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Overview

Stationary sequence: such that

{Xpik; n >0} @ {Xn; n>0}.
Main result: law of large numbers of the type

1 n
=3 f(Xk) exists as
N
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Markov chain

— Definition 1. |
Let X = {X,; n > 0} be a process.
@ X is a Markov chain if

P(Xn+1:j|XO:iO;-"axn:in):P(Xn+1:j|Xn:in)

foralln>0, ig,...,0,j € E.
© The Markov chain is homogeneous whenever

P(XnJrl:./"Xn:i):P(Xlz./"XOZ’.)
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Law of the Markov chain

,—[Proposition 2.] \
Let X be a homogeneous Markov chain
— with initial law v and transition p.
Q@ ForneNandj,...,i, € E, we have

P (Xo = io, e 7Xn = I,,) = V(io) p(io, ’1) 000 ,D(I',,,l, /n)

@ The law of X is characterized by v and p.
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Law of the Markov chain: general state space

,—[Proposition 3.}

Let X be a homogeneous Markov chain on (S,S)
— with initial law v and transition p.

Q@ For ne N and ¢ € Cp(S), we have

E [90(X07 CIE 7Xn)]

. En+1

© The law of X is characterized by v and p.

= ©(X0, - - - Xn)V(dX0) P(X0, 1) - - - P(Xn—1, %) (1)
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A criterion for Markovianity

,—[Proposition 4.]

Let
e Z : ) — E random variable.

@ F countable set.

o {Y,; n>1}iid sequence, with Y 1L Zand Y, € F.
o f:ExF—E.
We set
Xo=2, and Xp1 = f(Xp, Yos1).

Then X is a homogeneous Markov chain such that

vo = L(Z), and p(i,j) =P (f(i, Y1) =J).

\.

Remark: A converse result exists, but it won't be used.
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Graph of a Markov chain

— Definition 5. | \

Let X homogeneous Markov chain (initial law v, transition p).
We define a graph G(X) by

@ G(X) is an oriented graph
@ Vertices of G(X) are points of E.
e Edges of G(X) are defined by

V={(i,j); i #J, p(i,j) > 0}.
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Example

,—{ Example 6. \

We consider £ = {1,2,3,4,5} and

1/3 0 2/3 0 0
1/4 1/2 1/4 0 0
p=11/2 0 1/2 0 0
o 0 0 0 1
0o 0 0 2/31/3

\

Related graph: to be done in class
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Graph and accessibility

,—[Proposition 7.] \
Let X homogeneous Markov chain (initial law vy, transition p).
Then

= J
iff
i = j or there exists an oriented path from i to j in G(X).
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Minimal class

Definition 8. ;

An equivalence class C is minimal if:

Forallie Candj ¢ C, we have i /4 j.

Example:
For Example 6, C;, C3 are minimal, and G, is not minimal.

Minimality criterions:
(i) If there exists a unique class C, it is minimal.
(i) There exists a unique minimal class C
& dl class C such that for all i € E, we have i — C.

Application: Random walk
Probability Theory 13 / 92



Recurrence criterions

—~ Theorem 9. \

Let
@ X homogeneous Markov chain
(initial law vy, transition p).
o C class for the relation <.
Then
@ If C is not minimal then it is transient
@ If C is minimal and |E| < oo, then

» C is recurrent
» C is positive recurrent : for all i € C, E;[R;] < 0.
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Example

Recall: In Example 6 we had E = {1,2,3,4,5} (hence |E| < c0) and

1/3 0 2/3 0 0
1/4 1/2 1/4 0 0
p=11/2 0 1/2 0 0
o 0 0 0 1
0 0 0 2/31/3

Related classes:
G ={1,3}, GG ={2} and G = {4,5}.
< (1, G3 minimal and G, not minimal.

Conclusion: (i, Gz positive recurrent, G, transient.
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Stationary sequence

r—(Definition 10.] \
Let

e {X,; n> 0} sequence of random variables

We say that X is stationary if for all k > 1 we have

(Xosr: 1 >0 D iX,: n>0}.
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iid random variables

,—{ Example 11. \

Let

e X = {X,; n> 0} sequence of i.i.d random variables

Then X is a stationary sequence.

\ J
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Markov chains

,—| Example 12.

Let

e X ={X,; n> 0} Markov chain on state space S
@ Transition probability: p(x, A)

@ Hypothesis 1: unique stationary distribution 7

@ Hypothesis 2: L(Xp) =7

Then X is a stationary sequence.

\

Proof:
Easy consequence of relation (1).
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Trivial example of Markov chain

,—{ Example 13.

On S ={0,1} we take
o p(x,1—x)=1
o m(0)=1 n(1)=1
Then

Samy T. Ergodic theorems
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Rotation of the circle

,—| Example 14. \

We consider A = Lebesgue measure and:
e (2, F,P)=([0,1], Borel sets, \)
e §€(0,1)
e X ={X,; n>0} with

Xp(w) = (w+nf) mod1l=w-+ nd—[w+ nd.

Then X is a stationary sequence.

\ J
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Proof

Law of X;: For ¢ € Cp(R) we have
Eo0G)] = [ o8- x+6]) ox
_ /Ol—ego(x—l—H)dx—i—/ll_ego(x—l—ﬁ—l)dx
= [ dv=Ep(x0)]

Thus £(X,) = £(Xo).
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Proof (2)

Altenative expression for X,: Due to the relation
(a+b) modl=[a modl+b modl] mod]l,
we have

X, = (w+nf) mod1l
(w+(n—1)+0) mod1
= [(w+(n—=1)0) mod1+6 modl] mod]l1
[Xoo1+ 0] mod 1
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Proof (3)

Recall: We have seen that

Xp = [Xp-1+6] mod 1. (2)

Conclusion: It is readily checked that
@ From (2) and Proposition 4, X is a Markov chain

@ The relation £(X;) = L£(Xp) means that A is an invariant
distribution

Therefore X is stationary thanks to Example 12.
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Transformation of a stationary sequence

r—[Theorem 15.] \

Let

o X = {X,; n> 0} stationary sequence
o g :RY — R measurable

We consider a sequence Y defined by

Yic = & ({Xicyni n > 0}).

Then Y is a stationary sequence.

\.
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o-algebra on RY (1)
Set RY: We define
R" = {w = (wj)jen; wy € R}

Finite dimensional set: Of the form
A:{wGRN; wj € B;, forlgjgn}, with B; e R,

where R = Borel o-algebra in R.
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o-algebra on RY (2)

~ Definition 16. | \

On RN we set:

RY = o (finite dimensional sets) .

Then RY is called Borel o-algebra on RY.

\ J

Remark:
Kolmogorov's extension theorem is valid on (RY, RM).
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Proof of Theorem 15

Notation: For x € RN and k > 0 we set

gk(x) = & ({Xkrn; n > 0}).

Inverse image: Let B € RN. Then
{weR% YeB}={weR" XcA},

where
A={weR g(X) e B}
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Proof of Theorem 15 (2)

Proof of stationarity: For the generic B € RY we have
P(weR YeB) = P(weRY XeA)
P (weRY; {X;; n>0} €A

= P(weRY {Xeini n >0} € A)
P (weRY, {Yirni n >0} €B).

This yields stationarity for Y.
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Bernoulli shifts

,—{ Example 17.

e (Q,F,P)=([0,1], Borel sets, \)

(] Y():UJ

Yn(W) = 2Yn_1

Then Y is a stationary sequence.

\

We consider A = Lebesgue measure and:

e Y ={Y,; n>0} where for n > 1 we have

mod 1.

Samy T. Ergodic theorems
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Proof by Markov chains

Law of Yi: For ¢ € Cp(R) we have

1

Elp(V1)] = ¢ (2y mod 1) dy

-

2

1
v (2y) dy+/l ¢(2y — 1) dy

"o (v) dv = E[o(Yo)

I
S— o— >—

Thus £( Y1) = £(Yo).
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Proof by Markov chains (2)

Proof of stationarity: We have
Q Y,(w)=2Y,1 modl
© Thanks to proposition 4, Y is thus a Markov chain

@ The relation £(Y71) = L£(Ys) means that A is an invariant
distribution for Y

Therefore Y is a stationary sequence thanks to Example 12.
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Proof by Theorem 15

Another representation for Y: Let
e {X;; i > 1} iid with common law B(1/2)
0 g(x) = X1 271 defined for x € {0,1}"
o gi(x) = g({xkyi; i > 1}) defined for x € {0, 1}"
o Yi=gk(X)
Then
Yo~ A, and Y,(w)=2Y,; mod]l.

Stationarity of Y: We have
e X stationary
o Y, = g(X)

Therefore Y is a stationary sequence.
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Measure preserving map

r—[Definition 18.] \
Let
e (2, F,P) a probability space
@ A measurable map ¢ : Q2 — Q

We say that ¢ is measure preserving if
P(o7'(A) =P(A), forall AcF
Otherwise stated, ¢ is measure preserving if

E [¢(X(¢()))] = Elg(X(@))], forall geCs
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Measure preserving map and stationarity

,—{ Example 19. \

Let
e (Q,F,P) a probability space
@ A measure preserving map ¢ : Q2 — Q
e X € F arandom variable
For n > 0 we set:
Xn = X (¢"(w))

Then X is a stationary sequence.

\ J
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Proof

Characterization with expected values:
For g € C(R") and k > 1 we have:

Elg (X Xern)] = E[g (Xo(* (). Xa(9*(w)))]
Elg (Xo(w), - Xa(w))]
= El[g(Xo,...,X,)].

Thus X is a stationary sequence.
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Stationarity and measure preserving maps

,—{ Example 20. \

Let

@ Y stationary sequence with values in S = R”
@ P probability measure on (SN, R(SY)) defined by:

Xo(w)=w, = L(X)=L(Y)
We define a shift operator ¢ by:

v ({wjij 2 0}) = {wjs1:j = O}

Then ¢ is measure preserving.

Interpretation:
Previous examples can be reduced to a measure preserving map
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Two sided stationary sequence

r—[Theorem 21.} \

Let
e X stationary sequence

Then X can be embedded into a two sided sequence

{Yos neZ}.
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Proof

Application of Kolmogorov's extension:
It is enough to define a family of probability measures

@ On RA for any finite subset of Z
© With consistent property

Current situation: we consider Y defined by

Elg(Yom, -, Ya)l = Elg (Xo, -, Xinin)]

for all g € C,(R™ 1), Kolmogorov's extension applies
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Outline

@ Definitions and examples

@ Notion of ergodicity

o = = £ DA
Samy T. Ergodic theorems



Setup

General setting: We are reduced to
e (2, F,P) probability space
@ A map ¢ preserving P
@ A random variable X
@ A sequence X,(w) = X(w)

Invariant set: Let A € F. The set A is invariant if
P(AAy'(A) =0
Notation abuse: For an invariant set A, we often write

A=¢ 1 (A)
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Ergodicity

r—[Definition 22.} \
Let
e (Q,F,P) probability space
@ A map ¢ preserving P

@ 7 = o-algebra of invariant events

We say that ¢ is ergodic if Z is trivial, i.e:

AeZT = P(A) {01}
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Kolmogorov's 0-1 law

r—[Theorem 23.}
Let

e X = {X,; n> 0} sequence of i.i.d random variables
e For n >0, we set F} = o({Xk; k > n})
e Tail o-field: T = Ny>oF),

Then T is trivial, i.e:

AeT = P(A)e{0,1)}.

Samy T. Ergodic theorems
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Ergodicity for i.i.d sequences

,—| Example 24. \

Let

e X = {X,; n> 0} sequence of i.i.d random variables

@ ¢ = shift operator on Q = RN

Then ¢ is ergodic.
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Proof

Measurability of an invariant set: Let A € Z. Then

A={weQ pw)e A} = AecF.

Tail o-field: Iterating the previous relation we get
Acl = AeT

Hence by Kolmogorov's 0-1 law we get that Z is trivial
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Ergodicity for Markov chains

,—{ Example 25. \

Let

X = {X,; n> 0} MCH on countable state space S
Transition probability: p(x, A)

Hypothesis 1: unique stationary distribution 7
Hypothesis 2: 7(x) > 0 for all x € S
@ Hypothesis 3: L(Xp) =7

o
o
@ ¢ = shift operator on Q = SN
o
o

Then
© If X is not irreducible, 6 is not ergodic
@ If X is irreducible, 8 is ergodic

\.
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Proof

Basic Markov chains facts:
@ Since 7(x) > 0 for all x € S, all states are recurrent

@ State space decomposition:
S = Uj<yR;, where R; disjoint irreducible sets

Non irreducible case: If J > 2 we have
Xo€R <<= X,c€Rjforalln>0.

Therefore for all j < J we get:
® lixer) = 1oaer) Lixer) = Loacr)
o lterating we get (Xo € R}) € Z
o 1(Xo € R) € (0,1)if J>2
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Proof (2)

General relation for 14:
@ ForAeZ wehavely=14080,
o We set F, = o(Xo,...,Xn)
o We define h(x) = E,[14]

Then

E. [1a] Fo] ™" E, [1a 0 6, F,] " p(X,,)

Levy's 0-1 law: Let
o Fu /1 Fuo
e Ac F
Then a.s and in L}() we have

lim E[14] ] = 14
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Proof (3)
Limit of h(X,): Recall
E.[1a] Fo] = h(X,), and  lim E[1a| F,] =14

Thus
nli_)rr;() h(X,) = 1a. (3)

Irreducible case: If X irreducible and 7(y) > 0 for all y € S, then

e h(X,) = h(y) infinitely often for all y € S
@ According to (2) we thus have h = Cst

We have thus found that whenever A € 7,

14(w) = Cst € {0,1}
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Ergodicity for rotations of the circle

,—| Example 26. \

We consider A = Lebesgue measure and:
e (Q,F,P)=([0,1], Borel sets, \)
e 0e(0,1)
e X ={X,; n>0} with

Xp(w) = (w+nf) mod1=w-+nd—[w+ nd.
@ © = shift transformation

Then the following holds true:
@ If 0 is rational, then ¢ is not ergodic
@ If 0 is irrational, then ¢ is ergodic

\.
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Transformation of an ergodic sequence

r—[Theorem 27.} \

Let

o X = {X,; n> 0} ergodic sequence
o g :RY — R measurable

We consider a sequence Y defined by

Yic = & ({Xicyni n > 0}).

Then Y is an ergodic sequence.

\.
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Proof

Inverse image: Let B € RY. Recall that
{wE]RN; YEB}:{wERN;XGA},

where
A={weR g(X) e B}

Consequence for ergodicity: If B satisfies
{weRY; (Ya)uso € B} = {w € RY; (Y14n)nz0 € B}
Then A satisfies

{w e R (Xa)nzo € A} = {w € RY (Xyin)nz0 € A}
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Proof (2)

Conclusion: Since A satisfies
{w € RN; (Xn)nZO € A} = {w € RN; (X1+n)n20 € A},

we have
P(X e€A)e{0,1}.

Therefore:
P(Y € B) € {0,1}.
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Ergodicity for Bernoulli shifts

,—{ Example 28. \

We consider A = Lebesgue measure and:
o (Q,F,P)=([0,1], Borel sets, \)
o Yp=w
e Y ={Y,; n>0} where for n > 1 we have

Yo(w)=2Y,-1 mod 1.

@ ¢ = shift transformation

Then ¢ is ergodic.
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Proof

Representation for Y: Recall that we have defined
e {X;; i > 1} iid with common law B(1/2)
0 g(x) = X1 271 defined for x € {0,1}"
o gi(x) = g({xkyi; i > 1}) defined for x € {0, 1}"
o Yi=gk(X)
Then
Yo~ A, and Y,(w)=2Y,; mod]l.

Ergodicity of Y: We have
e X ergodic
o Y, = g(X)

Hence owing to Theorem 27, Y is a stationary sequence.
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Birkhoff's ergodic theorem

r—[Theorem 29.} \

Let
o X € LYQ)
@ ( a measure preserving map on {2

@ 7 the o-field of invariant sets
Then

im. ,17 zj:OX(gp/(w)) =E[X|Z], asandin Q)
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Ergodic theorem for ergodic maps

,—[Proposition 30.]
Let

o X elLYQ)

@ ( a measure preserving map on 2

@ Hypothesis: ¢ is ergodic
Then

lim :, zn:X(cpf(w)) =E[X], asandin [}(Q)
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Maximal ergodic lemma

~ Lemma 31. N

Let
o X €LYQ)
@ (¢ a measure preserving map on 2
o X; = X(¢/(w))
° S, =75 X
o My =max{0,5;,...,5}

Then

E [X Lm0 >0.

Samy T. Ergodic theorems Probability Theory 59 / 92



Proof

Lower bound for X: We will prove that for n=1,... k
X(w) = Sn(w) = Mi(p(w)) (4)

Relation (4) for n = 1:
We have S;(w) = X(w) and Mi(p(w)) > 0. Thus

X(w) = S1(w) = Mi(p(w))

Relation (4) for n =2,... k:
We have My (¢(w)) > Si(p(w)) for j =1,..., k. Thus

X(@) + Mi(p(w)) = X(w) + 5(p(w)) = S (w)

and
X(w) > Sj1(w) — Mi(p(w))
T L



Proof (2)

Consequence of relation (4):

X(w) > max {S1(w), ..., Sk(w)} — Mk(¢(w))

Integration of the previous relation:
E [X10)] > / [max {S1(w), .. ., Se(w)} — Mi(p(w))] dP
{M,>0}

- /{Mk>o} [Mi(w) = Mi((w))] P
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Proof (3)

Conclusion: We have seen

E (X120 > /{ ey V() = Ml ()] 0P

In addition on {M, > 0}° we have
QO M(w)=0
Q@ Mi(p(w)) =0
© Therefore [(y, w0y [Mi(w) — Mi(p(w))] dP <0

We thus get

E [XL0)] > / [Mi(w) — Mi(p(w))] dP # ™2™
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Proof of Theorem 29

Reduction to E[X|Z] = 0: We
o Set X = X — E[X|T]
@ Recall that E[X|Z] is invariant

Therefore we have

}éxw(w))—uxu}:,—ﬁf (X(#)) - EX|7)
X EXDI ) > X))

We can thus prove Theorem 29 for X such that E[X|Z] =0

Samy T. Ergodic theorems
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Proof of Theorem 29 (2)

Sufficient condition: We define
o X = limsup, %
o D= {w; X(w)>e}fore>0
We wish to prove that
P(D)=0

Invariance of D:
Since X is invariant, we have D ¢ 7
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Proof of Theorem 29 (3)
Notation: We set

o X*(w) = (X(w) —&)1p(w)

° X! = X"(¢(w))

o S; =3I lX*

o M; = max{O,Sl,...,S,’f}

e F,={M: > 0} (increasing sequence)

o F=UyoF,

Relation between F and D: We have
F = {There exists n s.t X(¢"(w)) >e}ND =D

We thus wish to prove that
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Proof of Theorem 29 (4)
Proof of E[X* 1p] > 0: Owing to Lemma 31 we have

E[X"15] >0
By dominated convergence we get:
E[X"1p] =E[X"1£] >0
Proof of P(D) = 0: Since D € Z and E[X|Z] = 0 we get
E[X"1p] = E[(X —¢)1p]
= E{E[X|Z]1p} —P(D) = —<P(D)
We have seen that E[X* 1p] > 0, which yields
P(D) =0
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Proof of Theorem 29 (5)

Almost sure limit of 2: For k > 1 we have seen that

P(Dy) =P <{w; Iimnsup% > %}) =0

Taking limits as k — co we get:

P ({w; lim sup% > 0}) =0

Since the same result is true for the r.v —X we end up with:
P ({w; lim sup & = 0}) =1
n n
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Proof of Theorem 29 (6)

Truncation procedure: For the convergence in L1(2) we set

X = X1xj<my,  and  Xiy = X 1(ix>m)

and .
1= m
A= 3 X(g™(w)) — EIX| 7]
m=0
Then for n > 1 we have
EllA. <E[|A]] +E[|A]]

where for j = 1,2 we have defined:

1n1

_ j m j
- Z X E[XM| I]
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Proof of Theorem 29 (7)

Limit for AL: We have
Q as—lim, Al =0
9 A}l <2M

Therefore by dominated convergence we have:

lim E

n—oo |:

Al

| =0

Samy T. Ergodic theorems Probability Theory 69 / 92



Proof of Theorem 29 (8)

Limit for A2: We have

4] < 25 efxatenen] + e e
< 2E[|IX3]

In addition, by dominated convergence we have:
. 2 _
i €[] =

Therefore

i € [ o
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Proof of Theorem 29 (9)

Conclusion for the L!(Q) convergence: We have seen

lim E[|Al]] =0, and lim E[|A2]| =0.
n—o0 n—o00
We thus get
. 121 .
LA(Q) = Jim — > Xi(@"(w)) = E[Xy| 7]
m=0
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LLN for iid random variables

,—{ Example 32.

Let

e X = {X,; n> 0} sequence of i.i.d random variables
e Hypothesis: Xp € L}(Q)
o X, =1y, X

Then B
lim X, = E[Xo], a.sandin L}(Q)

n—o00

\

Remark:
W.r.t the usual LLN, we have obtained the L}(Q) convergence
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Proof

Previous results: We have seen that
@ X is an ergodic sequence
© Z C T and T is trivial

Conclusion: Theorem 29 applies and can be read as
lim X, = E[Xo| Z] = E[X;], a.sandin L}(Q)

Remark: The L!(2) convergence can also be obtained as follows

@ Result: If P —lim,o Y, =Y, then
— LYQ) = lim,_o Y, = Y iff lim,_o E[|Y,]] = E[| Y]]

@ Apply this result successively to Y, = X' and Y, = X
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LLN for Markov chains

,—{ Example 33. \

Let
e X ={X,; n>0} MCH on countable state space S
@ Hypothesis 1: unique stat. dist. 7 and £(Xp) =7
@ Hypothesis 2: w(x) >0 forall x € S
@ Hypothesis 3: X irreducible
e Hypothesis 4: f : S — R satisfies f € L!(m)

Then

lim i' i f(X;)=> f(x)m(x), asandin L*(Q)

xES

\.
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Proof

Previous results: We have seen that
@ X is an ergodic sequence
@ Therefore f(X) is an ergodic sequence

© 7 is trivial whenever X is irreducible

Conclusion: Theorem 29 applies and can be read as

lim 117 i f(X;) = E[f(Xo)| Z] = E[f(X0)], a.sandin L'(Q)

Remark: W.r.t the usual LLN for Markov chains,
we have obtained the L*(Q2) convergence
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LLN for rotation of the circle

,—{ Example 34. \

We consider A = Lebesgue measure and:
o (2, F,P)=([0,1], Borel sets, \)
e 0e(0,1)NQ*
@ A Borel subset of [0, 1]
o X ={X,; n> 0} with

Xn(w) = (w+nf) mod1l=w+nf—[w+ nb].

Then

1 n
lim . > 14(X,) = |Al, asandin LY(Q)
=1

\.
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Deterministic LLN for rotation of the circle

r—[Theorem 35.] ‘

In the context of Example 34, for 0 < a < b < 1 we have

1 n
lim =S 1p,,(X =b—
Jim, 5 2 s (Xi0)) = b -2,

for all x € [0,1)

Proof:
e Start from Example 34
e Additional ingredient based on density arguments
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Benford’'s law

,—[Proposition 36.]
For k € {1,...,9} we have

1 k+1
n||_>ngo ; g (15t digit of 2m=k) = logyg (k)

m=1
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Proof

Notation: We set
o 0= logy(2)
o Ay = [logyo(k), logyo(k +1))

Expression 1 for log;4(2™): we have

log(2") = mé

Expression 2 for log;,(2™): First digit of 2™ is ko iff
2™ = kol0% + ky, with a >0, k < 10¢
and
m kl
log15(2") = a + logyo | ko + 10w
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Proof (2)

Ergodic sequence: We have seen that first digit of 27 is kg iff

ki
0= | ko + —
m O(+ Oglo ( 0+ 10a> 9

which is equivalent to
mf@ mod1e A,

Thus
1 n

.1 & .
n"_[‘go = Zl 11+ gigit of 2m—k) = n'L”QO n Zl 1(mo mod 1€4,)
m= m=
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Proof (3)

Conclusion: We have

0 = log;4(2) € Q°

We can thus apply Theorem 35 with x =0 and A = A,. We get

1 k+1
n||—>nc]oE Y L(mo mod 1¢4,) = |Ak| = logyg (k)

m=1
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Outline

© Recurrence

=] & = E DA
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Number of points visited

r—[Theorem 37.]

Let
@ X stationary sequence with values in R
° 5, =37 1X
@ A={Sc#0forall k>1}
o R,=1{S1,...,S5:}| =Card({S1,...,5,})

Then
R,
lim — = E[14]Z], almost surely
n—oo
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Proof
Lower bound: We have
Si(¢"(W)) = Sjam(w) = Sm(w)
Thus
S5i(¢"(w) #0 = Spm(w) # Sm(w)
and
La(¢™ (@) = {Spem(w) # Sm(w) for all j > 1}

We have thus obtained
Ry > > 1a(¢™(w)).
m=1
and owing to the ergodic theorem we get

. . Rn . . 1 < m _
lim inf —= > lim inf mgl La(¢™(w)) = E[14|Z]
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Proof (2)

Upper bound: For k > 1 set
Ar={S#0forall1 <j<k}.

Then

14, (0" (w)) = {S5;(w) # Sm(w) forall m+1 < j < m+ k}

and
n—k

Ro < k+ > 1a(e7(w))-

m=1
Applying the ergodic theorem again we get
n—k

iminf 7 < limsup > 1a,(5"()) =E[lalT] ()

n—oo N m—1
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Proof (3)

Limit in k: We have k — Ay decreasing and

ﬂ A = A
k=1
Therefore by monotone convergence we get
Jim E[1,,]7) = E[14/7].

Thanks to (5) we have thus proved that

R»
limsup — < E[14|Z]
n—oo N
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Recurrence criterion in Z

r—[Theorem 38.}
Let

e X stationary sequence with values in Z
e Hypothesis: X; € L}(Q)
° S5, =3 1X
@ A= {Sc#0forall k>1}
The following holds true:

© If E[X|Z] = 0 then P(A) = 0
@ If P(A) =0 then P(S,=0i.0)=1
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Proof

Standing assumption: E[X;|Z] = 0, which yields

Relation for max S: For all K > 1 we have

. 1Skl . | Sk | Sk
limsup max — = limsup max — < max —
n—oo 1<k<n n n—oo K<k<n n k>K  k
Taking K — oo and thanks to (6) we get
S
lim max [ =0 (7)
n—oo1<k<n n

Samy T. Ergodic theorems
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Proof (2)

Consequence on R,: In d =1 we have
R, = Range{X;; 0 <j < n}.

Hence
R, <142 max |Skl,
1<k<n

and according to (7) we get

lim max
n—oo1<k<n

Rn eorem elation
uTh re 37E[1A\I] Relatio (7)0

Conclusion for item 1:
We take expectations in previous relation, which yields

P(A) =0
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Proof (3)

Notation: We set

F, = {Si#0fori<jand 5 =0}

Gk = {54+ —S5#0fori<kandSx—5 =0}

Simple relations on Fj, Gj x:
@ Since P(A) =0 we have Y, P(F) =1
@ By stationarity, P(G; «x) = P(Fk)
@ Hence we also have ;- P(Gjx) =1
@ For fixed j, the sets G;j are disjoint
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Proof (4)

More relations on F;, Gj x: We have obtained

> P(FNG=P(F), and > P(FNGu) =1

k>1 jk>1

Conclusion on recurrence: We have

U FNGix={S,=0 at least two times}
Jk>1

Therefore
P (S, =0 at least two times) = 1

Generalization:
o With sets G;, .
e Taking m — oo
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Extension by Kac

r—[Theorem 39.}
Let

e X stationary sequence with values in (S, S)
e AcSand S, =YX

@ To=0and T,=inf{m> T,_1; X, € A}
o th="T,— Th1

e Hypothesis: P (X, € A at least once) =1

Then the following holds true:

@ Under P(:| Xy € A) the sequence (t,) is stationary
@ We have

1
E[T1|Xo€A]:m
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