k t_{k+1}}(\omega)| = 0$
Thus

$$\mathcal{S}_{\pi_n}(\omega) \leq \max_{0\leq k\leq m_n-1} |\delta W_{t_kt_{k+1}}(\omega)| \sum_{k=0}^{m_n-1} |\delta W_{t_kt_{k+1}}(\omega)| \longrightarrow 0.$$

Contradiction: with $\lim_{n\to\infty} S_{\pi_n}(\omega) = b - a > 0$.

Proof (4)

Step 3: Verify $V_{a,b}(W) = \infty$ for all couple $(a, b) \in \mathbb{R}^2_+$ \hookrightarrow It is enough to check $V_{a,b}(W) = \infty$ for all couple $(a, b) \in \mathbb{Q}^2_+$

Recall: For all couple $(a, b) \in \mathbb{Q}^2_+$, we have found: $\hookrightarrow \exists \ \Omega_{a,b} \text{ s.t } \mathbf{P}(\Omega_{a,b}) = 1 \text{ and } V_{a,b}(W(\omega)) = \infty \text{ for all } \omega \in \Omega_{a,b}.$

Full probability set: Let

$$\Omega_0 = igcap_{(a,b) \in \mathbb{Q}^2_+} \Omega_{a,b}.$$

Then:

- $P(\Omega_0) = 1.$
- If $\omega \in \Omega_0$, for all couple $(a, b) \in \mathbb{Q}^2_+$ we have $V_{a,b}(W(\omega)) = \infty$.

э.

イロト イヨト イヨト ・

Irregularity of W

Proposition 43.

Let:

- W Wiener process
- $\gamma > 1/2$ and $0 \le a < b$

Then almost surely W does not belong to $C^{\gamma}([a, b])$.

~	_
Samu	
Janny	

Proof

Strategy: Proceed by contradiction. Let:

- $\omega \in \Omega_0$ such that $\mathbf{P}(\Omega_0) = 1$ and $\lim_{n \to \infty} S_{\pi_n}(\omega) = b a > 0$.
- Suppose $W \in C^{\gamma}$ with $\gamma > 1/2$, i.e $|\delta W_{st}| \le L|t s|^{\gamma}$ \hookrightarrow With *L* random variable.

Bound on quadratic variation: We have:

$$S_{\pi_n}(\omega) \leq L^2 \sum_{k=0}^{m_n-1} |t_{k+1}-t_k|^{2\gamma} \leq L^2 |\pi_n|^{2\gamma-1}(b-a) \longrightarrow 0.$$

Contradiction: with $\lim_{n\to\infty} S_{\pi_n}(\omega) = b - a > 0$.

Irregularity of W at each point

Theorem 44.

Let:

- W Wiener process
- $\gamma > 1/2$ and $\tau > 0$

Then

- Almost surely the paths of W are not γ-Hölder continuous at each point s ∈ [0, τ].
- **2** In particular, W is nowhere differentiable.