Gaussian vectors and central limit theorem

Samy Tindel

Purdue University

Probability Theory 2 - MA 539

Outline

- Real Gaussian random variables
- Random vectors
- Gaussian random vectors
- 4 Central limit theorem
- Empirical mean and variance

Outline

- Real Gaussian random variables
- 2 Random vectors
- Gaussian random vectors
- 4 Central limit theorem
- Empirical mean and variance

Standard Gaussian random variable

Definition: Let

X be a real valued random variable.

X is called standard Gaussian if its probability law admits the density:

$$f(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right), \quad x \in \mathbb{R}.$$

Notation: We denote by $\mathcal{N}_1(0,1)$ or $\mathcal{N}(0,1)$ this law.

Gaussian random variable and expectations

Reminder:

• For all bounded measurable functions g, we have

$$\mathbf{E}[g(X)] = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} g(x) \exp\left(-\frac{x^2}{2}\right) dx.$$

In particular,

$$\int_{\mathbb{R}} \exp\left(-\frac{x^2}{2}\right) dx = \sqrt{2\pi}.$$

Gaussian moments

Proposition 1.

Let $X \sim \mathcal{N}(0,1)$. Then • For all $z \in \mathbb{C}$, we have

$$\mathbf{E}[\exp(zX)] = \exp(z^2/2).$$

As a particular case, we get

$$\mathbf{E}[\exp(\imath tX)] = e^{-t^2/2}, \quad \forall t \in \mathbb{R}.$$

② For all $n \in \mathbb{N}$, we have

$$\mathbf{E}[X^n] = \begin{cases} 0 & \text{if } n \text{ is odd,} \\ \frac{(2m)!}{m!2^m}, & \text{if } n \text{ is even, } n = 2m. \end{cases}$$

Proof

(i) Definition of the transform:

 $\int_{\mathbb{R}} \exp(zx - \frac{1}{2}x^2) dx \text{ absolutely convergent for all } z \in \mathbb{C}$ \hookrightarrow the quantity $\varphi(z) = \mathbf{E}[e^{zX}]$ is well defined and,

$$\varphi(z) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \exp\left(zx - \frac{1}{2}x^2\right) dx.$$

(ii) Real case: Let $z \in \mathbb{R}$.

Decomposition $zx - \frac{1}{2}x^2 = -\frac{1}{2}(x-z)^2 + \frac{z^2}{2}$ and change of variable $y = x - z \Rightarrow \varphi(z) = \frac{e^{z^2/2}}{2}$

Proof (2)

(iii) Complex case:

 φ and $z\mapsto e^{z^2/2}$ are two entire functions Since those two functions coincide on \mathbb{R} , they coincide on \mathbb{C} .

(iv) Characteristic function:

In particular, if z = it with $t \in \mathbb{R}$, we have

$$\mathbf{E}[\exp(\imath tX)] = e^{-t^2/2}$$

Proof (3)

(v) Moments: Let $n \ge 1$.

Convergence of $\mathbf{E}[|X^n|]$: easy argument In addition, we almost surely have

$$e^{itX} = \lim_{n \to \infty} S_n$$
, with $S_n = \sum_{k=0}^n \frac{(it)^k}{k!} X^k$.

However, $|S_n| \leq Y$ with

$$Y = \sum_{k=0}^{\infty} \frac{|t|^k |X|^k}{k!} = e^{|tX|} \le e^{tX} + e^{-tX}.$$

Since $\mathbf{E}[\exp(aX)] < \infty$, we obtain that Y is integrable Applying dominated convergence, we end up with

$$\mathbf{E}[\exp(\imath tX)] = \mathbf{E} \left| \sum_{n \geq 0} \frac{(\imath tX)^n}{n!} \right| = \sum_{n \geq 0} \frac{\imath^n t^n}{n!} \mathbf{E}[X^n]. \tag{1}$$

Identifying Ihs and rhs, we get our formula for moments

Samy T. Gaussian vectors & CLT Probability Theory 9 / 86

Gaussian random variable

Corollary: Owing to the previous proposition, if $X \sim \mathcal{N}(0,1)$ $\hookrightarrow \mathbf{E}[X] = 0$ and $\mathbf{Var}(X) = 1$

Definition:

A random variable is said to be Gaussian if there exists $X \sim \mathcal{N}(0,1)$ and two constants a and b such that Y = aX + b.

Parameter identification: we have

$$\mathbf{E}[Y] = b$$
, and $\mathbf{Var}(Y) = a^2 \mathbf{Var}(X) = a^2$.

Notation: We denote by $\mathcal{N}(m, \sigma^2)$ the law of a Gaussian random variable with mean m and variance σ^2 .

Properties of Gaussian random variables

Density: we have

$$\frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{(x-m)^2}{2\sigma^2}\right) \ \ \text{is the density of} \ \ \mathcal{N}(\textit{m},\sigma^2)$$

Characteristic function: let $Y \sim \mathcal{N}(m, \sigma^2)$. Then

$$\mathbf{E}[\exp(\imath tY)] = \exp\left(\imath tm - \frac{t^2}{2}\sigma^2\right), \quad t \in \mathbb{R}.$$

The formula above also characterizes $\mathcal{N}(m, \sigma^2)$

Gaussian law: illustration

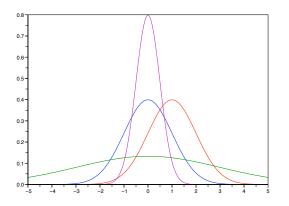


Figure: Distributions $\mathcal{N}(0,1)$, $\mathcal{N}(1,1)$, $\mathcal{N}(0,9)$, $\mathcal{N}(0,1/4)$.

Sum of independent Gaussian random variables

Proposition 2.

Let Y_1 and Y_2 be two independent Gaussian random variables Assume $Y_1 \sim \mathcal{N}(m_1, \sigma_1^2)$ and $Y_2 \sim \mathcal{N}_1(m_2, \sigma_2^2)$. Then $Y_1 + Y_2 \sim \mathcal{N}_1(m_1 + m_2, \sigma_1^2 + \sigma_2^2)$.

Proof:

Via characteristic functions

Remarks:

- ullet It is easy to identify the parameters of Y_1+Y_2
- Possible generalization to $\sum_{j=1}^{n} Y_j$

Outline

- Real Gaussian random variables
- Random vectors
- Gaussian random vectors
- Central limit theorem
- Empirical mean and variance

Matrix notation

Transpose:

If A is a matrix, A^* designates the transpose of A.

Particular case: Let $x \in \mathbb{R}^n$. Then

- x is a column vector in $\mathbb{R}^{n,1}$
- x* is a row matrix

Inner product:

If x and y are two vectors in \mathbb{R}^n , their inner product is denoted by

$$\langle x,y\rangle = x^*y = y^*x = \sum_{i=1}^n x_iy_i, \text{ if } x^* = (x_1,...,x_n), \ y^* = (y_1,...,y_n).$$

Vector valued random variable

Definition 3.

- **1** A random variable X with values in \mathbb{R}^n is given by n real valued random variables X_1, X_2, \ldots, X_n .
- **2** We denote by X the column matrix with coordinates X_1, X_2, \ldots, X_n :

$$X^* = (X_1, X_2, \dots, X_n).$$

Probability Theory

Expected value and covariance

Expected value: Let $X \in \mathbb{R}^n$. **E**[X] is the vector defined by

$$\mathsf{E}[X]^* = (\mathsf{E}[X_1], \mathsf{E}[X_2] \dots, \mathsf{E}[X_n]).$$

Note: here we assume that all the expectations are well-defined.

Covariance: Let $X \in \mathbb{R}^n$ and $Y \in \mathbb{R}^m$.

The covariance matrix $K_{X,Y} \in \mathbb{R}^{n,m}$ is defined by

$$K_{X,Y} = \mathbf{E}\left[\left(X - \mathbf{E}[X]\right)\left(Y - \mathbf{E}[Y]\right)^*\right]$$

Elements of the covariance matrix: for $1 \le i \le n$ and $1 \le j \le m$

$$K_{X,Y}(i,j) = \mathbf{Cov}(X_i, Y_j) = \mathbf{E}\left[\left(X_i - \mathbf{E}[X_i]\right)\left(Y_j - \mathbf{E}[Y_j]\right)\right]$$

◆ロト ◆個ト ◆ 差ト ◆ 差ト を 多くで

Simples properties

Linear transforms and Expectation-covariance:

Let $X \in \mathbb{R}^n$, $A \in \mathbb{R}^{m,n}$, $u \in \mathbb{R}^m$. Then

$$\mathbf{E}[u + AX] = u + A\mathbf{E}[X], \text{ and } K_{u+AX} = K_{AX} = AK_XA^*.$$

Another formula for the covariance:

$$K_{X,Y} = \mathbf{E}[XY^*] - \mathbf{E}[X] \mathbf{E}[Y]^*$$
.

As a particular case,

$$K_X = \mathbf{E}[XX^*] - \mathbf{E}[X]\mathbf{E}[X]^*$$

Outline

- Real Gaussian random variables
- 2 Random vectors
- Gaussian random vectors
- 4 Central limit theorem
- Empirical mean and variance

Definition

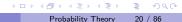
Definition: Let $X \in \mathbb{R}^n$.

X is a Gaussian random vector iff for all $\lambda \in \mathbb{R}^n$

$$\langle \lambda, X \rangle = \lambda^* X = \sum_{i=1}^n \lambda_i X_i$$
 is a real valued Gaussian r.v.

Remarks:

- (1) X Gaussian vector
- \Rightarrow Each component X_i of X is a real Gaussian r.v
- (2) Key example of Gaussian vector:
- Independent Gaussian components X_1, \ldots, X_n
- (3) Easy construction of random vector $X \in \mathbb{R}^2$ such that
- (i) X_1, X_2 real Gaussian (ii) X is not a Gaussian vector



Characteristic function

Proposition 4.

Let X Gaussian vector with mean m and covariance K Then, for all $u \in \mathbb{R}^n$,

$$\mathbf{E}\left[\exp(\imath\langle u,X\rangle)\right]=e^{\imath\langle u,m\rangle-\frac{1}{2}u^*Ku}$$

where we use the matrix representation for the vector u

Proof

Identification of $\langle u, X \rangle$:

 $\langle u, X \rangle$ Gaussian r.v by assumption, with parameters

$$\mu := \mathbf{E}[\langle u, X \rangle] = \langle u, m \rangle, \text{ and } \sigma^2 := \mathbf{Var}(\langle u, X \rangle) = u^* K u$$
 (2)

Characteristic function of 1-d Gaussian r.v:

Let $Y \sim \mathcal{N}(\mu, \sigma^2)$. Then recall that

$$\mathbf{E}[\exp(itY)] = \exp\left(it\mu - \frac{t^2}{2}\sigma^2\right), \quad t \in \mathbb{R}.$$
 (3)

Conclusion: Easily obtained by plugging (2) into (11)

Remark and notation

Remark: According to Proposition 4

- \hookrightarrow The law of a Gaussian vector X is characterized by its mean m and its covariance matrix K
- \hookrightarrow If X and Y are two Gaussian vectors with the same mean and covariance matrix, their law is the same

Caution: This is only true for Gaussian vectors.

In general, two random variables sharing the same mean and variance are not equal in law

Notation: If X Gaussian vector with mean m and covariance K We write $X \sim \mathcal{N}(m, K)$

Probability Theory

Linear transformations

Proposition 5.

•
$$X \sim \mathcal{N}(m_X, K_X)$$

• $X \sim \mathcal{N}(m_X, K_X)$ • $A \in \mathbb{R}^{p,n}$ and $z \in \mathbb{R}^p$

$$Y = AX + z$$

$$Y \sim \mathcal{N}(m_Y, K_Y), \quad \text{with} \quad m_Y = z + Am_X, \quad K_Y = AK_XA^*$$

Proof

Aim: Let $u \in \mathbb{R}^p$.

We wish to prove that u^*Y is a Gaussian r.v.

Expression for u^*Y : We have

$$u^*Y = u^*z + u^*AX = u^*z + v^*X,$$

where we have set $v = A^*u$. This is a Gaussian r.v

Conclusion: Y is a Gaussian vector. In addition,

$$m_Y = \mathbf{E}[Y] = z + A\mathbf{E}[X] = z + Am_X$$
, and $K_Y = AK_XA^*$.

Positivity of the correlation matrix

Proposition 6.

Let X be a random vector with covariance matrix K. Then K is a symmetric positive matrix.

Proof:

Symmetry:
$$K(i,j) = \mathbf{Cov}(X_i, X_j) = \mathbf{Cov}(X_j, X_i) = K(j,i)$$

Positivity: Let $u \in \mathbb{R}^n$ and $Y = u^*X$. Then

$$Var(Y) = u^* Ku \ge 0$$

Linear algebra lemma

Lemma 7.

Let

• $\Gamma \in \mathbb{R}^{n,n}$, symmetric and positive.

Then there exists a matrix $A \in \mathbb{R}^{n,n}$ such that

$$\Gamma = AA^*$$

Proof

Diagonal form of Γ :

- Γ symmetric \Rightarrow there exists an orthogonal matrix U and $D_1 = \operatorname{Diag}(\lambda_1, \dots, \lambda_n)$ such that $D_1 = U^* \Gamma U$
- Γ positive $\Rightarrow \lambda_i > 0$ for all $i \in \{1, 2, ..., n\}$.

- Definition of the square root: Let $D = \text{Diag}(\lambda_1^{1/2}, \dots, \lambda_n^{1/2})$.
- We set A = UD.

Conclusion:

- Recall that $U^{-1} = U^*$, therefore $\Gamma = UD_1 U^*$.
- Now $D_1 = D^2 = DD^*$, and thus

$$\Gamma = UDD^*U^* = UD(UD)^* = AA^*.$$

Construction of a Gaussian vector

Theorem 8.

Let

- $m \in \mathbb{R}^n$
- $\Gamma \in \mathbb{R}^{n,n}$ symmetric and positive

Then

There exists a Gaussian vector $X \sim \mathcal{N}(m, \Gamma)$

Proof

Standard Gaussian vector in \mathbb{R}^n :

Let Y_1, Y_2, \ldots, Y_n , i.i.d with common law $\mathcal{N}_1(0,1)$. We set

$$Y^* = (Y_1, \dots, Y_n),$$
 and therefore $Y \sim \mathcal{N}(0, \mathrm{Id}_n).$

Definition of X: Let $A \in \mathbb{R}^{n,n}$ such that $AA^* = \Gamma$.

We define X as:

$$X = m + AY$$
.

Conclusion:

According to Proposition 5 we have $X \sim \mathcal{N}(m, K_X)$, with

$$K_X = A K_Y A^* = A \operatorname{Id} A^* = AA^* = \Gamma.$$

Decorrelation and independence

Theorem 9.

Let X be Gaussian vector, with $X^* = (X_1, \dots, X_n)$.

The random variables X_1, \ldots, X_n are independent

The covariance matrix K_X is diagonal.

Proof of \Rightarrow

Decorrelation of coordinates:

If X_1, \ldots, X_n are independent, then

$$K(i,j) = \mathbf{Cov}(X_i, X_j) = 0$$
, whenever $i \neq j$.

Therefore K_X is diagonal.

Proof of \Leftarrow (1)

Characteristic function of X: Set $K = K_X$. We have shown that

$$\mathbf{E}[\exp(\imath\langle u,X\rangle)) = e^{\imath\langle u,\mathbf{E}[X]\rangle - \frac{1}{2}u^*Ku}, \ u \in \mathbb{R}^n.$$
 (4)

Since K is diagonal, we have :

$$u^* K u = \sum_{l=1}^n u_l^2 K(l, l) = \sum_{l=1}^n u_l^2 \mathbf{Var}(X_l).$$
 (5)

Characteristic function of each coordinate:

Let ϕ_{X_l} be the characteristic function of X_l . We have $\phi_{X_l}(s) = \mathbf{E}[e^{isX_l}]$, for all $s \in \mathbb{R}$.

Taking u such that $u_i = 0$, for all $i \neq I$ in (4) and (5) we get

$$\phi_{X_l}(u_l) = \mathbf{E}\left[\exp(\imath u_l X_l)\right] = e^{\imath u_l \mathbf{E}[X_l] - \frac{1}{2}u_l^2 \mathbf{Var}(X_l)}.$$

Proof of \Leftarrow (2)

Conclusion:

We can recast (4) as follows: for all $u = (u_1, u_2, ..., u_n)$,

$$\prod_{j=1}^{n} \phi_{X_{j}}(u_{j}) = E\left[\exp\left(\imath \sum_{l=1}^{n} u_{l} X_{l}\right)\right] = \mathbf{E}[\exp(\imath \langle u, X \rangle)],$$

This means that the random variables X_1, \ldots, X_n are independent.

Lemma about absolutely continuous r.v

Lemma 10.

Let

- ullet $\xi \in \mathbb{R}^n$ a random variable admitting a density.
- H a subspace of \mathbb{R}^n , such that $\dim(H) < n$.

Then

$$P(\xi \in H) = 0.$$

Proof

Change of variables:

We can assume $H \subset H'$ with

$$H' = \{(x_1, x_2, ..., x_n); x_n = 0\}$$

Conclusion:

Denote by φ the density of ξ . We have:

$$P(\xi \in H) \leq P(\xi \in H')$$

$$= \int_{\mathbb{R}^n} \varphi(x_1, x_2, ..., x_n) \mathbf{1}_{\{x_n = 0\}} dx_1 dx_2 ... dx_n$$

$$= 0.$$

Gaussian density

Theorem 11.

Let $X \sim \mathcal{N}(m, K)$. Then

- lacksquare X admits a density iff K is invertible.
- ② If K is invertible, the density of X is given by

$$f(x) = \frac{1}{(2\pi)^{n/2}(\det(K))^{1/2}} \exp\left(-\frac{1}{2}(x-m)^*K^{-1}(x-m)\right)$$

Proof

(1) Density and inversion of K: We have seen

$$X\stackrel{(d)}{=} m + AY$$
, where $AA^* = K$, $Y \sim \mathcal{N}(0, \mathrm{Id}_n)$

(i) Assume A non invertible.

A non invertible
$$\Rightarrow \operatorname{Im}(A) = H$$
, with $\dim(H) < n$
 $\hookrightarrow \mathbf{P}(AY \in H) = 1$

Contradiction:

X admits a density $\Rightarrow X - m$ admits a density

$$\Rightarrow P(X - m \in H) = 0$$

However, we have seen that $P(X - m \in H) = P(AY \in H) = 1$.

Hence X doesn't admit a density.

Proof (2)

(ii) Assume A invertible.

A invertible

- \Rightarrow application $y \to m + Ay$ is a \mathcal{C}^1 bijection
- \Rightarrow the random variable m + AY admits a density.

(iii) Conclusion.

Since $AA^* = K$, we have

$$\det(A) \det(A^*) = (\det(A))^2 = \det(K)$$

and we get the equivalence:

A invertible \iff K is invertible.

Probability Theory

Proof (3)

(2) Expression of the density: Let $Y \sim \mathcal{N}(0, \mathrm{Id}_n)$. Density of Y:

$$g(y) = \frac{1}{(2\pi)^{n/2}} \exp\left(-\frac{1}{2}\langle y, y \rangle\right).$$

Change of variable: Set

$$X' = AY + m$$
 that is $Y = A^{-1}(X' - m)$

Proof (4)

Jacobian of the transformation: for $x \mapsto A^{-1}(x - m)$ we have

$$Jacobian = A^{-1}$$

Determinant of the Jacobian:

$$\det(A^{-1}) = [\det(A)]^{-1} = [\det(K)]^{-1/2}$$

Expression for the inner product:

We have
$$K^{-1} = (AA^*)^{-1} = (A^*)^{-1}A^{-1}$$
, and

$$\langle y, y \rangle = \langle A^{-1}(x-m), A^{-1}(x-m) \rangle$$

= $(x-m)^* (A^{-1})^* A^{-1}(x-m) = (x-m)^* K^{-1}(x-m).$

Thus X' admits the density f.

Since X and X' share the same law, X admits the density f.

Samy T. Gaussian vectors & CLT Probability Theory 41 / 86

Outline

- Real Gaussian random variables
- 2 Random vectors
- Gaussian random vectors
- 4 Central limit theorem
- Empirical mean and variance

Law of large numbers

Theorem 12.

We consider the following situation:

- $(X_n; n \ge 1)$ sequence of i.i.d \mathbb{R}^k -valued r.v
- ullet Hypothesis: $\mathbf{E}[|X_1|]<\infty$, and we set $\mathbf{E}[X_1]=m\in\mathbb{R}^k$

We define

$$\bar{X}_n = \frac{1}{n} \sum_{j=1}^n X_j.$$

Then

$$\lim_{n\to\infty} \bar{X}_n = m$$
, almost surely

Central limit theorem

Theorem 13.

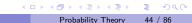
We consider the following situation:

- $\{X_n; n \ge 1\}$ sequence of i.i.d \mathbb{R}^k -valued r.v
- Hypothesis: $\mathbf{E}[|X_1|^2] < \infty$
- We set $\mathbf{E}[X_1] = m \in \mathbb{R}^k$ and $\mathbf{Cov}(X_1) = \Gamma \in \mathbb{R}^{k,k}$

Then

$$\sqrt{n}\left(\bar{X}_n-m\right) \xrightarrow{(d)} \mathcal{N}_k(0,\Gamma), \quad \text{with} \quad \bar{X}_n=\frac{1}{n}\sum_{i=1}^n X_i.$$

Interpretation: \bar{X}_n converges to m with rate $n^{-1/2}$



Convergence in law, first definition

Remark: For notational sake

 \hookrightarrow the remainder of the section will focus on \mathbb{R} -valued r.v

Definition 14.

Let

- $\{X_n; n \ge 1\}$ sequence of r.v, X_0 another r.v
- F_n distribution function of X_n
- F_0 distribution function of X_0
- We set $C(F) \equiv \{x \in \mathbb{R}; F \text{ continuous at point } x\}$

Definition 1: We have

$$\lim_{n\to\infty} X_n \stackrel{(d)}{=} X_0$$
 if $\lim_{n\to\infty} F_n(x) = F_0(x)$ for all $x \in \mathcal{C}(F)$.

Convergence in law, equivalent definition

Proposition 15.

- $\{X_n; n \ge 1\}$ sequence of r.v, X_0 another r.v
- We set

$$C_b(\mathbb{R}) \equiv \{ \varphi : \mathbb{R} \to \mathbb{R}; \varphi \text{ continuous and bounded} \}$$

Definition 2: We have

$$\lim_{n\to\infty} X_n \stackrel{(d)}{=} X_0$$

$$\lim_{n\to\infty} \mathbf{E}[\varphi(X_n)] = \mathbf{E}[\varphi(X_0)]$$
 for all $\varphi \in C_b(\mathbb{R})$.

Probability Theory

Central limit theorem in \mathbb{R}

Theorem 16.

We consider the following situation:

- $\{X_n; n \ge 1\}$ sequence of i.i.d \mathbb{R} -valued r.v
- Hypothesis: $\mathbf{E}[|X_1|^2] < \infty$
- We set $\mathbf{E}[X_1] = \mu$ and $\mathbf{Var}(X_1) = \sigma^2$

Then

$$\sqrt{n}\left(\bar{X}_n-\mu\right) \xrightarrow{(d)} \mathcal{N}(0,\sigma^2), \quad \text{with} \quad \bar{X}_n=\frac{1}{n}\sum_{i=1}^n X_j.$$

Otherwise stated we have

$$\frac{\sum_{i=1}^{n} X_i - n\mu}{\sigma n^{1/2}} \quad \xrightarrow{(d)} \quad \mathcal{N}(0,1)$$

Application: Bernoulli distribution

Proposition 17.

Let $(X_n; n \ge 1)$ sequence of i.i.d $\mathcal{B}(p)$ r.v Then

$$\sqrt{n}\left(rac{ar{X}_n-p}{[p(1-p)]^{1/2}}
ight) \stackrel{(d)}{\longrightarrow} \mathcal{N}_1(0,1).$$

Remark:

For practical purposes as soon as np > 15, the law of

$$\frac{X_1+\cdots+X_n-np}{\sqrt{np(1-p)}}$$

is approached by $\mathcal{N}_1(0,1)$. Notice that $X_1 + \cdots + X_n \sim \text{Bin}(n,p)$.

Binomial distribution: plot (1)

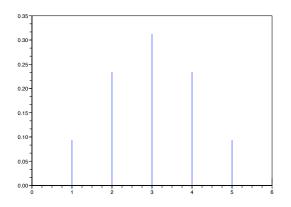


Figure: Distribution Bin(6; 0.5). x-axis: k, y-axis: P(X = k)

Binomial distribution: plot (2)

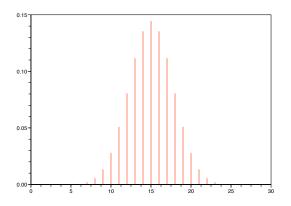


Figure: Distribution Bin(30; 0.5). x-axis: k, y-axis: P(X = k)

Relation between pdf and chf

Theorem 18.

Let

- ullet F be a distribution function on $\mathbb R$
- ullet ϕ the characteristic function of F

Then F is uniquely determined by ϕ

Proof (1)

Setting: We consider

- A r.v X with distribution F and chf ϕ
- ullet A r.v Z with distribution G and chf γ

Relation between chf: We have

$$\int_{\mathbb{R}} e^{-i\theta z} \phi(z) G(dz) = \int_{\mathbb{R}} F(dx) \gamma(x - \theta)$$
 (6)

Proof (2)

Proof of (6): Invoking Fubini, we get

$$\mathbf{E}\left[e^{-\imath\theta Z}\phi(Z)\right] = \int_{\mathbb{R}} e^{-\imath\theta z}\phi(z) G(dz)$$

$$= \int_{\mathbb{R}} G(dz) e^{-\imath\theta z} \left[\int_{\mathbb{R}} e^{\imath zx} F(dx)\right]$$

$$= \int_{\mathbb{R}} F(dx) \left[\int_{\mathbb{R}} e^{\imath z(x-\theta)} G(dz)\right]$$

$$= \mathbf{E}\left[\gamma(X-\theta)\right]$$

Proof (3)

Particularizing to a Gaussian case: We now consider

- $Z \sim \sigma N$ with $N \sim \mathcal{N}(0,1)$
- In this case, if $n \equiv$ density of $\mathcal{N}(0,1)$, we have

$$G(dz) = \sigma^{-1} \, n(\sigma^{-1} z) \, dz$$

With this setting, relation (6) becomes

$$\int_{\mathbb{R}} e^{-\imath \theta \sigma z} \phi(\sigma z) n(z) dz = \int_{\mathbb{R}} e^{-\frac{1}{2}\sigma^2(z-\theta)^2} F(dz)$$
 (7)

Proof (4)

Integration with respect to θ : Integrating (7) wrt θ we get

$$\int_{-\infty}^{x} d\theta \int_{\mathbb{R}} e^{-i\theta\sigma z} \phi(\sigma z) \, n(z) \, dz = A_{\sigma,\theta}(x), \tag{8}$$

where

$$A_{\sigma,\theta}(x) = \int_{-\infty}^{x} d\theta \int_{\mathbb{R}} e^{-\frac{1}{2}\sigma^{2}(z-\theta)^{2}} F(dz)$$

Proof (5)

Expression for $A_{\sigma,\theta}$: We have

$$\begin{array}{ccc} A_{\sigma,\theta}(x) & \stackrel{\mathsf{Fubini}}{=} & \int_{\mathbb{R}} F(dz) \int_{-\infty}^{x} e^{-\frac{1}{2}\sigma^{2}(z-\theta)^{2}} \, d\theta \\ & \stackrel{\mathsf{c.v.}}{=} & \left(2\pi\sigma^{-2}\right)^{1/2} \int_{\mathbb{R}} F(dz) \int_{-\infty}^{x-z} \, n_{0,\sigma^{-2}}(s) \, ds \end{array}$$

Therefore, considering $N \perp \!\!\! \perp X$ with $N \sim \mathcal{N}(0,1)$ we get

$$A_{\sigma,\theta}(x) = \left(2\pi\sigma^{-2}\right)^{1/2} \mathbf{P}\left(\sigma^{-1}N + X \le x\right) \tag{9}$$

Proof (6)

Summary: Putting together (8) and (9) we get

$$\int_{-\infty}^{x} d\theta \int_{\mathbb{R}} e^{-\imath \theta \sigma z} \phi(\sigma z) \, \mathit{n}(z) \, dz = \left(2\pi \sigma^{-2}\right)^{1/2} \mathbf{P} \left(\sigma^{-1} \mathit{N} + \mathit{X} \leq \mathit{x}\right)$$

Divide the above relation by $(2\pi\sigma^{-2})^{1/2}$. We obtain

$$\frac{\sigma}{(2\pi)^{1/2}} \int_{-\infty}^{x} d\theta \int_{\mathbb{R}} e^{-\imath \theta \sigma z} \phi(\sigma z) \, n(z) \, dz = \mathbf{P}\left(\sigma^{-1} N + X \le x\right) \quad (10)$$

Samy T.

Proof (7)

Convergence result: Recall that

$$X_{1,n} \xrightarrow{(d)} X_1$$
 and $X_{2,n} \xrightarrow{(\mathbf{P})} X_2 \implies X_{1,n} + X_{2,n} \xrightarrow{(d)} X_1$ (11)

Notation: We set

$$C(F) \equiv \{x \in \mathbb{R}; F \text{ continuous at point } x\}$$

Proof (8)

Limit as $\sigma \to \infty$:

Thanks to our convergence result, one can take limits in (10)

$$\lim_{\sigma \to \infty} \frac{\sigma}{(2\pi)^{1/2}} \int_{-\infty}^{x} d\theta \int_{\mathbb{R}} e^{-i\theta\sigma z} \phi(\sigma z) \, n(z) \, dz$$

$$= \lim_{\sigma \to \infty} \mathbf{P} \left(\sigma^{-1} N + X \le x\right)$$

$$= \mathbf{P} \left(X \le x\right)$$

$$= F(x), \tag{12}$$

for all $x \in C(F)$

Conclusion:

F is determined by ϕ .

Fourier inversion

Proposition 19.

Let

- F be a distribution function on \mathbb{R} , and $X \sim F$
- \bullet ϕ the characteristic function of F

Hypothesis:

$$\phi \in L^1(\mathbb{R})$$

Conclusion:

F admits a bounded continuous density f, given by

$$f(x) = \frac{1}{2\pi} \int_{\mathbb{R}} e^{-\imath yx} \phi(y) \, dy$$

Proof (1)

Density of $\sigma^{-1}N + X$: We set

$$F_{\sigma}(x) = \mathbf{P}\left(\sigma^{-1}N + X \le x\right)$$

Since both N and X admit a density, F_{σ} admits a density f_{σ}

Expression for F_{σ} : Recall relation (10)

$$\frac{\sigma}{(2\pi)^{1/2}} \int_{-\infty}^{x} d\theta \int_{\mathbb{R}} e^{-i\theta\sigma z} \phi(\sigma z) \, n(z) \, dz = F_{\sigma}(x) \tag{13}$$

Proof (2)

Expression for f_{σ} : Differentiating the lhs of (13) we get

$$\begin{array}{rcl} f_{\sigma}(\theta) & = & \frac{\sigma}{(2\pi)^{1/2}} \int_{\mathbb{R}} e^{-\imath \theta \sigma z} \phi(\sigma z) \, \textit{n}(z) \, \textit{d}z \\ \\ \text{(c.v: } \sigma z = y) & = & \frac{\sigma}{(2\pi)^{1/2}} \int_{\mathbb{R}} e^{-\imath \theta y} \phi(y) \, \textit{n}(\sigma^{-1}y) \, \textit{d}y \\ \\ \text{(}\textit{n is Gaussian)} & = & \frac{1}{(2\pi)^{1/2}} \int_{\mathbb{R}} e^{-\imath \theta y} \phi(y) \, e^{-\frac{\sigma^{-2}y^2}{2}} \, \textit{d}y \end{array}$$

Relation (10) on a finite interval: Let I = [a, b]. Using f_{θ} we have

$$\mathbf{P}\left(\sigma^{-1}N + X \in [a,b]\right) = F_{\sigma}(b) - F_{\sigma}(a) = \int_{a}^{b} f_{\sigma}(\theta) d\theta \qquad (14)$$

Proof (3)

Limit of f_{σ} : By dominated convergence,

$$\lim_{\sigma o\infty}f_{\sigma}(heta)=rac{1}{(2\pi)^{1/2}}\int_{\mathbb{R}}e^{-\imath heta y}\phi(y)\,dy\equiv f(heta)$$

Domination of f_{σ} : We have

$$f_{\sigma}(\theta) = \frac{1}{(2\pi)^{1/2}} \int_{\mathbb{R}} e^{-i\theta y} \phi(y) e^{-\frac{\sigma^{-2}y^{2}}{2}} dy$$

$$\leq \frac{1}{(2\pi)^{1/2}} \int_{\mathbb{R}} |\phi(y)| dy$$

$$= \frac{1}{(2\pi)^{1/2}} \|\phi\|_{L^{1}(\mathbb{R})}$$

Proof (4)

Limits in (14): We use

- On lhs of (14): Convergence result (11)
- On rhs of (14): Dominated convergence (on finite interval I)

We get

$$\mathbf{P}(X \in [a,b]) = F(b) - F(a) = \int_a^b f(\theta) d\theta$$

Conclusion:

X admits f (obtained by Fourier inversion) as a density

Convergence in law and chf

Theorem 20.

Let

- $\{X_n; n \ge 1\}$ sequence of r.v, X_0 another r.v
- ϕ_n chf of X_n , ϕ_0 chf of X_0

Then

(i) We have

$$\lim_{n\to\infty} X_n \stackrel{(d)}{=} X_0 \quad \Longrightarrow \quad \lim_{n\to\infty} \phi_n(t) = \phi_0(t) \text{ for all } t\in \mathbb{R}$$

- (ii) Assume that
 - ullet $\phi_0(0)=1$ and ϕ_0 continuous at point 0

Then we have

$$\lim_{n\to\infty}\phi_n(t)=\phi_0(t) \text{ for all } t\in\mathbb{R} \quad \Longrightarrow \quad \lim_{n\to\infty}X_n\stackrel{(d)}{=}X_0$$

Central limit theorem in \mathbb{R} (repeated)

Theorem 21.

We consider the following situation:

- $\{X_n; n \ge 1\}$ sequence of i.i.d \mathbb{R} -valued r.v
- Hypothesis: $\mathbf{E}[|X_1|^2] < \infty$
- We set $\mathbf{E}[X_1] = \mu$ and $\mathbf{Var}(X_1) = \sigma^2$

Then

$$\sqrt{n}\left(\bar{X}_n-\mu\right) \xrightarrow{(d)} \mathcal{N}(0,\sigma^2), \quad \text{with} \quad \bar{X}_n=\frac{1}{n}\sum_{i=1}^n X_i.$$

Otherwise stated we have

$$\frac{S_n - n\mu}{\sigma n^{1/2}} \xrightarrow{(d)} \mathcal{N}(0,1), \quad \text{with} \quad S_n = \sum_{i=1}^n X_i$$
 (15)

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 夕 へ ○

Proof of CLT (1)

Reduction to $\mu = 0$, $\sigma = 1$: Set

$$\hat{X}_i = \frac{X_i - \mu}{\sigma}, \quad \text{and} \quad \hat{S}_n = \sum_{i=1}^n \hat{X}_i$$

Then

$$\hat{S}_n = \frac{S_n - n\mu}{\sigma}, \qquad \hat{X}_i \sim \mathcal{N}(0, 1)$$

and

$$\frac{S_n - n\mu}{\sigma n^{1/2}} = \frac{\hat{S}_n}{n^{1/2}}$$

Thus it is enough to prove (15) when $\mu=0$ and $\sigma=1$

Proof of CLT (2)

Aim: For X_i such that $\mathbf{E}[X_i] = 0$ and $\mathbf{Var}(X_i) = 1$, set

$$\phi_n(t) = \mathbf{E}\left[\mathrm{e}^{\imath t rac{S_n}{n^{1/2}}}
ight]$$

We wish to prove that

$$\lim_{n\to\infty}\phi_n(t)=e^{-\frac{1}{2}t^2}$$

According to Theorem 20 -(ii), this yields the desired result

Taylor expansion of the chf

Lemma 22.

- Y be a r.v.
 ψ chf of Y

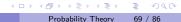
Hypothesis: for $\ell > 1$,

$$\mathbf{E}\left[|Y|^{\ell}\right]<\infty.$$

Conclusion:

$$\left|\psi(s) - \sum_{k=0}^{\ell} \frac{(\imath s)^k}{k!} \, \mathbf{E}[X^k] \right| \leq \mathbf{E}\left[\frac{|s \, X|^{\ell+1}}{(\ell+1)!} \wedge \frac{2|sX|^{\ell}}{\ell!}\right].$$

Proof: Similar to (1).



Proof of CLT (3)

Computation for ϕ_n : We have

$$\phi_n(t) = \left(\mathbf{E} \left[e^{i \frac{t X_1}{n^{1/2}}} \right] \right)^n$$

$$= \left[\phi \left(\frac{t}{n^{1/2}} \right) \right]^n, \qquad (16)$$

where

 $\phi \equiv$ characteristic function of X_1

Proof of CLT (4)

Expansion of ϕ : According to Lemma 22, we have

$$\phi\left(\frac{t}{n^{1/2}}\right) = 1 + it \frac{\mathbf{E}[X_1]}{n^{1/2}} + i^2 t^2 \frac{\mathbf{E}[X_1^2]}{2n} + R_n$$

$$= 1 - \frac{t^2}{2n} + R_n, \tag{17}$$

and R_n satisfies

$$|R_n| \leq \mathbf{E} \left[\frac{|t X_1|^3}{6n^{3/2}} \wedge \frac{|t X_1|^2}{n} \right]$$

Behavior of R_n : By dominated convergence we have

$$\lim_{n\to\infty} n |R_n| = 0 \tag{18}$$

Samy T.

Products of complex numbers

Lemma 23.

- $\{a_i; 1 \leq i \leq n\}$, such that $a_i \in \mathbb{C}$ and $|a_i| \leq 1$ $\{b_i; 1 \leq i \leq n\}$, such that $b_i \in \mathbb{C}$ and $|b_i| \leq 1$

Then we have

$$\left| \prod_{i=1}^{n} a_{i} - \prod_{i=1}^{n} b_{i} \right| \leq \sum_{i=1}^{n} |a_{i} - b_{i}|$$

Proof of Lemma 23

Case n = 2: Stems directly from the identity

$$a_1a_2 - b_1b_2 = a_1(a_2 - b_2) + (a_1 - b_1)b_2$$

General case: By induction

Proof of CLT (5)

Summary: Thanks to (16) and (17) we have

$$\phi_{\it n}(t) = \left[\phi\left(rac{t}{\it n^{1/2}}
ight)
ight]^{\it n}, \quad {
m and} \quad \phi\left(rac{t}{\it n^{1/2}}
ight) = 1 - rac{t^2}{2\it n} + \it R_{\it n}$$

Application of Lemma 23: We get

$$\left| \left[\phi \left(\frac{t}{n^{1/2}} \right) \right]^n - \left(1 - \frac{t^2}{2n} \right)^n \right| \tag{19}$$

$$\leq n \left| \phi \left(\frac{t}{n^{1/2}} \right) - \left(1 - \frac{t^2}{2n} \right) \right| \tag{20}$$

$$= n |R_n| \tag{21}$$

Proof of CLT (6)

Limit for ϕ_n : Invoking (18) and (19) we get

$$\lim_{n\to\infty}\left|\phi_n(t)-\left(1-\frac{t^2}{2n}\right)^n\right|=0$$

In addition

$$\lim_{n\to\infty}\left|\left(1-\frac{t^2}{2n}\right)^n-e^{-\frac{t^2}{2}}\right|=0$$

Therefore

$$\lim_{n\to\infty}\left|\phi_n(t)-\mathrm{e}^{-\frac{t^2}{2}}\right|=0$$

Conclusion: CLT holds, since

$$\lim_{n\to\infty}\phi_n(t)=e^{-\frac{1}{2}t^2}$$

Outline

- Real Gaussian random variables
- 2 Random vectors
- Gaussian random vectors
- Central limit theorem
- 5 Empirical mean and variance

Gamma and chi-square laws

Definition 1:

For all $\lambda > 0$ and a > 0, we denote by $\gamma(\lambda, a)$ the distribution on $\mathbb R$ defined by the density

$$\frac{x^{\lambda-1}}{a^{\lambda}\Gamma(\lambda)}\,\exp\left(-\frac{x}{a}\right)\mathbf{1}_{\{x>0\}},\quad\text{where}\quad\Gamma(\lambda)=\int_0^\infty x^{\lambda-1}e^{-x}dx$$

This distribution is called gamma law with parameters λ , a.

Definition 2:

Let X_1, \ldots, X_n i.i.d $\mathcal{N}(0,1)$. We set $Z = \sum_{i=1}^n X_i^2$.

The law of Z is called

chi-square distribution with n degrees of freedom.

We denote this distribution by $\chi^2(n)$.

Gamma and chi-square laws (2)

Proposition 24.

The distribution $\chi^2(n)$ coincides with $\gamma(n/2, 2)$.

As a particular case, if

- X_1, \ldots, X_n i.i.d $\mathcal{N}(0,1)$
- We set $Z = \sum_{i=1}^{n} X_i^2$,

then we have

$$Z \sim \gamma(n/2,2)$$
.

Empirical mean and variance

Let X_1, \ldots, X_n n real r.v

Definition: we set

$$\bar{X}_n = \frac{1}{n} \sum_{k=1}^n X_k$$
, and $S_n^2 = \frac{1}{n-1} \sum_{k=1}^n (X_k - \bar{X}_n)^2$.

 \bar{X}_n is called empirical mean. S_n^2 is called empirical variance.

Property:

Let X_1, \ldots, X_n n i.i.d real r.v

Assume $\mathbf{E}[X_1] = m$ and $\mathbf{Var}(X_1) = \sigma^2$. Then

$$\mathbf{E}\left[\bar{X}_{n}\right]=m, \text{ and } \mathbf{E}\left[S_{n}^{2}\right]=\sigma^{2}$$

Law of (\bar{X}_n, S_n^2) in a Gaussian situation

Theorem 25.

Let X_1, X_2, \ldots, X_n i.i.d with common law $\mathcal{N}_1(m, \sigma^2)$. Then

- ① \bar{X}_n and S_n^2 are independent. ② $\bar{X}_n \sim \mathcal{N}_1(m,\frac{\sigma^2}{n})$ and $\frac{n-1}{\sigma^2} S_n^2 \sim \chi^2(n-1)$.

Proof (1)

(1) Reduction to m=0 and $\sigma=1$: we set

$$X_i' = \frac{X_i - m}{\sigma} \iff X_i = \sigma X_i' + m \ 1 \le i \le n.$$

The r.v X'_1, \ldots, X'_n are i.i.d distributed as $\mathcal{N}_1(0,1)$ \hookrightarrow empirical mean \bar{X}'_n , empirical variance S'^2_n

Proof (2)

(1) Reduction to m=0 and $\sigma=1$ (ctd):

It is easily seen (using $X_i - \bar{X}_n = \sigma(X_i' - \bar{X}_n')$) that

$$\bar{X}_n = \sigma \bar{X}'_n + m$$
, and $S_n^2 = \sigma^2 S_n'^2$.

Thus we are reduced to the case m=0 and $\sigma=1$

(2) Reduced case:

Consider X_1, \ldots, X_n i.i.d $\mathcal{N}(0, 1)$

Let
$$u_1^* = n^{-1/2}(1, 1, \dots, 1)$$

We can construct u_2, \ldots, u_n such that (u_1, \ldots, u_n) onb of \mathbb{R}^n

Let $A \in \mathbb{R}^{n,n}$ whose columns are u_1, \ldots, u_n

We set $Y = A^*X$

Proof (3)

(i) Expression for the empirical mean:

A orthogonal matrix: $AA^* = A^*A = \operatorname{Id}$ $\hookrightarrow Y \sim \mathcal{N}(0, K_Y)$ with

$$K_Y = A^* K_X (A^*)^* = A^* \operatorname{Id} A = A^* A = \operatorname{Id},$$

because the covariance matrix K_X of X is Id .

Due to the fact that the first row of A^* is

$$u_1^* = \left(\frac{1}{\sqrt{n}}, \frac{1}{\sqrt{n}}, ..., \frac{1}{\sqrt{n}}\right),$$

we have:

$$Y_1 = \frac{1}{\sqrt{n}}(X_1 + X_2 + ... + X_n) = \sqrt{n}\bar{X}_n,$$

or otherwise stated, $\bar{X}_n = \frac{Y_1}{\sqrt{n}}$

Proof (4)

(ii) Expression for the empirical variance:

Let us express S_n^2 in terms of Y:

$$(n-1)S_n^2 = \sum_{k=1}^n (X_k - \bar{X}_n)^2 = \sum_{k=1}^n (X_k^2 - 2X_k \bar{X}_n + \bar{X}_n^2)$$
$$= \left(\sum_{k=1}^n X_k^2\right) - 2\bar{X}_n \left(\sum_{k=1}^n X_k\right) + n\bar{X}_n^2.$$

As a consequence,

$$(n-1)S_n^2 = \left(\sum_{k=1}^n X_k^2\right) - 2\bar{X}_n(n\bar{X}_n) + n\bar{X}_n^2 = \left(\sum_{k=1}^n X_k^2\right) - n\bar{X}_n^2.$$

Proof (5)

(ii) Expression for the empirical variance (ctd): We have

$$Y=A^*X$$
, A^* orthogonal $\Rightarrow \sum_{k=1}^n Y_k^2 = \sum_{k=1}^n X_k^2$

Hence

$$(n-1)S_n^2 = \sum_{k=1}^n X_k^2 - n\bar{X}_n^2 = \sum_{k=1}^n Y_k^2 - Y_1^2 = \sum_{k=2}^n Y_k^2.$$

Probability Theory

Proof (6)

Summary: We have seen that

$$ar{X}_n=rac{Y_1}{\sqrt{n}}, \quad ext{and} \quad (n-1)S_n^2=\sum_{k=2}^n Y_k^2$$

Conclusion:

- \hookrightarrow independence of X_n and S_n^2 .
- 2 Furthermore, $\bar{X}_n = \frac{Y_1}{\sqrt{n}} \Rightarrow X_n \sim \mathcal{N}_1(0, 1/n)$
- **1** We also have $(n-1)S_n^2 = \sum_{k=2}^n Y_k^2$ \Rightarrow the law of $(n-1)S_n^2$ is $\chi^2(n-1)$.

