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Stochastic processes

— Definition 1. | \
Let:
e (02, F,P) probability space.
e /| C Ry interval.

e {X;; t € I} family of random variables, R"-valued
Then:

Q If w — X;(w) measurable, X is a stochastic process

Q t — Xi(w) is called a path

© X is continuous if its paths are continuous a.s.
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Modifications of processes

— Definition 2. | \

Let X and Y be two processes on (2, F, P).
@ X is a modification of Y if

P(X,=Y,)=1 foral tel

@ X and Y are non-distinguishable if

P(X;=VY foralltel)=1

Remarks:

(i) Relation (2) implicitly means that (X; = Y; forall t € ) € F
(i) (2) is much stronger than (1)

(iii) If X and Y are continuous, (2) <= (1)
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Filtrations

Filtration: Increasing sequence of o-algebras, i.e

— If s < t, then Fs C F; C F.

Interpretation: JF; summarizes an information obtained at time t
Negligible sets: N' = {F € F; P(F) =0}

Complete filtration: Whenever N’ C F; for all t € /

Stochastic basis: (€2, F, (F¢)ter, P) with a complete (F¢)ie

Remark: Filtration (F¢):es can always be thought of as complete
< One replaces F; by F; = o(F:, N)
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Adaptation

— Definition 3. \
Let
o (Q,F,(Ft)tes, P) stochastic basis
e {X;; t € I} stochastic process
We say that X is F;-adapted if for all t € [:

Xe 1 (Q,F:) — (R™,B(R™)) is measurable

\. J

Remarks:
(i) Let FX = o{X,; s < t} the natural filtration of X.
< Process X is always F-adapted.

(ii) A process X is F-adapted iff FX C F;
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© Definition and construction of the Wiener process
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Definition of the Wiener process
Notation: For a function f, 0fy = f, — .

—~ Definition 4. \
Let
e (9, F,P) probability space
o {W,; t > 0} stochastic process, R-valued
We say that W is a Wiener process if:

Q@ W, = 0 almost surely
Q@ letn>1and 0=ty < t; <--- < t, Theincrements

Wiy, Wy, ..., 0W,, ., are independent
© For 0 < s <t we have W, ~ N(0,t —s)

© W has continuous paths almost surely

\. J
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[llustration: random path
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Existence of the Wiener process

Theorem 5.

There exists a probability space (2, F,P) on which one can
construct a Wiener process.

Classical constructions:

@ Kolmogorov's extension theorem
@ Limit of a renormalized random walk

@ Lévy-Ciesilski's construction

Probabiity Theory 12 / 86



Haar functions

~ Definition 6. \

We define a family of functions {hy : [0,1] — R; k > 0}:

h(t) = 1
h]_(t) = 1[0’1/2](1:) - 1(1/2,1](1‘-)7

and for n > 1 and 2" < k < 21

hk(t) = 2n/2 1 kgngn’kfzg;rlﬁ (t) - 2n/2 1(k72;;r1/27k722:+1 (t)

\. J

~ Lemma 7. \

The functions {h : [0,1] — R; k > 0} form
an orthonormal basis of L2([0, 1]).

\. J
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Haar functions: illustration
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Proof

Norm: For 2" < k < 2™ we have

k—2"41

1
2 __An 2n _
/0 h(t) dt =2 /kgf" dt =1.

Orthogonality: If kK < I, we have two situations:

(i) Supp(hx) N Supp(h) = 2.
Then triviaIIy <hk, h/>L2([0,1]) =0

(ii) Supp(hy) C Supp(hx).
Then if 2" < k < 2" we have:

1
(i B 2oy = £272 /0 hi(t) dt = 0.
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Proof (2)

Complete system: Let f € L?([0,1]) s.t (f, hx) = O for all k.
— We will show that f = 0 almost everywhere.

Step 1: Analyzing the relations (f, hy) =0
< We show that [ f(u) du = 0 for dyadic r,s.

Step 2: Since [! f(u) du = 0 for dyadic r, s, we have
t
f(t) =0 (/ f(u) du) =0, almost everywhere,
0

according to Lebesgue’s derivation theorem.
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Schauder functions

— Definition 8. \

We define a family of functions {s. : [0,1] — R; k > 0}:

s(t) = /Ot O

\.

—~ Lemma 9.

Functions {s; : [0,1] — R; k > 0} satisfy for 2" < k < 2"
@ Supp(sk) = Supp(hi) = [455, =5+

@ |Isilloc = 5z

Probabiity Theory 17/ 86



Schauder functions: illustration
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Gaussian supremum

~ Lemma 10.

Let {X\; k > 1} i.i.d sequence of N(0,1) r.v. We set:
M, =sup {|Xk|; 1 < k < n}.

Then

M, =0 ( In(n)) almost surely

SEIAN Brownian motion Probability Theory 19 / 86



Proof

Gaussian tail: Let x > 0. We have:

2 o0 Z2 Z2
P(|Xk| >X) = (27‘(’)1/2/)( e 4e Tdz
2

2 [0 2
< cle’T/ e v dz< e +.
X

Application of Borel-Cantelli: Let A, = (|X| > 4(In(k))*/?).
According to previous step we have:

P(A)< — = Y P(A) <00 = P(limsupA,) =0

= 4
k k=1

Conclusion: w-a.s there exists kg = ko(w) such that
> | Xi(w)] < 4[In(k)]V2 for k > k.
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Concrete construction on [0, 1]

,—[Proposition 11.] \
Let
@ {sx; k > 0} Schauder functions family
@ {Xk; k > 0} i.i.d sequence of AV/(0,1) random variables.
We set:

Wt = Z Xk Sk(t).

k>0

Then W is a Wiener process on [0, 1]
| < In the sense of Definition 4.

Probabiity Theory 21/ 86



Proof: uniform convergence

Step 1: Show that Y7,~0 Xk sk(t) converges
< Uniformly in [0, 1], almost surely.
< This also implies that W is continuous a.s

Problem reduction: See that for all ¢ > 0
— there exists ny = ng(w) such that for all ny < m < n we have:

2"—-1

Z X Sk

k=2m

<e.

e}

Probabiity Theory 22 / 86



Proof: uniform convergence (2)

Useful bounds:
Q Let n > 0. We have (Lemma 10):

| Xi| < ck”, with ¢ =c(w)

@ For 27 < k < 2P*1 functions s, have disjoint support. Thus

|

D sk

k=2p

1

S 2§+1'

o
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Proof: uniform convergence (3)

Uniform convergence: for all t € [0, 1] we have:

on 2P+1_1
Yo Xes(t)] < D0 D0 [Xelsi(t)
k=2m p>m k=2°P
2P+l
< Z( sup |Xe|> > s(t)
p>m \2P<4<2p1-1 k—2p
1
< c
L2 i)
(0]
<
= 2”’7(%*7)),

which shows uniform convergence.
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Proof: law of 6 W,;
Step 2: Show that 0W,; ~ N(0,t —s) for 0 < r < t.

Problem reduction: See that for all A € R,

(t—r)A?
[ W] = 2

Recall: §W,e = 3450 Xk(sk(t) — s(r))

Computation of a characteristic function:
Invoking independence of X\'s and dominated convergence,

E[eiMW’f} _ HE[ o\ Xk (sk(t) sk(r)):|

k>0
2
_ H o A2(s, (t) s.(1)2 . e,% Zkzo(sk(t)fsk(r))Q
k>0

Probability Theory 25 / 86



Proof: law of dW,; (2)

Inner product computation: For 0 < r < t we have

dos(r)se(t) = <hk, 1[0,r]> <hk, 1[o,t]> = <1[0,r]7 1[0,t]> =r.

k>0 k>0

Thus:
Z[sk(t) —s(NP=t—r.

k>0

Computation of a characteristic function (2): We get

E {ezmwﬂ] _ e_A_22 S0l —sc(r)? _ e_(t_ém_

Probabiity Theory 26/ 86



Proof: increment independence

Simple case: For 0 < r < t, we show that W, 1L 6 W,
Computation of a characteristic function: for A, \» € R,

E [ez()qW,-i-)\g 6W,t)] _ H E [elXk[)\lsk(r)+)\2(Sk(t)_sk(r))]]
k>0

— e_%Ekzo[>\15k(r)+>\2(5k(f)_5k(r))]2 _ e—%[/\fr—&-/\g(t—r)]

Conclusion: We have, for all A, A\, € R,
E [ez()qW,-i-)\z 5Wrt)] —E {ezMW,] E [ez)\g JWn»} ,

and thus W, 1L 6 W,,.

Probabiity Theory 27/ 86



Effective construction on [0, 00)

,—[Proposition 12.] \
Let:
e For k > 1, a space (Qx, Fx, Px)
< On which a Wiener process W* on [0, 1] is defined
° 0= [Tk>1 k. a8 — Rk>1Fk, P= Rk>1Pk
We set Wy = 0 and recursively:

p =W, + WL if te[nn+1]

Then W is a Wiener process on R
— Defined on (2, F, P).

\.
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Partial proof
Aim: See that §W,, ~ N(0,t — s)
—Swithm<s<m+1<n<t<n+l1

Decomposition of d W,;:: We have

SWee =" W+ WL — (Z Wi+ wmt
k=1

) =21+ 2, + Zs,
k=1

with

Zy= Y W Z=wrt-wrtl Zs= W)

s—m> t—n *
k=m+2

Law of 0 Wy The Z;'s are independent centered Gaussian.
Thus 6 Wy ~ N(0, 02), with:

o’=n—(m+1)+1—(s—m)+t—n=t—s.

SEIAN Brownian motion
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Wiener process in R”

~ Definition 13. \
Let

e (9, F,P) probability space

o {W,;; t > 0} R"-valued stochastic process
We say that W is a Wiener process if:

Q@ Wy = 0 almost surely
Q@ letn>1and 0=ty <t <--- < t, Theincrements

Wiy, 0Wety, ..., 0Ws, _,, are independent
© For 0 < s < t we have §W,; ~ N(0, (t — s)Idgn)
© W continuous paths, almost surely

\.

Remark: One can construct W
— from n independent real valued Brownian motions.
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[[lustration: 2-d Brownian motion
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Wiener process in a filtration

r—[Definition 14.] .
Let

o (Q,F,(Ft)t>0,P) stochastic basis

e {W,; t > 0} stochastic process with values in R”

We say that W is a Wiener process
with respect to (2, F, (F¢)e>o0, P) if:
@ W, = 0 almost surely
Q Let0<s<t. Then oW, 1L Fi.
© For 0 < s < t we have §Wy ~ N (0, (t — s)Idgn)
© W has continuous paths almost surely

\.

Remark: A Wiener process according to Definition 13
is a Wiener process in its natural filtration.
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Brown

Some facts about Brown:

@ Scottish, Lived 1773-1858

@ Pioneer in the use of microscope
@ Detailed description of cell nucleus

@ Observed 2-d Brownian motion
— Pollen particles in water

Probabiity Theory 33 / 86
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Gaussian property

~ Definition 15. ) \
Let

e (Q, F,P) probability space

@ {X;; t > 0} stochastic process, with values in R

We say that X is a Gaussian process if
forall 0 <t; <--- < t, we have:

(X4, .-, X:,) Gaussian vector.

Proposition 16.] \

Let W be a real valued Brownian motion .
Then W is a Gaussian process.

Probabiity Theory 35/ 86



Proof

Notation: For 0 =ty < t; < --- < t, we set
OXn:(th,...7th)
o Yn - (5Wtot17 cee 75th—1tn)

Vector Y,: Thanks to independence of increments of W
— Y, is a Gaussian vector.

Vecteur X,: There exists M € R™" such that X, = MY,
— X, Gaussian vector

Covariance matrix: We have E[W;W;] = s A t. Thus

Wt;"‘7Wt NNO,rn, W|th rU:t,/\t
1 n n J
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Consequence of Gaussian property

Characterization of a Gaussian process:
Let X Gaussian process. The law of X is characterized by:

,LLI’ — E[Xt]7 and pS,t — COV(XS, XZ‘)

Another characterization of Brownian motion:
Let W real-valued Gaussian process with

e =0, and ps;=5sAt.

Then W is a Brownian motion.

Probabiity Theory 37/ 86



Brownian scaling

,—[Proposition 17.]
Let

@ W real-valued Brownian motion.
@ A constant a > 0.

We define a process W? by:

Wz =a?W,, for t>0.

Then W? is a Brownian motion.

Proof:

Gaussian characterization of Brownian motion.

SEIAN Brownian motion
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Canonical space

,—{Proposition 18.]
Let £ = C([0,00); R"). We set:

I gllos
d(f,g) = :
(F:8) = 2 570 117 - alw)

where
If — gllook = sup {|f; — g:|; t € [0,k]}.

Then E is a separable complete metric space.

\. J
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Borel o-algebra on E

,—[Proposition 19.]
Let £ = C([0,00);R"). For m > 1 we consider:

e 0t < - <ty
(] Al,...,AmEB(R")

Let A be the o-algebra generated by rectangles:

Then A = B(E), Borel o-algebra on E.

ntm(Ar, o AR) ={X € E; x4y € A1, ..., X, € An}.

SEIAN Brownian motion

Probability Theory
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Wiener measure

,—[Proposition 20.]

Let

\.

e W R"-valued Wiener process, defined on (2, F, P).
o T:(Q,F)— (E,A), such that T(w) = {W,(w); t > 0}.
Then:

© The application T is measurable
@ Let Po=Po T71, measure on (E, A).

Py is called Wiener measure.

© Under Py, the canonical process w can be written as:

w; = Wy, where W Brownian motion.

Probability Theory
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Proof

Inverse image of rectangles: We have

T (Ryn(Ar e An)) = (W, € AL, ..., W,, € Ap) € F.

Conclusion: T measurable, since A generated by rectangles.
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Einstein

Einstein and Brownian motion:

@ In 1905, 4 revolutionary papers
< While Einstein was employee
at Patent Office in Zurich

@ One of the 4 papers explains BM
— Action of water molecules on pollen

@ Lead to evidence for atoms

@ First elements about
transition kernel of Brownian motion

Probabiity Theory 43 / 86
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Martingale property

r—[Definition 21.} .
Let

o (Q, F,(Ft)t>0, P) stochastic basis

@ {X;; t > 0} stochastic process, with values in R”

We say that X is a F;-martingale if
Q@ X, e LYQ)forallt >0.
Q@ X is F;-adapted.
© E[0Xy| F]=0forall0<s <t

\. J

,—[Proposition 22.] \

Let W a F-Brownian motion.
Then W is a Fi-martingale.

\.
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Stopping time

r—[Definition 23.} \
Let

o (Q,F,(Ft)t>0, P) stochastic basis.

@ S random variable, with values in [0, co].
We say that S is a stopping time if for all t > 0 we have:

(S<t)eF

Interpretation 1: If we know Xg ¢
<% One also knows if S < torS >t

Interpretation 2: S = instant for which one stops playing
< Only depends on information up to current time.
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Typical examples of stopping time

,—[Proposition 24.] \
Let:

@ X process with values in RY, F,-adapted and continuous.

@ G open set in RY.
@ F closed set in RY.
We set:

Te=inf{t>0;, X, € G}, Tp=inf{t>0; X, € F}.

Then:

@ T is a stopping time.

e T¢ is a stopping time when X is a Brownian motion.
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Proof for T

First aim: prove that for t > 0 we have
(Te <t)e F

Problem reduction for (1): We show that

(Te<t)= |J (X €0G).
seQN[0,t)

Since Uscqnpo,t)(Xs € G) € F, this proves our claim.
First inclusion for (2):

U X €G)c(Te<t): trivial.

s€QN[o,t)

Probability Theory

(1)

()
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Proof for T¢ (2)

Second inclusion for (2): If Tg < t, then
@ There exist s < t such that X; € G. We set X, = x.
@ Let € > 0 such that B(x,e) € G

Then:

@ There exists 0 > 0 such that X, € B(x,¢) for all
re(s—a,s+9).

@ In particular, there exists g € QN (s — ¢, s] such that X, € G.
Since
(@ﬂ(s—é,s]) - (Qﬂ[oat))7

we have the second inclusion.
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Proof for T¢ (3)

Optional times: We say that T : Q — [0, o0] is an optional time if

(T <t) e F.

Remark: Relation (1) proves that T is optional.

Optional times and stopping times:
@ A stopping time is an optional time.
@ An optional time satisfies (T < t) € Fri = Neng Frie-
e When X is a Brownian motion, F;; = F; (by Markov prop.).
@ When X is a Brownian motion, optional time = stopping time.

Conclusion: When X is a Brownian motion, T is a stopping time.

Probabiity Theory 50 / 86



Simple properties of stopping times

,—[Proposition 25.] \
Let S and T two stopping times. Then
QO SAT
Q@ SVvT
are stopping times.

\.

Proposition 26.]

If T is a deterministic time (T = n almost surely)
— then T is a stopping time.

Probabiity Theory 51/ 86



Information at time S

r—[Definition 27.} .
Let
e (Q,F,(Ft)t>0, P) stochastic basis.
@ S stopping time.
The o-algebra Fs is defined by:

Fs={Aec F, [An(S<t)] € F;forall t >0}.

Interpretation:
Fs = Information up to time S.
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Optional sampling theorem

r—[Theorem 28.} .
Let
o (Q, F,(Ft)t>0, P) stochastic basis.
e S, T two stopping times, with § < T.

@ X continuous martingale.

Hypothesis:
@ {Xia7:; t > 0} uniformly integrable martingale.
Then:
E [X7| Fs] = Xs.
In particular:

E[X7] = E[Xs] = E[Xo].
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Remarks

Strategy of proof:

@ One starts from known discrete time result.

e X is approximated by a discrete time martingale

m

Ym=X,, with thE.

Checking the assumption: Set Y; = Xia1.
{Y:; t > 0} uniformly integrable martingale in following cases:

o |Y:| < M with M deterministic constant independent of t.
o supyso E[|Vi2] < M.
® sup,q E[|Y:|P] < M with p > 1.
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Example of stopping time computation

,—[Proposition 29.]

Let:

@ B standard Brownian motion, with By = 0.
e —a<0<b
o T,=inf{t >0: B, = —a} and
Ty, =inf{t > 0: B; = b}.
o T =T,NTp.
Then:

b
P(Ta< Tb):m, and E[T]:ab

Probability Theory
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Proof

Optional sampling for M; = B;: yields

b

P(T, < To)= .

Optional sampling for M, = B2 — t: yields, for a constant 7 > 0,
E[B7, ] =E[T A7].
Limiting procedure: by dominated and monotone convergence,
E[B2] = E[T].
Conclusion: we get

E[T] =E[B] = a°P (T, < T,) + b°P (T, < T,) = ab.
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Bachelier

Bachelier and Brownian motion:

@ Born 1870, son of a wine merchant
— Used to business

@ In 1900 (predates Einstein) PhD thesis
— Theory of speculation

@ Mathematical description of BM
— Application to stock pricing

@ Not well perceived by academic
establishment
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Wiener measure indexed by R

,—[Proposition 30.] \
Let:
e x € RY.

There exists a probability measure P, on (E,.A) such that:
— Under P, the canonical process w can be written as:

wt = x + W;, where W Brownian motion.

Notations:
e We consider {P,; x € R9}.
o Expected value under P,: E,.
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Shift on paths
r—[Definition 31.}

Let
e E =C([0,00); RY), equipped with Borel A = o-algebra.
e t>0.
We set:
0. E — E, {ws; s>0}— {weys; s >0}

Shift and future: Let Y : E — R measurable.
< Then Y o 6, depends on future after s.

Example: For n > 1, f measurable and 0 < t; < --- < t,,
Y(w):f(whw"’wtn) = Yogs:f(Ws—i—tl»---aWs—i—t,,)-
Probability Theory 60 / 86



Markov property

r—[Theorem 32.} \

Let:
e W Wiener process, with values in RY.
e Y : E — R bounded measurable.
e s>0.

Then:

E.[Y 00 F.] = Ew,[Y].

Interpretation:
Future after s can be predicted with value of W; only.
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Pseudo-proof

Very simple function: Consider Y = f(W,), let Y o 0y = f(W;,,).
For 0 < s < t, independence of increments for W gives

Ex [Y © es’fs] = Ex [f(Ws-‘rt)'fs] = ptf(Ws)
= Ew, [f(W)]=Ew. [Y],

with

ly—x[?
exp (— 2521
. o(Td d — I N A
pu s CRY) =+ CRY), puf(x) = [ F) i o
Extension:
© Random variable Y = f(W,,..., W,).
© General random variable: by 7-\-systems.
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m-systems and A\-systems

m-system: Let P family of sets in Q. P is a m-system if:

ABeP = ANBEeP

A-system: Let £ family of sets in 2. L is a A-system if:
Q Qc’l
Q@ IfAc L, then A€ L
© If for j > 1 we have:
> Aj eL
s ANA =2 ifj£i
Then U 1Aj € £
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Dynkin's -\ lemma

~ Lemma 33. N

Let P and L such that:

@ P is a m-system

@ L is a A-system
e PCL

Then o(P) C L

Probabiity Theory 64 / 86



Links with analysis

Heat semi-group: We have set p,f(x) = E,[f(W;)]. Then:
@ The family {p;; t > 0} is a semi-group of operators.

@ Generator of the semi-group: %, with A = Laplace operator.
Feynman-Kac formula: Let f € Cp(R?) and PDE on R?:
1
Oru(t, x) = EAu(t,x), u(0,x) = f(x).

Then
u(t, x) = Ex[f(W;)] = pef(x)
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Strong Markov property

r—[Theorem 34.]

Let:

e W Wiener process in RY.

e Y :R; x E — R bounded measurable.
@ S stopping time.
Then:

E, [Ys00s| Fs] L(s<oc) = Ews[Ys] L(s<0)-

\.

Particular case: If S finite stopping time a.s. we have

E.[Ys o 0s| Fs] = Ewg[Ys]
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Reflection principle

r—[ Theorem 35.}

Let:

@ W real-valued Brownian motion.
e a> 0.

o T,=inf{t >0, W, = a}.
Then:

Po(Ta<t):2P0(Wt>a).
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Intuitive proof

Independence: If W reaches a for s < t
— W, — Wr, 1L Fr, .

Consequence:
1
Po(Ta < t, Wt > 3): §P0(Ta < t)
Furthermore:

(W, >a)C (T, <t) = Po(T,<t, Wy >a)=Py(W; > a).

Thus:
Po(T: <t)=2Py(W; > a).
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Rigorous proof

Reduction: We have to show

1
Po(T, <t Wt>a):§Po(Ta<t)

Functional: We set (with inf @ = 00)
S =nf {S <t: W, = a}, Ys(w) = 1(5<t7w(t_5)>a).

Then:
@ (S<o0)=(T,<t).
Q Yso0s=1isct)lw,>a = Lim,cn) Lwsa
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Rigorous proof (2)

Application of strong Markov:

Eo [Ys 0 0s| Fs] 1(scoo) = Ews[Ys] L(scoo) = (W5, S),  (3)

with
¢(x,s) = Ex |:1Wt—s>3:| 1<ty

Conclusion: Since Ws = aif § < oo and E;[1w,_~.] = 1,

1
o(Ws,S) = 5 1s<y).

Taking expectations in (3) we end up with:
1
Po(Ta < t, Wt > a): §P0(Ta < t).
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Outline

@ Pathwise properties

=] = - = a



Holder continuity

r—[Definition 36.} \
Let

f:[a, b] — R".
We say that f is y-Holder if ||f]|, < oo with:

ofs
Il = sup o

s,t€[a,b], s#t |t - 5’7 .

Remark:
Q |||l is a semi-norm.
@ Notation: C”
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Regularity of Brownian motion

r—[ Theorem 37.] \

Let

oe7>0
e W Wiener process on [0, 7]
o v€(0,1/2)

Then there exists a version W of W such that almost surely:
— The paths of W are ~-Holder.

\. J

Remark: W and W are usually denoted in the same way.
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Kolmogorov's criterion

r—[Theorem 38.}

Let X = {X;; t € [0, 7]} process defined on (2, F,P),
such that:

E[|0Xs|*] < c|t —s|*™#, for s,t€]0,7], c,a, 3 >0

Then there exists a modification X of X satisfying
— Almost surely X € C? for all v < 3/q, i.e:

P (w; [IX(@)ll5 < 00) =1.

Probabiity Theory 74 / 86



Proof of Theorem 37

Law of §Bs;: We have 0By ~ N(0,t — s).

Moments of dBs;:
Using expression for the moments of N(0, 1)
< for m > 1, we have

E [|5Bst|2'"} =cplt—s|™ ie E [\5Bst]2m} = Colt — | (D)

Application of Kolmogorov's criterion:
B is y-Hélder for v < ’g—;l — % _ L

2m

Taking limits m — oo, the proof is finished.
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Levy’'s modulus of continuity

r—[Theorem 39.} \

Let 7 > 0 and W Wiener process on [0, 7].
Then almost surely W satisfies:

i |0 We| B
imsup sup iR 1
50+ 0<s<t<r|t—s|<s (20 In(1/6))

\. J

Interpretation: W has Holder-regularity = % at each point
— up to a logarithmic factor.
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Variations of a function

Interval partitions: Let a < b two real numbers.

@ We denote by m a set {tg,...,tm} Witha=t, <...<tp=0>b
We say that 7 is a partition of [a, b].

e Write I, for the set of partitions of [a, b].

r—[Definition 40.} \
Let a < b and f : [a, b] — R. The variation of f on [a, b] is:
Va,b(f) = lim Z |5ftiti+1| :

weN, p, |7|—0 titen

If V,b(f) < oo, we say that f has finite variation on [a, b].
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Quadratic variation

r—[Definition 41.}

Let a< band f:[a, b] — R.
The quadratic variation of f on [a, b] is:

Va2,b(f) - lim Z |5ftiti+1|2 .

weM, p, |m|—0 ti bl €T

If V;b(f) < 00,
— We say that f has a finite quadratic variation on [a, b].

\.

Remark: The limits for V, ,(f) and VZ,(f)
— do not depend on the sequence of partitions
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Variations of Brownian motion

r—[ Theorem 42.] \

Let W Wiener process.
Then almost surely W satisfies:

Q For0<a<b<oowehave V2,(W)=b-—a.
@ For 0 < a < b < oo we have V, ,(W) = cc.

Interpretation: The paths of W have:
@ Infinite variation
e Finite quadractic variation,

on any interval of R,.
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Proof

Notations: Let m = {to, ..., tm} € 4. We set:
° S =210 6 W [
*] Xk - |6Wtktk+1|2 - (tk+1 - tk)

— Xk
° Y= tep1—t

Step 1: Show that

[2(Q) — lim S, = b — a.

|7|—0

Decomposition: We have
m—1
Sﬂ-—(b—a): ZXk
k=0
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Proof (2)

Variance computation: The r.v X are centered and indep. Thus

E[(S:—(b—2)*] = Var (gxk>

m—1 m—1
= Z Var (Xk) = Z(tk-i-l — tk)2 Var(Yk)
k=0 k=0

Since kL A(0,1), we get:

(tky1—t)1/?

E[(S:—(b-2))*] = 2§(tk+l — 1) < 2/x|(b — a).

Conclusion: We have, for a subsequence 7,,

L(Q)— lim S, =b—a = as—lmS, =b—a

|w|—0
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Proof (3)

Step 2: Verify V, (W) = oo for fixed a < b.
We proceed by contradiction. Let:

@ w € Qg such that P(Q) =1 and lim, o S;,(w) = b—a > 0.
@ Assume V,,(W(w)) < oo.

Bound on increments: Thanks to continuity of W:
n—1
Q sup,>1 220" [0 W, ()] < c(w)
Q lim, oo maxo<k<m,—1 |0 We,.,(w)| =0
Thus
mp—1

STFn(w) < max 1 |5Wtktk+l(w)| Z |6Wtktk+1(w)| — 0.
k=0

T 0<k<mn—

Contradiction: with lim, . S,,(w) =b—a> 0.
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Proof (4)

Step 3: Verify V,,(W) = oo for all couple (a, b) € R3
< It is enough to check V, ,(W) = oo for all couple (a, b) € Q2

Recall: For all couple (a, b) € Q?%, we have found:
— 3 Qp st P(Qup) =1and V,,(W(w)) = oo forall w € Q, .

Full probability set: Let

Qo = ﬂ Q,p.
Then: (a,b)eQy

] P(Qo) = 1.
o If w € Qy, for all couple (a,b) € Q2 we have V, ,(W(w)) = occ.
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Irregularity of W

,—[Proposition 43.] \

Let:
@ W Wiener process
ev>1/2and0<a<b
Then almost surely W does not belong to C7([a, b]).

\. J
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Proof

Strategy: Proceed by contradiction. Let:

@ w € Qg such that P(Q) =1 and lim, o, S;,(w) = b—a > 0.

@ Suppose W € C” with v > 1/2, i.e [0W| < L|t —s|"
— With L random variable.
Bound on quadratic variation: We have:
mp—1
Sey(w) < 12 Z |tips — te|?? < L|m, |27 H(b —a) — 0.
k=0

Contradiction: with lim,_. Sy, (w) = b —a > 0.
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Irregularity of W at each point

r—[Theorem 44.} :
Let:
o W Wiener process
@ y>1/2and 7>0
Then

@ Almost surely the paths of W
are not y-Holder continuous at each point s € [0, 7].

@ In particular, W is nowhere differentiable.
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