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Standard Gaussian random variable

Definition: Let

@ X be a real valued random variable.

X is called standard Gaussian if its probability law admits the density:

1 x2
f(x) = r exp (—2) , Xx€eR.

Notation: We denote by N7(0,1) or N(0,1) this law.
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Gaussian random variable and expectations

Reminder:
@ For all bounded measurable functions g, we have

Els(X)] = = [ e()eo (—XQ) i

@ |In particular,
2

/Rexp (—%) dx = v/2r.
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Gaussian moments
,—[Proposition 1.]

Let X ~ AN(0,1). Then
@ For all z € C, we have

E[exp(zX)] = exp(2%/2).
As a particular case, we get
Elexp(:tX)] = e ©'/2, VteR.
@ For all n € N, we have

0 if nis odd,
E[X"] = 2m)!
[X] ﬂ, if nis even, n=2m.
ml2m

\.

o
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Proof

(i) Definition of the transform:
Jrexp(zx — x?)dx absolutely convergent for all z € C
< the quantity p(z) = E[e?X] is well defined and,

o(z) = \/12? /Rexp (zx — ;x2) dx.

(ii) Real case: Let z € R.

. 2
Decomposition zx — :x? = —2(x — z)* + &

and change of variable y = x — z = (z) = e’/?
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Proof (2)

(iii) Complex case:
pand z — e”’/2 are two entire functions
Since those two functions coincide on R, they coincide on C.

(iv) Characteristic function:
In particular, if z =1t with t € R, we have

Elexp(:tX)] = e /2
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Proof (3)

(v) Moments: Let n > 1.

Convergence of E[|X"|]: easy argument

In addition, we almost surely have

_ _ " (at)k
= n||_>n205,,, with S, = Z o

k=0

XX,
However, |S,| < Y with
Y — Z |t| |X| e|tX| < etX_i_e—tX.

Since E[exp(aX)] < oo, we obtain that Y is integrable

Applying dominated convergence, we end up with
(2tX)"

E[exp(:tX)] = E {Z o

n>0

=S TTEXT )

n>0

Identifying lhs and rhs, we get our formula for moments
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Gaussian random variable

Corollary: Owing to the previous proposition, if X ~ A/(0,1)
— E[X] =0 and Var(X) =1

Definition:
A random variable is said to be Gaussian if there exists X ~ N(0,1)
and two constants a and b such that Y = aX + b.

Parameter identification: we have

E[Y]=b, and Var(Y)=a’Var(X) = a.

Notation: We denote by A/(m, 02) the law of a Gaussian random
variable with mean m and variance o2.
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Properties of Gaussian random variables

Density: we have

)2
: exp (—M) is the density of N(m, o?)

oV 2rm 20
Characteristic function: let Y ~ N (m,0?). Then
2,

Ef[exp(:tY)] = exp (ztm — 50 ) , teR

The formula above also characterizes N'(m, 0?)

SEIAN Gaussian vectors & CLT Probability Theory 11 / 86



Gaussian law: illustration

Figure: Distributions A/(0,1), NV(1,1), N(0,9), N(0,1/4).

or «F = = T 9ac
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Sum of independent Gaussian random variables

Proposition 2.]

Let Y; and Y, be two independent Gaussian random variables
Assume Yy ~ N(my,0%) and Y ~ Ni(ms, 03).
Then Yl + Y2 ~ ./\fl(ml + ITIQ,O'% + O'%)

Proof:
Via characteristic functions

Remarks:

o It is easy to identify the parameters of Y; + Y5
o Possible generalization to 377 ; Y;
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Matrix notation

Transpose:
If Ais a matrix, A* designates the transpose of A.
Particular case: Let x € R". Then

@ x is a column vector in R™!

@ x™ is a row matrix

Inner product:

If x and y are two vectors in R”, their inner product is denoted by

<X7.y> - X*.y :y*X - in_yia if x* = (Xla -'-7Xn)7 .y* - (_)/1; "a_yn)
i=1
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Vector valued random variable

~ Definition 3. N

@ A random variable X with values in R" is given by n real
valued random variables X1,X5, ..., X,.

© We denote by X the column matrix with coordinates
X, Xoy ooy X

X* = (X0, Xo, ..., Xo).
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Expected value and covariance

Expected value: Let X € R". E[X] is the vector defined by
E[X]" = (E[X1], E[X:] ..., E[X)]).

Note: here we assume that all the expectations are well-defined.

Covariance: Let X € R" and Y € R™.
The covariance matrix Kx y € R™™ is defined by

KX,Y =E [(X - E[X]) (Y - E[Y])*]

Elements of the covariance matrix: for 1 <i<nand1<j;<m

Kx.y(i,]) = Cov(X;, Y;) = E[(X; — E[Xi]) (¥; — E[Y])]
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Simples properties
Linear transforms and Expectation-covariance:
Let X e R", Aec R™" ue R™ Then

E[U + AX] =u-+ A E[X], and Ku+AX = KAX = AKxA*

Another formula for the covariance:

Kxy = E[XY*] —E[X] E[Y]".
As a particular case,

Kx = E[XX*] — E[X] E[X]*
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Definition

Definition: Let X € R".
X is a Gaussian random vector iff for all A € R”

(A, X) = XX =>_ X\X; is a real valued Gaussian r.v.

i=1

Remarks:
(1) X Gaussian vector
= Each component X; of X is a real Gaussian r.v

(2) Key example of Gaussian vector:
Independent Gaussian components Xi, ..., X,

(3) Easy construction of random vector X € R? such that
(i) Xi, Xo real Gaussian (ii) X is not a Gaussian vector
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Characteristic function

,—[Proposition 4.] \

Let X Gaussian vector with mean m and covariance K
Then, for all v € R”",

E [exp(e(u, X))] = el:m—3u"Ku

where we use the matrix representation for the vector u

\. J
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Proof

Identification of (u, X):
(u, X) Gaussian r.v by assumption, with parameters

p=E[(u, X)] = (u, m), and o?:=Var({u, X)) = v*Ku (2)

Characteristic function of 1-d Gaussian r.v:
Let Y ~ N(u,0?). Then recall that

El[exp(:tY)] = exp (zt,u — %202> , teR. (3)

Conclusion: Easily obtained by plugging (2) into (11)
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Remark and notation

Remark: According to Proposition 4

< The law of a Gaussian vector X is characterized by its mean m
and its covariance matrix K

< If X and Y are two Gaussian vectors with the same mean and
covariance matrix, their law is the same

Caution: This is only true for Gaussian vectors.
In general, two random variables sharing the same mean and variance
are not equal in law

Notation: If X Gaussian vector with mean m and covariance K
We write X ~ N(m, K)
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Linear transformations

,—[Proposition 5.] \

Let
o X ~ N(mx, Kx)
e AcRP" and z € RP
Set
Y=AX+zZz

Then

YNN(my,Ky), with my :Z+Amx7 Ky :AKxA*
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Proof

Aim: Let u € RP.
We wish to prove that u*Y is a Gaussian r.v.

Expression for u*Y: We have

Y =uz4+ U AX =utz+ v X,
where we have set v = A*u. This is a Gaussian r.v
Conclusion: Y is a Gaussian vector. In addition,

my = E[Y] = z+ AE[X] = z+ Amx, and Ky = AKxA".
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Positivity of the correlation matrix

Proposition 6.]

Let X be a random vector with covariance matrix K.
Then K is a symmetric positive matrix.

Proof:
Symmetry: K(i,j) = Cov(X;, X;) = Cov(X;, X;) = K(j, /)
Positivity: Let v € R" and Y = v*X. Then

Var(Y)=u"Ku >0
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Linear algebra lemma

~ Lemma 7. \

Let
o [ € R™" symmetric and positive.
Then there exists a matrix A € R"" such that

= AA”
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Proof

Diagonal form of I':
e [ symmetric = there exists an orthogonal matrix U and
D; = Diag(Ay, ..., A,) such that D; = U*TU

e [ positive = \; > 0 for all i € {1,2,..., n}.

Definition of the square root:
o Let D = Diag(A\/?,...,\1/2).
e We set A= UD.

Conclusion:
e Recall that U™ = U*, therefore [ = UD; U*.
e Now D; = D? = DD*, and thus

[ = UDD*U* = UD(UD)* = AA".
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Construction of a Gaussian vector

—~ Theorem 8. \

Let

e meR"

o [ € R™ symmetric and positive
Then

There exists a Gaussian vector X ~ N'(m,T)

SEIAN Gaussian vectors & CLT Probability Theory 29 / 86



Proof

Standard Gaussian vector in R":
Let Y1, Y, ..., Y,, iid with common law N;(0,1). We set

Y*=(Y1,...,Y,), andtherefore Y ~ N(0,Id,).

Definition of X: Let A € R™" such that AA* =T.
We define X as:

X =m+ AY.

Conclusion:
According to Proposition 5 we have X ~ N (m, Kx), with

Kx =AKy A" = AId A" = AA* =T.
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Decorrelation and independence

—~ Theorem 9.

Let X be Gaussian vector, with X* = (Xi,..., X,).
Then

The random variables Xi, ..., X, are independent
<~
The covariance matrix Kx is diagonal.

Samy T. Gaussian vectors & CLT Probability Theory
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Proof of =

Decorrelation of coordinates:
If Xi,...,X, are independent, then

K(i,j) = Cov(X;, X;) =0, whenever i # ;.

Therefore Kx is diagonal.
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Proof of < (1)

Characteristic function of X: Set K = Kx. We have shown that
Elexp(1(u, X))) = e'“EXD=2u"ku ) e R, (4)

Since K is diagonal, we have :

uKu = éuf K(I,1)=">" u} Var(X)). (5)

I=1

Characteristic function of each coordinate:
Let ¢x, be the characteristic function of X
We have ¢x,(s) = E[e**¥], for all s € R.

Taking u such that u; = 0, for all i # / in (4) and (5) we get
¢X,(U/) =E [exp(zu,X,)] = ew/E[X/]f—u, Var(X))
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Proof of < (2)

Conclusion:
We can recast (4) as follows: for all u = (uy, ua, ..., u,),

[T ox(u) = € o (13- ux) |~ Elewutu X))

This means that
the random variables X1, ..., X, are independent.
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Lemma about absolutely continuous r.v

~ Lemma 10. N

Let

@ £ € R" a random variable admitting a density.
@ H a subspace of R”, such that dim(H) < n.

Then

P(¢ € H) = 0.
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Proof

Change of variables:
We can assume H C H’ with

H = {(x1,x2, ..., Xn); x, =0}

Conclusion:
Denote by ¢ the density of £&. We have:

P((eH) < PEeH)

= / SO(X17X2, ---,Xn)l{xnzo}dxl dxs ... dx,
Rn
= 0.
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Gaussian density

r—[Theorem 11.] \

Let X ~ N(m, K). Then
@ X admits a density iff K is invertible.
@ If K is invertible, the density of X is given by

1 1 *pr—1
f(x) = ) 2 (det(K)) 172 exp (—E(X —m)*K (x — m))
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Proof

(1) Density and inversion of K: We have seen
XD mi Ay, where AA* =K, Y ~ N(0,1d,)

(i) Assume A non invertible.

A non invertible = Im(A) = H, with dim(H) < n
< P(AY € H) =1

Contradiction:
X admits a density = X — m admits a density
= P(X—meH)=0

However, we have seen that P(X — m € H) = P(AY € H)= 1.

Hence X doesn't admit a density.
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Proof (2)

(ii) Assume A invertible.

A invertible
= application y — m + Ay is a C! bijection
= the random variable m + AY admits a density.

(iii) Conclusion.

Since AA* = K, we have
det(A) det(A*) = (det(A))? = det(K)
and we get the equivalence:

A invertible <= K is invertible.
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Proof (3)

(2) Expression of the density: Let Y ~ A/(0,1d,). Density of Y:

gly) = (27:),7/2 exp (—%<y,y>> -

Change of variable: Set

X' =AY +m thatis Y =AYX —m)
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Proof (4)

Jacobian of the transformation: for x — A~!(x — m) we have

Jacobian = A™!

Determinant of the Jacobian:
det(A™!) = [det(A)] " = [det(K)] /2

Expression for the inner product:
We have K=! = (AA*)~1 = (A*)1A7L, and

yy) = (A x—m), AN (x —m))
= (x=m*(A DA x—m)=(x —m)'K ' (x —m).

Thus X' admits the density f.

Since X and X’ share the same law, X admits the density f.
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Law of large numbers

r—[Theorem 12.] \

We consider the following situation:

e (X, n>1) sequence of i.i.d R*-valued r.v
e Hypothesis: E[|X;|] < oo, and we set E[X;] = m € Rk

We define o
X, == X;.
ni5

Then

lim X, = m, almost surely
n—o0
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Central limit theorem

r—[Theorem 13.] \

We consider the following situation:

e {X,; n> 1} sequence of i.i.d R*-valued r.v

e Hypothesis: E[|X;]?] < o

o We set E[X;] = m € R¥ and Cov(X;) =T € Rk*
Then

va(

\. J

o= m) L N(0T), with X, =

Interpretation: X, converges to m with rate n=%/2
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Convergence in law, first definition

Remark: For notational sake
< the remainder of the section will focus on R-valued r.v

r—[Definition 14.] \
Let
e {X,; n> 1} sequence of r.v, Xy another r.v
@ F, distribution function of X,
@ fFy distribution function of Xy
@ We set C(F) = {x € R; F continuous at point x}

Definition 1: We have

iMoo Xo 2 Xo if limy_se Fa(x) = Fo(x) for all x € C(F).
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Convergence in law, equivalent definition

,—{Proposition 15.]
Let
e {X,; n> 1} sequence of r.v, X another r.v

o We set
Co(R) = {p : R — R; ¢ continuous and bounded}

Definition 2: We have

Iirnn—)oo Xn (g) XO
iff
lim o0 E[0(Xh)] = E[(X0)] for all ¢ € C,(R).
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Central limit theorem in R
r—[Theorem 16.] \

We consider the following situation:

e {X,; n> 1} sequence of i.i.d R-valued r.v
e Hypothesis: E[|X;]?] < c©
e We set E[X;] = p and Var(X;) = 02

Then
NG ()‘<,, - u) 9D N(0,02), with X, = 12)@-.

Otherwise stated we have

i Xi—np o (d)

\.

v
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Application: Bernoulli distribution

,—[Proposition 17.]

Let (X,; n > 1) sequence of i.i.d B(p) r.v
Then

\. J

Remark:
For practical purposes as soon as np > 15, the law of

X1+ +X,—np
np(1 — p)

is approached by N1(0,1). Notice that X + - -+ X, ~ Bin(n, p).
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Binomial distribution: plot (1)

Figure: Distribution Bin(6;0.5). x-axis: k, y-axis: P(X = k)
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Binomial distribution: plot (2)

Figure: Distribution Bin(30;0.5). x-axis: k, y-axis: P(X = k)
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Relation between pdf and chf

r—[Theorem 18.} \
Let
@ F be a distribution function on R

@ ¢ the characteristic function of F

Then F is uniquely determined by ¢

\. J
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Proof (1)

Setting: We consider
@ A r.v X with distribution F and chf ¢
@ A r.v Z with distribution G and chf ~

Relation between chf: We have

/R e~ 2 ¢(z) G(dz) = /R F(dx) 7(x — )

SEIAN Gaussian vectors & CLT
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Proof (2)

Proof of (6): Invoking Fubini, we get
—0Z o —10z
Ele?9(2)] = /R e 2¢(2) G(dz)

= /RG(dz) e = [/R e F(dx)]

= [ F(e) | [ e 6(az)]
= ERh(X-0)]
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Proof (3)

Particularizing to a Gaussian case: We now consider
e Z~aN with N ~ N(0,1)
@ In this case, if n = density of A/(0, 1), we have

G(dz) =o' n(o'z) dz

With this setting, relation (6) becomes

/R e~ 72 §(02)n(z) dz = / e~ 3707 F(dsz) (7)

R
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Proof (4)

Integration with respect to 6: Integrating (7) wrt 6 we get

| Xoo do /R e 724 (02) n(2) dz = Ay (x),

where

Ay o(x :/ d@/ ~30%(z-0)

SEIAN Gaussian vectors & CLT
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Proof (5)

Expression for A, g: We have

Aoolx) "N [ F(dz) [T i dg

c.v: S:=9—Z (27-(-0-_2)1/2/ F(dZ)/ nO,cf*z(S) ds
R

Therefore, considering N 1L X with N ~ N(0,1) we get

Aso(x) = (2%0‘2) Y2 P (a_lN + X< x)

Samy T. Gaussian vectors & CLT Probability Theory
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Proof (6)

Summary: Putting together (8) and (9) we get
X 1/2
do [ e dz = (27072) P (071N + X <
/_OO e ¢(oz) n(z) dz ( o ) (a +X < x)

Divide the above relation by (2ro—2)"/>. We obtain

g

T |40 [ e6(oz)n(z) dz = P (s IN + X < x) (10)
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Proof (7)

Convergence result: Recall that

Xi,n O, X1 and X3, B, X2 = Xint+Xon - X (11)

)

Notation: We set

C(F) = {x € R; F continuous at point x}
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Proof (8)

Limit as 0 — oo:

Thanks to our convergence result, one can take limits in (10)

g

aleooW /_XOO dH/Re_’e"zng(az) n(z) dz

= |lim P (J_1N+X < x)
o—00

=P(X <x)

= F(x),

for all x € C(F)

Conclusion:
F is determined by ¢.

SEIAN Gaussian vectors & CLT
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Fourier inversion

,—[Proposition 19.] \
Let
@ F be a distribution function on R, and X ~ F
@ ¢ the characteristic function of F

Hypothesis:
¢ € L'(R)

Conclusion:
F admits a bounded continuous density f, given by

)= o [ () dy

o
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Proof (1)

Density of 07N + X: We set
F,(x)=P (0'_1N + X< x)
Since both N and X admit a density, F, admits a density £,

Expression for F,: Recall relation (10)

W / Xoo a0 /R e " ¢(02) n(z) dz = Fy(x) (13)
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Proof (2)

Expression for f,: Differentiating the lhs of (13) we get

g

0 = G / 092 5 7) n(z) dz
(9\1/2

(2m)12
1
(2m)!

5 | e oy n(oty) dy
[e™oe = dy

(nis Gaussian) =

Relation (10) on a finite interval: Let / = [a, b]. Using fy we have

P (07 'N+ X € [a,b]) = F,(b) — Fr(a) = /b £(0)d0  (14)
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Proof (3)

Limit of f,: By dominated convergence,

1

lim £,(0) = )i /Re—wygb()’) dy = f(0)

g—00

Domination of f,: We have

(27T1)1 /
1 / 6(

(2n)1/2

72}/2

f(0) = e o(y)e = dy

oy

1
- (271')1/2 ||¢“L1(R
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Proof (4)

Limits in (14): We use
@ On lhs of (14): Convergence result (11)
@ On rhs of (14): Dominated convergence (on finite interval /)

We get ,
P(X € [a,b]) = F(b) — F(a) = [ f(6) 0

a

Conclusion:

X admits f (obtained by Fourier inversion) as a density

SEIAN Gaussian vectors & CLT Probability Theory 64 / 86



Convergence in law and chf

\.

r—[Theorem 20.]

Let

e {X,; n> 1} sequence of r.v, X another r.v
@ ¢, chf of X, ¢g chf of Xg

Then
(i) We have

Tim X, @ Xy = lim ¢,(t) = go(t) for all t € R

(ii) Assume that

@ ¢(0) =1 and ¢ continuous at point 0
Then we have

1im ¢n(t) = go(t) forall teR = lim X, & X

Samy T. Gaussian vectors & CLT Probability Theory
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Central limit theorem in R (repeated)

r—[Theorem 21.}

We consider the following situation:

e {X,; n> 1} sequence of i.i.d R-valued r.v

e Hypothesis: E[|X;]?] < o

e We set E[X;] = i and Var(X;) = 02
Then

- 1
Vi (X0 — 1) 1 N(0,6%), with X, =3 X;.
Otherwise stated we have

So— N (d) _ n
oy S N(0,1), with S,=>"X

i=1

\.

(15)
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Proof of CLT (1)

Reduction to 4 =0, 0 = 1: Set

N X: N no.
Xi=— ,u’ and S,=)> X
o i=1
Then S
g, =" % N(0,1)
o
and R
Sn—nu S,
onl/? o nt/2

Thus it is enough to prove (15) when p=0and 0 =1
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Proof of CLT (2)

Aim: For X; such that E[X;] =0 and Var(X;) =1, set
én(t) = E [e“n%]
We wish to prove that

1t2

lim ¢,(t) =e 2

n—o0

According to Theorem 20 -(ii), this yields the desired result
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Taylor expansion of the chf

—~ Lemma 22. N

Let
@ Y bear.uv.
@ ¢ chfof Y
Hypothesis: for £ > 1,
E||Y]] < o0.
Conclusion:
£ (us)* |s X[ 2|sX|*
= E[X ]| <E .
vis) ,§ o EX s [(€+1)! N 1

\. J

Proof: Similar to (1).
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Proof of CLT (3)

Computation for ¢,: We have

e - (e[e])

where

¢ = characteristic function of X;
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Proof of CLT (4)

Expansion of ¢: According to Lemma 22, we have

¢< ‘ > = 1+zt—E[X1]+Z2t2—E[X12]+Rn

nt/2 nl/2 2n
#2
and R, satisfies
lt X [t Xi?
|Rn|§El6n3/2 /\ n

Behavior of R,: By dominated convergence we have

lim n|R,| =0 (18)
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Products of complex numbers

~ Lemma 23. N

Let
e {a;1<i<n} suchthat 3, € Cand |a] <1
e {b;;1 <i<n}, suchthat by € Cand|b| <1

Then we have

n n
H aj — H b,‘
i=1 i=1

n
<> |ai — byl
i=1
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Proof of Lemma 23

Case n = 2: Stems directly from the identity

didy — b1b2 = a1 (32 — bz) + (a]_ — b1)b2

General case: By induction
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Proof of CLT (5)

Summary: Thanks to (16) and (17) we have
9=[s(=)]", and 6(-L)=1-L 4R
o) = [ (Gzz)| - and 0 (Gm) 1 4R

Application of Lemma 23: We get
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Proof of CLT (6)
Limit for ¢,: Invoking (18) and (19) we get

t2\"
i ()= (1—=—] |=0
Aim_ |én(t) ( 2,,)
In addition
. 2\" e
n||_)n;o‘<1—5> —e 2| =0
Therefore ,
lim |y(t) —e 7| =0

Conclusion: CLT holds, since

1

lim ¢,(t) = e 2"

n—o0

SEIAN Gaussian vectors & CLT Probability Theory 75 / 86



Outline

© Empirical mean and variance
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Gamma and chi-square laws

Definition 1:
For all A > 0 and a > 0, we denote by v(\, a) the distribution on R
defined by the density

X/\fl

2T\

exp (—2) 140y, where T()\) = /OOO x e > dx

This distribution is called gamma law with parameters A, a.

Definition 2:

Let Xi,..., X, i.i.d N(0,1). We set Z =37 ; X?.
The law of Z is called

chi-square distribution with n degrees of freedom.
We denote this distribution by x?(n).
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Gamma and chi-square laws (2)

,—[Proposition 24.] \

The distribution ?(n) coincides with v(n/2,2).
As a particular case, if

e Xi,..., X, iid N(0,1)

e Weset Z=3Y",X?

then we have
Z ~~(n/2,2).
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Empirical mean and variance

Let Xi,...,X, nreal rv

Definition: we set

1 n -~
> (X — Xa)
n—1 pa]

_ 1.0
X,,:—ZXk, and 5,2,:
ni=

X, is called empirical mean.
S2 is called empirical variance.

Property:
Let Xi,..., X, ni.idrealrv
Assume E[X;] = m and Var(X;) = 02, Then

E P(n} =m, and E [Sﬂ =0’
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Law of (X, S?) in a Gaussian situation

r—[Theorem 25.} \
Let X1, Xa,...,X, i.i.d with common law A7(m, o?).
Then

© X, and S? are independent.
@ X, ~Ni(m, Z) and 22 S? ~ y*(n —1).

n
g
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Proof (1)

(1) Reduction to m =0 and o = 1: we set

X,-—m
o

Therv X{,..., X are i.id distributed as (0, 1)
< empirical mean X!, empirical variance S/?

X = = X=X +m 1<i<n
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Proof (2)

(1) Reduction to m =0 and o = 1 (ctd):
It is easily seen (using X; — X, = o(X/ — X)) that

X,=0X,+m, and S?=0%S>

Thus we are reduced to the case m=0and o0 =1

(2) Reduced case:

Consider Xy, ..., X, i.i.d N(0,1)

Let u} = n~Y/2(1,1,...,1)

We can construct uy, ..., u, such that (uq,...,u,) onb of R"

Let A € R™" whose columns are uq, ..., u,
We set Y = A*X
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Proof (3)

(i) Expression for the empirical mean:
A orthogonal matrix: AA* = A*A =1d
— Y ~ N(0, Ky) with

Ky = A"Kx(A") = A" Id A = A*A = 1d,

because the covariance matrix Kx of X is Id.
Due to the fact that the first row of A* is

we have: 1
Yy = Xy + Xo b o+ X,)= /K,
1 \/ﬁ( 1+ Xo+ ..+ X,)=+n
or otherwise stated, X, = %
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Proof (4)

(ii) Expression for the empirical variance:
Let us express S2 in terms of Y:

(n—1)S2 = Y (X — Xo)> = D (XF — 2Xe X, + X?)

k=1

k=
(29) -2
k=1 k
As a consequence,

(n—1)S? = (Z xk> —2X,(nX,) + nX?= (Z xk2> — nX2.

k=1 k=1

M:H

Xk> + n)_<3

1
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Proof (5)

(ii) Expression for the empirical variance (ctd): We have
Y = A*X, A* orthogonal = S7_; Y2 = Y7, X?

Hence

(n—1)S2 = ZXk—an ZYk Y =5 Y.
k=2

k=1
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Proof (6)

Summary: We have seen that

X, = and (n—1)S2 = ZYk

Y1
b
Vn
Conclusion:

Q@ Y ~N(0,1d,) = Yi,..., Y, iid N(0,1)
< independence of X, and S2.

j :>X NN1(0 1/n)

© We also have (n—1)S2 =37, Y7
= the law of (n —1)S2 is x?(n — 1).

@ Furthermore, )_<,,
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