Conditional expectation

Samy Tindel

Purdue University

Taken from *Probability: Theory and examples* by R. Durrett

1 / 64

Outline

- Definition
- 2 Examples
- Existence and uniqueness
- Conditional expectation: properties
- 5 Conditional expectation as a projection
- 6 Conditional regular laws

Outline

- Definition
- 2 Examples
- Existence and uniqueness
- 4 Conditional expectation: properties
- Conditional expectation as a projection
- Conditional regular laws

Formal definition

Definition 1.

We are given a probability space $(\Omega, \mathcal{F}_0, \mathbf{P})$ and

- A σ -algebra $\mathcal{F} \subset \mathcal{F}_0$.
- $X \in \mathcal{F}_0$ such that $\mathbf{E}[|X|] < \infty$.

Conditional expectation of X given \mathcal{F} :

- Denoted by $\mathbf{E}[X|\mathcal{F}]$
- Defined by: $\mathbf{E}[X|\mathcal{F}]$ is the $L^1(\Omega)$ r.v Y such that
 - (i) $Y \in \mathcal{F}$.
 - (ii) For all $A \in \mathcal{F}$, we have

$$\mathbf{E}[X\mathbf{1}_A] = \mathbf{E}[Y\mathbf{1}_A],$$

or otherwise stated $\int_A X d\mathbf{P} = \int_A Y d\mathbf{P}$.

Remarks

Notation: We use the notation $Y \in \mathcal{F}$ to say that a random variable Y is \mathcal{F} -measurable.

Interpretation: More intuitively

- ullet represents a given information
- Y is the best prediction of X given the information in \mathcal{F} .

Existence and uniqueness:

To be seen after the examples.

Outline

- Definition
- 2 Examples
- Existence and uniqueness
- Conditional expectation: properties
- Conditional expectation as a projection
- Conditional regular laws

Easy examples

Example 1: If
$$X \in \mathcal{F}$$
, then $\mathbf{E}[X|\mathcal{F}] = X$.

Definition: We say that $X \perp \!\!\! \perp \mathcal{F}$ if \hookrightarrow for all $A \in \mathcal{F}$ and $B \in \mathcal{B}(\mathbb{R})$, we have

$$\mathbf{P}((X \in B) \cap A) = \mathbf{P}(X \in B) \, \mathbf{P}(A),$$

or otherwise stated: $X \perp \!\!\! \perp \mathbf{1}_A$.

Example 2: If $X \perp \!\!\! \perp \mathcal{F}$, then $\mathbf{E}[X|\mathcal{F}] = \mathbf{E}[X]$.

Proof: example 2

We have

- (i) $\mathbf{E}[X] \in \mathcal{F}$ since $\mathbf{E}[X]$ is a constant.
- (ii) If $A \in \mathcal{F}$,

$$\mathbf{E}[X \mathbf{1}_A] = \mathbf{E}[X] \mathbf{E}[\mathbf{1}_A] = \mathbf{E}\Big[\mathbf{E}[X] \mathbf{1}_A\Big].$$

Discrete conditional expectation

Example 3: We consider

- $\left\{\Omega_j; j\geqslant 1\right\}$ partition of Ω such that $\mathbf{P}(\Omega_j)>0$ for all $j\geqslant 1$.
- $\mathcal{F} = \sigma(\Omega_i; j \geqslant 1)$.

Then

$$\mathbf{E}[X|\mathcal{F}] = \sum_{j\geqslant 1} \frac{\mathbf{E}[X\,\mathbf{1}_{\Omega j}]}{\mathbf{P}(\Omega_j)}\,\mathbf{1}_{\Omega j} \equiv Y. \tag{1}$$

Proof: example 3

Strategy: Verify (i) and (ii) for the random variable Y.

(i) For all $j \geq 1$, we have $\mathbf{1}_{\Omega_j} \in \mathcal{F}$. Thus, for any sequence $(\alpha_j)_{j \geq 1}$,

$$\sum_{j\geq 1}\alpha_i\mathbf{1}_{\Omega_j}\in\mathcal{F}.$$

(ii) It is enough to verify (1) for $A = \Omega_n$ and $n \ge 1$ fixed. However,

$$\mathsf{E}[Y\,\mathbf{1}_{\Omega_n}] = \mathsf{E}\left\{\frac{\mathsf{E}[X\mathbf{1}_{\Omega_n}]}{\mathsf{P}(\Omega_n)}\,\mathbf{1}_{\Omega_n}\right\} = \frac{\mathsf{E}[X\,\mathbf{1}_{\Omega_n}]}{\mathsf{P}(\Omega_n)}\mathsf{E}[\mathbf{1}_{\Omega_n}] = \mathsf{E}[X\,\mathbf{1}_{\Omega_n}].$$

Samy T.

Undergrad conditional probability

Definition: For a generic measurable set $A \in \mathcal{F}_0$, we set

$$\mathbf{P}(A|\mathcal{F}) \equiv \mathbf{E}[\mathbf{1}_A|\mathcal{F}]$$

Discrete example setting:

Let B, B^c be a partition of Ω , and $A \in \mathcal{F}_0$. Then

We have

$$\mathbf{P}(A|\mathcal{F}) = \mathbf{P}(A|B)\,\mathbf{1}_B + \mathbf{P}(A|B^c)\,\mathbf{1}_{B^c}.$$

Dice throwing

Example: We consider

•
$$\Omega = \{1, 2, 3, 4, 5, 6\}$$
, $A = \{4\}$, $B =$ "even number".

Then

$$\mathbf{P}(A|\mathcal{F}) = \frac{1}{3}\,\mathbf{1}_B.$$

Conditioning a r.v by another r.v

Definition: Let X and Y be two random variables such that $X \in L^1(\Omega)$. We set

$$\mathbf{E}[X|Y] = \mathbf{E}[X|\sigma(Y)].$$

Criterion to determine if $A \in \sigma(Y)$:

We have $A \in \sigma(Y)$ iff

$$A = \{\omega; Y(\omega) \in B\}, \text{ or } \mathbf{1}_A = \mathbf{1}_B(Y)$$

Criterion to determine if $Z \in \sigma(Y)$:

Let Z and Y be two random variables. Then

$$Z \in \sigma(Y)$$
 iff we can write $Z = U(Y)$, with $U \in \mathcal{B}(\mathbb{R})$.

□ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 <l

Conditioning a r.v by a discrete r.v

Example 4: Whenever X and Y are discrete random variables \hookrightarrow Computation of $\mathbf{E}[X|Y]$ can be handled as in example 3.

More specifically:

- Assume $Y \in E$ with $E = \{y_i; i \ge 1\}$
- Hypothesis: $P(Y = y_i) > 0$ for all $i \ge 1$.

Then $\mathbf{E}[X|Y] = h(Y)$ with $h : E \to \mathbb{R}$ defined by:

$$h(y) = \frac{\mathbf{E}[X \mathbf{1}_{(Y=y)}]}{\mathbf{P}(Y=y)}.$$

Conditioning a r.v by a continuous r.v

Example 5: Let (X, Y) couple of real random variables with measurable density $f : \mathbb{R}^2 \to \mathbb{R}_+$. We assume that

$$\int_{\mathbb{R}} f(x,y) dx > 0, \quad \text{for all } y \in \mathbb{R}.$$

Let $g : \mathbb{R} \to \mathbb{R}$ a measurable function such that $g(X) \in L^1(\Omega)$. Then $\mathbf{E}[g(X)|Y] = h(Y)$, with $h : \mathbb{R} \to \mathbb{R}$ defined by:

$$h(y) = \frac{\int_{\mathbb{R}} g(x) f(x, y) dx}{\int_{\mathbb{R}} f(x, y) dx}.$$

Probability Theory

Heuristic proof

Formally one can use a conditional density:

$$P(X = x | Y = y)" = "\frac{P(X = x, Y = y)}{P(Y = y)} = \frac{f(x, y)}{\int f(x, y) dx},$$

Integrating against this density we get:

$$\mathbf{E}[g(X)|Y = y] = \int g(x)\mathbf{P}(X = x|Y = y) dx$$
$$= \frac{\int g(x)f(x,y)dx}{\int f(x,y)dx}.$$

Rigorous proof

Strategy: Check (i) and (ii) in the definition for the r.v h(Y).

- (i) If $h \in \mathbb{B}(\mathbb{R})$, we have seen that $h(Y) \in \sigma(Y)$.
- (ii) Let $A \in \sigma(Y)$ Then

$$A = \{\omega; Y(\omega) \in B\} \implies \mathbf{1}_A = \mathbf{1}_B(Y)$$

Thus

$$\begin{aligned} \mathbf{E}[h(Y)\mathbf{1}_{A}] &= \mathbf{E}[h(Y)\mathbf{1}_{B}(Y)] \\ &= \int_{B} \int_{\mathbb{R}} h(y)f(x,y)dxdy \\ &= \int_{B} dy \int_{\mathbb{R}} \left\{ \frac{\int g(z)f(z,y)dz}{\int f(z,y)dz} \right\} f(x,y)dx \\ &= \int_{B} dy \int g(z)f(z,y)dz = \mathbf{E}[g(X)\mathbf{1}_{B}(Y)]. \end{aligned}$$

4□ > 4ⓓ > 4ಠ > 4ಠ > 1

Probability Theory

Weird example

Example 6: We take

•
$$\Omega=(0,1)$$
, $\mathcal{F}_0=\mathcal{B}((0,1))$ and $P=\lambda$.

We set
$$X(\omega) = \cos(\pi\omega)$$
, and

$$\mathcal{F} = \{A \subset (0,1); A \text{ or } A^c \text{countable}\}.$$

Then $\mathbf{E}[X|\mathcal{F}] = 0$.

Proof

Strategy: Check (i) and (ii) in the definition for the r.v Y = 0.

- (i) Obviously $0 \in \mathcal{F}$.
- (ii) Let $A \in \mathcal{F}$, such that A is countable. Then

$$\mathbf{E}[X\,\mathbf{1}_A] = \int_A \cos(\pi x) dx = 0.$$

Similarly, if $A \in \mathcal{F}$ is such that A^c is countable, we have

$$\mathbf{E}[X\,\mathbf{1}_A] = \int_0^1 \cos(\pi x) dx - \int_{A^c} \cos(\pi x) dx = 0,$$

which ends the proof.

Weird example: heuristics

Intuition: One could think that

- **①** We know that $\{x\}$ occurred for all $x \in [0,1]$
- **3** Thus $\mathbf{E}[X|\mathcal{F}] = X$.

Paradox: This is wrong because $X \notin \mathcal{F}$.

Correct intuition: If we know $\omega \in A_i$ for a finite number of $A_i \in \mathcal{F}$ then nothing is known about X.

Outline

- Definition
- 2 Examples
- 3 Existence and uniqueness
- 4 Conditional expectation: properties
- Conditional expectation as a projection
- 6 Conditional regular laws

Conditional expectation: uniqueness

Proposition 2.

On the probability space $(\Omega, \mathcal{F}_0, \mathbf{P})$ consider

- A σ -algebra $\mathcal{F} \subset \mathcal{F}_0$.
- $X \in \mathcal{F}_0$ such that $\mathbf{E}[|X|] < \infty$.

Then if it exists, the random variable

$$\mathbf{E}[X|\mathcal{F}]$$

is uniquely defined.

Proof of uniqueness

Aim: Let Y, Y' satisfying (i) + (ii). \hookrightarrow Let us show Y = Y' a.s

General property: For all $A \in \mathcal{F}$, we have $\mathbf{E}[Y \mathbf{1}_A] = \mathbf{E}[Y' \mathbf{1}_A]$.

Particular case: Let $\epsilon > 0$, and set

$$A_{\epsilon} \equiv (Y - Y' \geqslant \epsilon).$$

Then $A_{\epsilon} \in \mathcal{F}$, and thus

$$0 = \mathbf{E}[(Y - Y') \mathbf{1}_{A_{\epsilon}}] \ge \epsilon \, \mathbf{E}[\mathbf{1}_{A_{\epsilon}}] = \epsilon \, \mathbf{P}(A_{\epsilon})$$

$$\Rightarrow \mathbf{P}(A_{\epsilon}) = 0.$$

Proof of uniqueness (2)

Set A_+ : Let

$$A_+ \equiv (Y - Y' > 0) = \bigcup_{n \geqslant 1} A_{1/n}.$$

We have $n \mapsto A_{1/n}$ increasing, and thus

$$\mathbf{P}(A_+) = \mathbf{P}\left(\bigcup_{n\geqslant 1} A_{1/n}\right) = \lim_{n\to\infty} \mathbf{P}(A_{1/n}) = 0.$$

Set A_- : In the same way, if

$$A_{-} = \{Y - Y' < 0\}$$

we have $P(A_{-}) = 0$.

- 4 ロ b 4 個 b 4 差 b 4 差 b - 差 - 釣りの

Proof of uniqueness (3)

Conclusion: We obtain, setting

$$A_{\neq} \equiv \{Y \neq Y'\} = A_+ \cup A_-,$$

that $\mathbf{P}(A_{\neq})=0$, and thus Y=Y' a.s.

Absolute continuity

Definition 3.

Let μ, ν two σ -finite measures on (Ω, \mathcal{F}) .

We say that $\nu \ll \mu$ (μ is absolutely continuous w.r.t ν) if

$$\mu(A) = 0 \implies \nu(A) = 0 \text{ for all } A \in \mathcal{F}.$$

26 / 64

Radon-Nykodym theorem

Theorem 4.

Let

• $\mu, \nu \ \sigma$ -finite measures on (Ω, \mathcal{F}) , such that $\nu \ll \mu$.

Then there exists $f \in \mathcal{F}$ such that for all $A \in \mathcal{F}$ we have

$$\nu(A) = \int_A f \, d\mu.$$

The function f:

- \bullet Is called Radon-Nykodym derivative of μ with respect to ν
- Is denoted by $f \equiv \frac{d\nu}{d\mu}$.
- We have $f \ge 0$ μ -almost everywhere
- $f \in L^1(\mu)$.

Conditional expectation: existence

Proposition 5.

On the probability space $(\Omega, \mathcal{F}_0, \mathbf{P})$ consider

- A σ -algebra $\mathcal{F} \subset \mathcal{F}_0$.
- $X \in \mathcal{F}_0$ such that $\mathbf{E}[|X|] < \infty$.

Then the random variable

$$\mathbf{E}[X|\mathcal{F}]$$

exists and is uniquely defined.

Proof of existence

Hypothesis: We have

- A σ -algebra $\mathcal{F} \subset \mathcal{F}_0$.
- $X \in \mathcal{F}_0$ such that $\mathbf{E}[|X|] < \infty$.
- $X \ge 0$.

Defining two measures: we set

- **1** $\mu = P$, measure on (Ω, \mathcal{F}) .

Then ν is a measure (owing to Beppo-Levi).

Probability Theory

Proof of existence (2)

Absolute continuity: we have

$$\mathbf{P}(A) = 0 \Rightarrow \mathbf{1}_A = 0 \ P$$
-a.s.
 $\Rightarrow X \mathbf{1}_A = 0 \ P$ -a.s.
 $\Rightarrow \nu(A) = 0$

Thus $\nu \ll P$

Conclusion: invoking Radon-Nykodym, there exists $f \in \mathcal{F}$ such that, for all $A \in \mathcal{F}$, we have $\nu(A) = \int_A f \, d\mathbf{P}$.

 \hookrightarrow We set $f = \mathbf{E}[X|\mathcal{F}]$.

Outline

- Definition
- 2 Examples
- Existence and uniqueness
- 4 Conditional expectation: properties
- Conditional expectation as a projection
- 6 Conditional regular laws

Linearity, expectation

Proposition 6.

Let $X \in L^1(\Omega)$. Then

$$\mathsf{E}\big\{\mathsf{E}[X|\mathcal{F}]\big\}=\mathsf{E}[X].$$

Proposition 7.

Let $\alpha \in \mathbb{R}$, and $X, Y \in L^1(\Omega)$. Then

$$\mathbf{E}[\alpha X + Y | \mathcal{F}] = \alpha \mathbf{E}[X | \mathcal{F}] + \mathbf{E}[Y | \mathcal{F}]$$
 a.s.

Probability Theory

Proof

Strategy: Check (i) and (ii) in the definition for the r.v

$$Z \equiv \alpha \, \mathbf{E}[X|\mathcal{F}] + \mathbf{E}[Y|\mathcal{F}].$$

Verification: we have

- (i) Z is a linear combination of $\mathbf{E}[X|\mathcal{F}]$ and $\mathbf{E}[Y|\mathcal{F}]$ $\hookrightarrow 7 \in \mathcal{F}$
- (ii) For all $A \in \mathcal{F}$, we have

$$\mathbf{E}[Z \mathbf{1}_{A}] = E\{(\alpha \mathbf{E}[X|\mathcal{F}] + \mathbf{E}[Y|\mathcal{F}]) \mathbf{1}_{A}\}$$

$$= \alpha E\{\mathbf{E}[X|\mathcal{F}] \mathbf{1}_{A}\} + E\{\mathbf{E}[Y|\mathcal{F}] \mathbf{1}_{A}\}$$

$$= \alpha \mathbf{E}[X \mathbf{1}_{A}] + \mathbf{E}[Y \mathbf{1}_{A}]$$

$$= \mathbf{E}[(\alpha X + Y) \mathbf{1}_{A}].$$

Monotonicity

Proposition 8.

Let $X,\,Y\in L^1(\Omega)$ such that $X\leqslant Y$ almost surely. We have

$$\mathbf{E}[X|\mathcal{F}] \leqslant \mathbf{E}[Y|\mathcal{F}],$$

almost surely.

Proof: Along the same lines as proof of uniqueness for the conditional expectation. For instance if we set

$$\label{eq:alpha_e} \textit{A}_{\varepsilon} = \left\{ \textbf{E}[\textit{X}|\mathcal{F}] - \textbf{E}[\textit{Y}|\mathcal{F}] \geqslant \varepsilon > 0 \right\},$$

then it is readily checked that

$$\mathbf{P}(A_{\varepsilon})=0.$$

Monotone convergence

Proposition 9.

Let $\{X_n; n \ge 1\}$ be a sequence of random variables such that

- $X_n \geqslant 0$
- $X_n \nearrow X$ almost surely
- $\mathbf{E}[X] < \infty$.

Then

$$\mathbf{E}[X_n|\mathcal{F}] \nearrow \mathbf{E}[X|\mathcal{F}].$$

Probability Theory

Proof

Strategy: Set $Y_n \equiv X - X_n$. We are reduced to show $Z_n \equiv \mathbf{E}[Y_n | \mathcal{F}] \setminus 0$.

Existence of a limit: $n \mapsto Y_n$ is decreasing, and $Y_n \geqslant 0$

- $\hookrightarrow Z_n$ is decreasing and $Z_n \geqslant 0$.
- $\hookrightarrow Z_n$ admits a limit a.s, denoted by Z_{∞} .

Aim: Show that $Z_{\infty} = 0$.

Proof (2)

Expectation of Z_{∞} : we will show that $\mathbf{E}[Z_{\infty}] = 0$. Indeed

- X_n converges a.s. to X.
- $0 \leqslant X_n \leqslant X \in L^1(\Omega)$.

Thus, by dominated convergence, $\mathbf{E}[X_n] \to \mathbf{E}[X]$.

We deduce:

- $\mathbf{E}[Y_n] \to 0$
- Since $\mathbf{E}[Y_n] = \mathbf{E}[Z_n]$, we also have $\mathbf{E}[Z_n] \to 0$.
- ullet By monotone convergence, we have ${f E}[Z_n]
 ightarrow {f E}[Z_\infty]$

This yields $\mathbf{E}[Z_{\infty}] = 0$.

Conclusion:
$$Z_{\infty} \geq 0$$
 and $\mathbf{E}[Z_{\infty}] = 0$
 $\hookrightarrow Z_{\infty} = 0$ almost surely.

Cauchy-Schwarz inequality

Proposition 10. Let $X, Y \in L^2(\Omega)$. Then

$$\mathbf{E}^2[X|Y|\mathcal{F}] \leqslant \mathbf{E}[X^2|\mathcal{F}] \mathbf{E}[Y^2|\mathcal{F}]$$
 a.s.

Proof:

For all $\theta \in \mathbb{R}$, we have

$$\mathbf{E}[(X + \theta Y)^2 | \mathcal{F}] \geqslant 0$$
 a.s.

Thus almost surely we have: for all $\theta \in \mathbb{Q}$,

$$\mathbf{E}[(X+\theta Y)^2|\mathcal{F}]\geqslant 0,$$

Expansion: For all $\theta \in \mathbb{Q}$

$$\mathbf{E}[Y^2|\mathcal{F}]\theta^2 + 2\mathbf{E}[XY|\mathcal{F}]\theta + \mathbf{E}[X^2|\mathcal{F}] \geqslant 0.$$

Recall: If a polynomial satisfies $a\theta^2 + b\theta + c \geqslant 0$ for all $\theta \in \mathbb{Q}$ \hookrightarrow then we have $b^2 - 4ac \leqslant 0$

Application: Almost surely, we have

$$E^2[XY|\mathcal{F}] - \mathbf{E}[X^2|\mathcal{F}]\mathbf{E}[Y^2|\mathcal{F}] \leqslant 0.$$

Samy T.

Jensen's inequality

Proposition 11.

Let $X\in L^1(\Omega)$, and $\varphi:\mathbb{R}\to\mathbb{R}$ such that $\varphi(X)\in L^1(\Omega)$ and φ convex. Then

$$\varphi(\mathbf{E}[X|\mathcal{F}]) \leqslant \mathbf{E}[\varphi(X)|\mathcal{F}]$$
 a.s.

Contraction in $L^p(\Omega)$

Proposition 12.

The conditional expectation is a contraction in $L^p(\Omega)$ for all $p\geqslant 1$

Proof: According to Jensen's inequality,

$$X \in L^p(\Omega) \Rightarrow \mathbf{E}[X|\mathcal{F}] \in L^p(\Omega)$$

and

$$|\mathbf{E}[X|\mathcal{F}]|^p \leq \mathbf{E}[|X|^p|\mathcal{F}] \quad \Longrightarrow \quad \mathbf{E}\left\{|\mathbf{E}[X|\mathcal{F}]|^p\right\} \leqslant \mathbf{E}[|X|^p]$$

Successive conditionings

Theorem 13.

Let

- Two σ -algebras $\mathcal{F}_1 \subset \mathcal{F}_2$.
- $X \in L^1(\Omega)$.

Then

$$\mathbf{E}\left\{\mathbf{E}[X|\mathcal{F}_1]|\mathcal{F}_2\right\} = \mathbf{E}[X|\mathcal{F}_1] \tag{2}$$

$$\mathbf{E}\left\{\mathbf{E}[X|\mathcal{F}_2]|\mathcal{F}_1\right\} = \mathbf{E}[X|\mathcal{F}_1]. \tag{3}$$

Probability Theory

Proof of (2): We set
$$Z \equiv \mathbf{E}[X|\mathcal{F}_1]$$
. Then

$$Z \in \mathcal{F}_1 \subset \mathcal{F}_2$$
.

According to Example 1, we have $\mathbf{E}[Z|\mathcal{F}_2] = Z$, i.e. (2).

- Proof of (3): We set $U = \mathbf{E}[X|\mathcal{F}_2]$.
- \hookrightarrow We will show that $\mathbf{E}[U|\mathcal{F}_1] = Z$, via (i) and (ii) of Definition 1.
- (i) $Z \in \mathcal{F}_1$.
- (ii) If $A \in \mathcal{F}_1$, we have $A \in \mathcal{F}_1 \subset \mathcal{F}_2$, and thus

$$\mathsf{E}[Z\mathbf{1}_A] = \mathsf{E}[X\mathbf{1}_A] = \mathsf{E}[U\mathbf{1}_A].$$

Conditional expectation for products

Theorem 14.

Let $X, Y \in L^2(\Omega)$, such that $X \in \mathcal{F}$. Then

$$\mathbf{E}[X \ Y | \mathcal{F}] = X \mathbf{E}[Y | \mathcal{F}].$$

Proof: We use a 4 steps methodology

Step 1: Assume $X = \mathbf{1}_B$, with $B \in \mathcal{F}$ We check (i) and (ii) of Definition 1.

- (i) We have $\mathbf{1}_B \mathbf{E}[Y|\mathcal{F}] \in \mathcal{F}$.
- (ii) For $A \in \mathcal{F}$, we have

$$\mathbf{E} \{ (\mathbf{1}_B \mathbf{E}[Y|\mathcal{F}]) \; \mathbf{1}_A \} = \mathbf{E} \{ \mathbf{E}[Y|\mathcal{F}] \; \mathbf{1}_{A \cap B} \} \\
= \mathbf{E}[Y \; \mathbf{1}_{A \cap B}] \\
= \mathbf{E}[(\mathbf{1}_B Y) \; \mathbf{1}_A],$$

and thus

$$\mathbf{1}_B \, \mathsf{E}[Y|\mathcal{F}] = \mathsf{E}[\mathbf{1}_B \, Y|\mathcal{F}].$$

Proof (2)

Step 2: If X is of the form

$$X=\sum_{i\leqslant n}\alpha_i\mathbf{1}_{B_i},$$

with $\alpha_i \in \mathbb{R}$ and $B_i \in \mathcal{F}$, then, by linearity we also get

$$\mathbf{E}[XY|\mathcal{F}] = X \, \mathbf{E}[Y|\mathcal{F}].$$

Step 3: If $X, Y \geqslant 0$

 \hookrightarrow There exists a sequence $\{X_n; n \geqslant 1\}$ of simple random variables such that

$$X_n \nearrow X$$
.

Then applying the monotone convergence we end up with:

$$\mathbf{E}[XY|\mathcal{F}] = X \, \mathbf{E}[Y|\mathcal{F}].$$

Probability Theory

Proof (3)

Step 4: General case $X \in L^2$

 \hookrightarrow Decompose $X = X^+ - X^-$ and $Y = Y^+ - Y^-$, which gives

$$\mathbf{E}[XY|\mathcal{F}] = X\mathbf{E}[Y|\mathcal{F}]$$

by linearity.

Conditional expectation and independence

Theorem 15.

Let

- X, Y two independent random variables
- $\alpha: \mathbb{R}^2 \to \mathbb{R}$ such that $\alpha(X, Y) \in L^1(\Omega)$

We set, for $x \in \mathbb{R}$,

$$g(x) = \mathbf{E}[\alpha(x, Y)].$$

Ther

$$\mathbf{E}[\alpha(X,Y)|X] = g(X).$$

Proof: with 4 steps method applied to α .

Generalization of the previous theorem

Theorem 16.

Let

- $\mathcal{F} \subset \mathcal{F}_0$
- $X \in \mathcal{F}$ and $Y \perp \!\!\! \perp \mathcal{F}$ two random variables
- $\alpha: \mathbb{R}^2 \to \mathbb{R}$ such that $\alpha(X, Y) \in L^1(\Omega)$

We set, for $x \in \mathbb{R}$,

$$g(x) = \mathbf{E}[\alpha(x, Y)].$$

Then

$$\mathbf{E}[\alpha(X,Y)|\mathcal{F}] = g(X).$$

Outline

- Definition
- 2 Examples
- Existence and uniqueness
- 4 Conditional expectation: properties
- 5 Conditional expectation as a projection
- Conditional regular laws

Orthogonal projection

Definition: Let

- H Hilbert space \hookrightarrow complete vectorial space equipped with inner product.
- F closed subspace of H.

Then, for all $x \in H$

• There exists a unique $y \in F$, denoted by $y = \pi_F(x)$

Satisfying one of the equivalent conditions (i) or (ii).

- (i) For all $z \in F$, we have $\langle x y, z \rangle = 0$.
- (ii) For all $z \in F$, we have $||x y||_H \le ||x z||_H$.

 $\pi_F(x)$ is denoted orthogonal projection of x onto F.

Conditional expectation and projection

Theorem 17.

Consider

- The space $L^2(\mathcal{F}_0) \equiv \{Y \in \mathcal{F}_0; \mathbf{E}[Y^2] < \infty\}.$
- $X \in L^2(\mathcal{F}_0)$.
- $\mathcal{F} \subset \mathcal{F}_0$

Then

- $L^2(\mathcal{F}_0)$ is a Hilbert space \hookrightarrow Inner product $\langle X, Y \rangle = \mathbf{E}[XY]$.
- 2 $L^2(\mathcal{F})$ is a closed subspace of $L^2(\mathcal{F}_0)$.

Probability Theory

Proof of 2.

If $X_n \to X$ in $L^2 \Rightarrow$ There exists a subsequence $X_{n_k} \to X$ a.s. Thus, if $X_n \in \mathcal{F}$, we also have $X \in \mathcal{F}$.

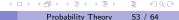
Proof of 3: Let us check (i) in our definition of projection

Let
$$Z \in L^2(\mathcal{F})$$
.

 \hookrightarrow We have $\mathbf{E}[ZX|\mathcal{F}] = Z\mathbf{E}[X|\mathcal{F}]$, and thus

$$\mathbf{E}\left\{Z\,\mathbf{E}[X|\mathcal{F}]\right\} = \mathbf{E}\left\{\mathbf{E}[X\,Z|\mathcal{F}]\right\} = \mathbf{E}\left[X\,Z\right],$$

which ensures (i) and $\mathbf{E}[X|\mathcal{F}] = \pi_{L^2(\mathcal{F})}(X)$.



Application to Gaussian vectors

Example: Let

- (X, Y) centered Gaussian vector in \mathbb{R}^2
- Hypothesis: V(Y) > 0.

Then

$$\mathbf{E}[X|Y] = \alpha Y$$
, with $\alpha = \frac{\mathbf{E}[X|Y]}{V(Y)}$.

Step 1: We look for α such that

$$Z = X - \alpha Y \implies Z \perp \!\!\!\perp Y.$$

Recall: If (Z, Y) is a Gaussian vector $\hookrightarrow Z \perp \!\!\!\perp Y \text{ iff } cov(Z, Y) = 0$

Application: $cov(Z, Y) = \mathbf{E}[Z Y]$. Thus

$$cov(Z, Y) = \mathbf{E}[(X - \alpha Y) Y] = \mathbf{E}[X Y] - \alpha V(Y),$$

et

$$cov(Z, Y) = 0$$
 iff $\alpha = \frac{\mathbf{E}[XY]}{V(Y)}$.

Proof (2)

Step 2: We invoke (i) in the definition of π . \hookrightarrow Let $V \in L^2(\sigma(Y))$. Then

$$Y \perp \!\!\!\perp (X - \alpha Y) \implies V \perp \!\!\!\perp (X - \alpha Y)$$

and

$$\mathbf{E}[(X - \alpha Y) V] = \mathbf{E}[X - \alpha Y] \mathbf{E}[V] = 0.$$

Thus

$$\alpha Y = \pi_{\sigma(Y)}(X) = \mathbf{E}[X|Y].$$

Outline

- Definition
- 2 Examples
- Existence and uniqueness
- 4 Conditional expectation: properties
- Conditional expectation as a projection
- 6 Conditional regular laws

CRL

Definition 18.

Let

- (Ω, \mathcal{F}, P) a probability space
- ullet $(\mathcal{S},\mathcal{S})$ a measurable space of the form $\mathbb{R}^d,\mathbb{Z}^d$
- $X:(\Omega,\mathcal{F}) \to (S,\mathcal{S})$ a random variable in $L^1(\Omega)$
- \mathcal{G} a σ -algebra such that $\mathcal{G} \subset \mathcal{F}$.

We say that $\mu: \Omega \times \mathcal{S} \to [0,1]$ is a Conditional regular law of X given \mathcal{G} if

- (i) For all $f \in C_b(S)$, the map $\omega \mapsto \mu(\omega, f)$ is a random variable, equal to $\mathbf{E}[f(X)|\mathcal{G}]$ a.s.
- (ii) ω -a.s. $f \mapsto \mu(\omega, f)$ is a probability measure on (S, S).

58 / 64

Discrete example

Poisson law case: Let

- $X \sim \mathcal{P}(\lambda)$ and $Y \sim \mathcal{P}(\mu)$
- X ⊥⊥ Y

We set S = X + Y.

Then CRL of X given S is Bin(S, p), with $p = \frac{\lambda}{\lambda + \mu}$

Proof: we have seen that for $n \leq m$

$$\mathbf{P}(X = n | S = m) = {m \choose n} p^n (1 - p)^{m-n}$$
 with $p = \frac{\lambda}{\lambda + \mu}$.

Then we consider

•
$$S = \mathbb{N}$$
, $G = \sigma(S)$

and we verify that these conditional probabilities define a CRL.

Probability Theory

Continuous example

Exponential law case: Let

- $X \sim \mathcal{E}(1)$ and $Y \sim \mathcal{E}(1)$
- \bullet $X \mid \mid Y$

We set S = X + Y.

Then CRL of X given S is $\mathcal{U}([0,S])$.

Proof: The joint density of (X, S) is given par

$$f(x,s)=e^{-s}\mathbf{1}_{\{0\leq x\leq s\}}.$$

Let then $\psi \in \mathcal{B}_b(\mathbb{R}_+)$. Thanks to Example 5, we have

$$\mathbf{E}[\psi(X)|S] = u(S),$$

with

$$u(s) = \frac{\int_{\mathbb{R}_+} \psi(x) f(x,s) dx}{\int_{\mathbb{R}_+^2} f(x,s) dx} = \frac{1}{s} \int_0^s \psi(x) dx.$$

In addition, $S \neq 0$ almost surely, and thus if $A \in \mathcal{B}(\mathbb{R})$ we have:

$$\mathbf{E}[\psi(X)|S] = \frac{\int_0^S \psi(x) dx}{S}.$$

Considering the state space as $=\mathbb{R}_+$, $\mathcal{S}=\mathcal{B}(\mathbb{R}_+)$ and setting

$$\mu(\omega, f) = \frac{1}{S(\omega)} \int_0^{S(\omega)} \psi(x) dx,$$

one can verify that we have defined a conditional regular law.

Existence of the CRL

Theorem 19.

Let

- X a random variable on $(\Omega, \mathcal{F}_0, P)$.
- Taking values in a space of the form $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$.
- $\mathcal{G} \subset \mathcal{F}_0$ a σ -algebra.

Then the CRL of X given \mathcal{G} exists.

Proof: nontrivial and omitted.

Computation rules for CRL

(1) If $\mathcal{G} = \sigma(Y)$, with Y random variable with values in \mathbb{R}^m , we have

$$\mu(\omega, f) = \mu(Y(\omega), f),$$

and one can define a CRL of X given Y as a family $\{\mu(y,.); y \in \mathbb{R}^m\}$ of probabilities on \mathbb{R}^n , such that for all $f \in C_b(\mathbb{R}^n)$ the function

$$y \mapsto \mu(y, f)$$

is measurable.

(2) If Y is a discrete r.v, this can be reduced to:

$$\mu(y, A) = \mathbf{P}(X \in A | Y = y) = \frac{\mathbf{P}(X \in A, Y = y)}{\mathbf{P}(Y = y)}.$$

4□ > 4□ > 4 = > 4 = > = 90

Computation rules for CRL (2)

(3) When one knows the CRL, quantities like the following (for $\phi \in \mathcal{B}(\mathbb{R}^n)$) can be computed:

$$\mathbf{E} \left[\phi(X) | \mathcal{G} \right] = \int_{\mathbb{R}^n} \phi(x) \, \mu(\omega, dx)$$
$$\mathbf{E} \left[\phi(X) | Y \right] = \int_{\mathbb{R}^n} \phi(x) \, \mu(Y, dx).$$

(4) The CRL is not unique. However if N_1 , N_2 are 2 CRL of X given \mathcal{G} \hookrightarrow we have ω -almost surely:

$$N_1(\omega, f) = N_2(\omega, f)$$
 for all $f \in C_b(\mathbb{R}^n)$.