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Overview

Stationary sequence: such that

{Xn+k ; n ≥ 0} (d)= {Xn; n ≥ 0} .

Main result: law of large numbers of the type

1
n

n∑
k=1

f (Xk) exists a.s
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Markov chain

Let X = {Xn; n ≥ 0} be a process.
1 X is a Markov chain if

P (Xn+1 = j |X0 = i0, . . . ,Xn = in) = P (Xn+1 = j |Xn = in)

for all n ≥ 0, i0, . . . , in, j ∈ E .
2 The Markov chain is homogeneous whenever

P (Xn+1 = j |Xn = i) = P (X1 = j |X0 = i)

Definition 1.
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Law of the Markov chain

Let X be a homogeneous Markov chain
↪→ with initial law ν and transition p.

1 For n ∈ N and i0, . . . , in ∈ E , we have

P (X0 = i0, . . . ,Xn = in) = ν(i0) p(i0, i1) · · · p(in−1, in)

2 The law of X is characterized by ν and p.

Proposition 2.
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Law of the Markov chain: general state space

Let X be a homogeneous Markov chain on (S,S)
↪→ with initial law ν and transition p.

1 For n ∈ N and ϕ ∈ Cb(S), we have

E [ϕ(X0, . . . ,Xn)]

=
∫

En+1
ϕ(x0, . . . , xn)ν(dx0) p(x0, x1) · · · p(xn−1, xn) (1)

2 The law of X is characterized by ν and p.

Proposition 3.
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A criterion for Markovianity

Let
Z : Ω→ E random variable.
F countable set.
{Yn; n ≥ 1} i.i.d sequence, with Y ⊥⊥ Z and Yn ∈ F .
f : E × F → E .

We set
X0 = Z , and Xn+1 = f (Xn,Yn+1).

Then X is a homogeneous Markov chain such that

ν0 = L(Z ), and p(i , j) = P (f (i ,Y1) = j) .

Proposition 4.

Remark: A converse result exists, but it won’t be used.
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Graph of a Markov chain

Let X homogeneous Markov chain (initial law ν0, transition p).
We define a graph G(X ) by
G(X ) is an oriented graph
Vertices of G(X ) are points of E .
Edges of G(X ) are defined by

V ≡ {(i , j); i 6= j , p(i , j) > 0} .

Definition 5.
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Example

We consider E = {1, 2, 3, 4, 5} and

p =


1/3 0 2/3 0 0
1/4 1/2 1/4 0 0
1/2 0 1/2 0 0
0 0 0 0 1
0 0 0 2/3 1/3



Example 6.

Related graph: to be done in class
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Graph and accessibility

Let X homogeneous Markov chain (initial law ν0, transition p).
Then

i → j
iff

i = j or there exists an oriented path from i to j in G(X ).

Proposition 7.
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Minimal class

An equivalence class C is minimal if:

For all i ∈ C and j 6∈ C , we have i 6→ j .

Definition 8.

Example:
For Example 6, C1,C3 are minimal, and C2 is not minimal.

Minimality criterions:
(i) If there exists a unique class C , it is minimal.
(ii) There exists a unique minimal class C
⇔ ∃! class C such that for all i ∈ E , we have i → C .

Application: Random walk
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Recurrence criterions

Let
X homogeneous Markov chain
(initial law ν0, transition p).
C class for the relation ↔.

Then
1 If C is not minimal then it is transient
2 If C is minimal and |E | <∞, then

I C is recurrent
I C is positive recurrent : for all i ∈ C , Ei [Ri ] <∞.

Theorem 9.
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Example

Recall: In Example 6 we had E = {1, 2, 3, 4, 5} (hence |E | <∞) and

p =


1/3 0 2/3 0 0
1/4 1/2 1/4 0 0
1/2 0 1/2 0 0
0 0 0 0 1
0 0 0 2/3 1/3



Related classes:
C1 = {1, 3}, C2 = {2} and C3 = {4, 5}.
↪→ C1,C3 minimal and C2 not minimal.

Conclusion: C1,C3 positive recurrent, C2 transient.
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Stationary sequence

Let
{Xn; n ≥ 0} sequence of random variables

We say that X is stationary if for all k ≥ 1 we have

{Xn+k ; n ≥ 0} (d)= {Xn; n ≥ 0} .

Definition 10.
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iid random variables

Let
X = {Xn; n ≥ 0} sequence of i.i.d random variables

Then X is a stationary sequence.

Example 11.
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Markov chains

Let
X = {Xn; n ≥ 0} Markov chain on state space S
Transition probability: p(x ,A)
Hypothesis 1: unique stationary distribution π
Hypothesis 2: L(X0) = π

Then X is a stationary sequence.

Example 12.

Proof:
Easy consequence of relation (1).
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Trivial example of Markov chain

On S = {0, 1} we take
p(x , 1− x) = 1
π(0) = 1

2 , π(1) = 1
2

Then

P(X = (0, 1, 0, 1, . . .)) = P(X = (1, 0, 1, 0, . . .)) = 1
2

Example 13.
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Rotation of the circle

We consider λ ≡ Lebesgue measure and:
(Ω,F ,P) = ([0, 1], Borel sets, λ)
θ ∈ (0, 1)
X = {Xn; n ≥ 0} with

Xn(ω) = (ω + nθ) mod 1 = ω + nθ − [ω + nθ].

Then X is a stationary sequence.

Example 14.
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Proof

Law of X1: For ϕ ∈ Cb(R) we have

E [ϕ(X1)] =
∫ 1

0
ϕ (x + θ − [x + θ]) dx

=
∫ 1−θ

0
ϕ (x + θ) dx +

∫ 1

1−θ
ϕ (x + θ − 1) dx

=
∫ 1

0
ϕ (v) dv = E [ϕ(X0)]

Thus L(X1) = L(X0).
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Proof (2)

Altenative expression for Xn: Due to the relation

(a + b) mod 1 = [a mod 1 + b mod 1] mod 1,

we have

Xn = (ω + nθ) mod 1
= (ω + (n − 1)θ + θ) mod 1
= [(ω + (n − 1)θ) mod 1 + θ mod 1] mod 1
= [Xn−1 + θ] mod 1
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Proof (3)

Recall: We have seen that

Xn = [Xn−1 + θ] mod 1. (2)

Conclusion: It is readily checked that
1 From (2) and Proposition 4, X is a Markov chain
2 The relation L(X1) = L(X0) means that λ is an invariant

distribution
Therefore X is stationary thanks to Example 12.
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Transformation of a stationary sequence

Let
X = {Xn; n ≥ 0} stationary sequence
g : RN → R measurable

We consider a sequence Y defined by

Yk = g ({Xk+n; n ≥ 0}) .

Then Y is a stationary sequence.

Theorem 15.
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σ-algebra on RN (1)

Set RN: We define

RN = {ω = (ωj)j∈N; ωj ∈ R} .

Finite dimensional set: Of the form

A =
{
ω ∈ RN; ωj ∈ Bj , for 1 ≤ j ≤ n

}
, with Bj ∈ R,

where R ≡ Borel σ-algebra in R.
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σ-algebra on RN (2)

On RN we set:

RN = σ (finite dimensional sets) .

Then RN is called Borel σ-algebra on RN.

Definition 16.

Remark:
Kolmogorov’s extension theorem is valid on (RN,RN).
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Proof of Theorem 15

Notation: For x ∈ RN and k ≥ 0 we set

gk(x) = g ({xk+n; n ≥ 0}) .

Inverse image: Let B ∈ RN. Then{
ω ∈ RN; Y ∈ B

}
=
{
ω ∈ RN; X ∈ A

}
,

where
A =

{
ω ∈ RN; g(X ) ∈ B

}
.
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Proof of Theorem 15 (2)

Proof of stationarity: For the generic B ∈ RN we have

P
(
ω ∈ RN; Y ∈ B

)
= P

(
ω ∈ RN; X ∈ A

)
= P

(
ω ∈ RN; {Xn; n ≥ 0} ∈ A

)
= P

(
ω ∈ RN; {Xk+n; n ≥ 0} ∈ A

)
= P

(
ω ∈ RN; {Yk+n; n ≥ 0} ∈ B

)
.

This yields stationarity for Y .
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Bernoulli shifts

We consider λ ≡ Lebesgue measure and:
(Ω,F ,P) = ([0, 1], Borel sets, λ)
Y0 = ω

Y = {Yn; n ≥ 0} where for n ≥ 1 we have

Yn(ω) = 2Yn−1 mod 1.

Then Y is a stationary sequence.

Example 17.
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Proof by Markov chains

Law of Y1: For ϕ ∈ Cb(R) we have

E [ϕ(Y1)] =
∫ 1

0
ϕ (2y mod 1) dy

=
∫ 1

2

0
ϕ (2y) dy +

∫ 1

1
2

ϕ (2y − 1) dy

=
∫ 1

0
ϕ (v) dv = E [ϕ(Y0)]

Thus L(Y1) = L(Y0).
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Proof by Markov chains (2)

Proof of stationarity: We have
1 Yn(ω) = 2Yn−1 mod 1
2 Thanks to proposition 4, Y is thus a Markov chain
3 The relation L(Y1) = L(Y0) means that λ is an invariant

distribution for Y
Therefore Y is a stationary sequence thanks to Example 12.
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Proof by Theorem 15

Another representation for Y : Let
{Xi ; i ≥ 1} i.i.d with common law B(1/2)
g(x) = ∑

i≥1 xi2−(i+1) defined for x ∈ {0, 1}N

gk(x) = g({xk+i ; i ≥ 1}) defined for x ∈ {0, 1}N

Yk = gk(X )
Then

Y0 ∼ λ, and Yn(ω) = 2Yn−1 mod 1.

Stationarity of Y : We have
X stationary
Yk = gk(X )

Therefore Y is a stationary sequence.
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Measure preserving map

Let
(Ω,F ,P) a probability space
A measurable map ϕ : Ω→ Ω

We say that ϕ is measure preserving if

P
(
ϕ−1(A)

)
= P (A) , for all A ∈ F .

Otherwise stated, ϕ is measure preserving if

E
[
g
(
X (ϕ(ω))

)]
= E [g(X (ω))] , for all g ∈ Cb.

Definition 18.
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Measure preserving map and stationarity

Let
(Ω,F ,P) a probability space
A measure preserving map ϕ : Ω→ Ω
X ∈ F a random variable

For n ≥ 0 we set:
Xn = X (ϕn(ω))

Then X is a stationary sequence.

Example 19.
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Proof

Characterization with expected values:
For g ∈ C(Rn) and k ≥ 1 we have:

E [g (Xk , . . . ,Xk+n)] = E
[
g
(
X0(ϕk(ω)), . . . ,Xn(ϕk(ω))

)]
= E [g (X0(ω), . . . ,Xn(ω))]
= E [g (X0, . . . ,Xn)] .

Thus X is a stationary sequence.
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Stationarity and measure preserving maps

Let
Y stationary sequence with values in S = Rn

P probability measure on (SN,R(SN)) defined by:

Xn(ω) = ωn =⇒ L(X ) = L(Y )

We define a shift operator ϕ by:

ϕ ({ωj ; j ≥ 0}) = {ωj+1; j ≥ 0} .

Then ϕ is measure preserving.

Example 20.

Interpretation:
Previous examples can be reduced to a measure preserving map
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Two sided stationary sequence

Let
X stationary sequence

Then X can be embedded into a two sided sequence

{Yn; n ∈ Z} .

Theorem 21.
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Proof

Application of Kolmogorov’s extension:
It is enough to define a family of probability measures

1 On RA for any finite subset of Z
2 With consistent property

Current situation: we consider Y defined by

E [g (Y−m, . . . ,Yn)] = E [g (X0, . . . ,Xm+n)] ,

for all g ∈ Cb(Rm+n+1). Kolmogorov’s extension applies
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Setup
General setting: We are reduced to

(Ω,F ,P) probability space
A map ϕ preserving P
A random variable X
A sequence Xn(ω) = X (ω)

Invariant set: Let A ∈ F . The set A is invariant if

P
(
A ∆ϕ−1(A)

)
= 0

Notation abuse: For an invariant set A, we often write

A = ϕ−1(A)
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Ergodicity

Let
(Ω,F ,P) probability space
A map ϕ preserving P
I ≡ σ-algebra of invariant events

We say that ϕ is ergodic if I is trivial, i.e:

A ∈ I =⇒ P(A) ∈ {0, 1}.

Definition 22.
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Kolmogorov’s 0-1 law

Let
X = {Xn; n ≥ 0} sequence of i.i.d random variables
For n ≥ 0, we set F ′n = σ({Xk ; k ≥ n})
Tail σ-field: T ≡ ∩n≥0F ′n

Then T is trivial, i.e:

A ∈ T =⇒ P(A) ∈ {0, 1}.

Theorem 23.
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Ergodicity for i.i.d sequences

Let
X = {Xn; n ≥ 0} sequence of i.i.d random variables
ϕ ≡ shift operator on Ω = RN

Then ϕ is ergodic.

Example 24.
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Proof

Measurability of an invariant set: Let A ∈ I. Then

A = {ω ∈ Ω; ϕ(ω) ∈ A} =⇒ A ∈ F ′1.

Tail σ-field: Iterating the previous relation we get

A ∈ I =⇒ A ∈ T

Hence by Kolmogorov’s 0-1 law we get that I is trivial
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Ergodicity for Markov chains

Let
X = {Xn; n ≥ 0} MCH on countable state space S
Transition probability: p(x ,A)
ϕ ≡ shift operator on Ω = SN

Hypothesis 1: unique stationary distribution π
Hypothesis 2: π(x) > 0 for all x ∈ S
Hypothesis 3: L(X0) = π

Then
1 If X is not irreducible, θ is not ergodic
2 If X is irreducible, θ is ergodic

Example 25.
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Proof
Basic Markov chains facts:

Since π(x) > 0 for all x ∈ S, all states are recurrent
State space decomposition:
S = ∪j≤JRj , where Rj disjoint irreducible sets

Non irreducible case: If J ≥ 2 we have

X0 ∈ Rj ⇐⇒ Xn ∈ Rj for all n ≥ 0.

Therefore for all j ≤ J we get:
1(X0∈Rj ) = 1(X0∈Rj ) 1(X1∈Rj ) = 1(X1∈Rj )

Iterating we get (X0 ∈ Rj) ∈ I
π(X0 ∈ Rj) ∈ (0, 1) if J ≥ 2
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Proof (2)
General relation for 1A:

For A ∈ I, we have 1A = 1A ◦ θn

We set Fn = σ(X0, . . . ,Xn)
We define h(x) = Ex [1A]

Then

Eπ [1A| Fn] invariance= Eπ [1A ◦ θn| Fn] Markov prop= h(Xn)

Levy’s 0-1 law: Let
Fn ↗ F∞
A ∈ F∞

Then a.s and in L1(Ω) we have

lim
n→∞

E [1A| Fn] = 1A
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Proof (3)
Limit of h(Xn): Recall

Eπ [1A| Fn] = h(Xn), and lim
n→∞

E [1A| Fn] = 1A

Thus
lim

n→∞
h(Xn) = 1A. (3)

Irreducible case: If X irreducible and π(y) > 0 for all y ∈ S, then
h(Xn) = h(y) infinitely often for all y ∈ S
According to (2) we thus have h = Cst

We have thus found that whenever A ∈ I,

1A(ω) = Cst ∈ {0, 1}
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Ergodicity for rotations of the circle

We consider λ ≡ Lebesgue measure and:
(Ω,F ,P) = ([0, 1], Borel sets, λ)
θ ∈ (0, 1)
X = {Xn; n ≥ 0} with

Xn(ω) = (ω + nθ) mod 1 = ω + nθ − [ω + nθ].

ϕ ≡ shift transformation

Then the following holds true:
1 If θ is rational, then ϕ is not ergodic
2 If θ is irrational, then ϕ is ergodic

Example 26.
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Transformation of an ergodic sequence

Let
X = {Xn; n ≥ 0} ergodic sequence
g : RN → R measurable

We consider a sequence Y defined by

Yk = g ({Xk+n; n ≥ 0}) .

Then Y is an ergodic sequence.

Theorem 27.
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Proof
Inverse image: Let B ∈ RN. Recall that{

ω ∈ RN; Y ∈ B
}

=
{
ω ∈ RN; X ∈ A

}
,

where
A =

{
ω ∈ RN; g(X ) ∈ B

}
.

Consequence for ergodicity: If B satisfies{
ω ∈ RN; (Yn)n≥0 ∈ B

}
=
{
ω ∈ RN; (Y1+n)n≥0 ∈ B

}
Then A satisfies{

ω ∈ RN; (Xn)n≥0 ∈ A
}

=
{
ω ∈ RN; (X1+n)n≥0 ∈ A

}
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Proof (2)

Conclusion: Since A satisfies{
ω ∈ RN; (Xn)n≥0 ∈ A

}
=
{
ω ∈ RN; (X1+n)n≥0 ∈ A

}
,

we have
P (X ∈ A) ∈ {0, 1}.

Therefore:
P (Y ∈ B) ∈ {0, 1}.
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Ergodicity for Bernoulli shifts

We consider λ ≡ Lebesgue measure and:
(Ω,F ,P) = ([0, 1], Borel sets, λ)
Y0 = ω

Y = {Yn; n ≥ 0} where for n ≥ 1 we have

Yn(ω) = 2Yn−1 mod 1.

ϕ ≡ shift transformation
Then ϕ is ergodic.

Example 28.
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Proof

Representation for Y : Recall that we have defined
{Xi ; i ≥ 1} i.i.d with common law B(1/2)
g(x) = ∑

i≥1 xi2−(i+1) defined for x ∈ {0, 1}N

gk(x) = g({xk+i ; i ≥ 1}) defined for x ∈ {0, 1}N

Yk = gk(X )
Then

Y0 ∼ λ, and Yn(ω) = 2Yn−1 mod 1.

Ergodicity of Y : We have
X ergodic
Yk = gk(X )

Hence owing to Theorem 27, Y is a stationary sequence.
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Birkhoff’s ergodic theorem

Let
X ∈ L1(Ω)
ϕ a measure preserving map on Ω
I the σ-field of invariant sets

Then

lim
n→∞

1
n

n∑
j=0

X (ϕj(ω)) = E [X | I] , a.s and in L1(Ω)

Theorem 29.
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Ergodic theorem for ergodic maps

Let
X ∈ L1(Ω)
ϕ a measure preserving map on Ω
Hypothesis: ϕ is ergodic

Then

lim
n→∞

1
n

n∑
j=0

X (ϕj(ω)) = E [X ] , a.s and in L1(Ω)

Proposition 30.
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Maximal ergodic lemma

Let
X ∈ L1(Ω)
ϕ a measure preserving map on Ω
Xj = X (ϕj(ω))
Sn = ∑n−1

j=0 Xj

Mk = max{0, S1, . . . , Sk}

Then
E
[
X 1(Mk>0)

]
≥ 0.

Lemma 31.
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Proof
Lower bound for X : We will prove that for n = 1, . . . , k

X (ω) ≥ Sn(ω)−Mk(ϕ(ω)) (4)

Relation (4) for n = 1:
We have S1(ω) = X (ω) and Mk(ϕ(ω)) ≥ 0. Thus

X (ω) ≥ S1(ω)−Mk(ϕ(ω))

Relation (4) for n = 2, . . . , k :
We have Mk(ϕ(ω)) ≥ Sj(ϕ(ω)) for j = 1, . . . , k . Thus

X (ω) + Mk(ϕ(ω)) ≥ X (ω) + Sj(ϕ(ω)) = Sj+1(ω)

and
X (ω) ≥ Sj+1(ω)−Mk(ϕ(ω))
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Proof (2)

Consequence of relation (4):

X (ω) ≥ max {S1(ω), . . . , Sk(ω)} −Mk(ϕ(ω))

Integration of the previous relation:

E
[
X1(Mk>0)

]
≥

∫
{Mk>0}

[max {S1(ω), . . . , Sk(ω)} −Mk(ϕ(ω))] dP

=
∫
{Mk>0}

[Mk(ω)−Mk(ϕ(ω))] dP
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Proof (3)

Conclusion: We have seen

E
[
X1(Mk>0)

]
≥
∫
{Mk>0}

[Mk(ω)−Mk(ϕ(ω))] dP

In addition on {Mk > 0}c we have
1 Mk(ω) = 0
2 Mk(ϕ(ω)) ≥ 0
3 Therefore

∫
{Mk>0}c [Mk(ω)−Mk(ϕ(ω))] dP ≤ 0

We thus get

E
[
X1(Mk>0)

]
≥
∫

[Mk(ω)−Mk(ϕ(ω))] dP ϕ invariant= 0
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Proof of Theorem 29

Reduction to E[X | I] = 0: We
Set X̂ = X − E[X | I]
Recall that E[X | I] is invariant

Therefore we have

1
n

n∑
j=0

X (ϕj(ω))− E [X | I] = 1
n

n∑
j=0

(
X (ϕj(ω))− E [X | I]

)

= 1
n

n∑
j=0

[X − E {X | I}] (ϕj(ω))= 1
n

n∑
j=0

X̂ (ϕj(ω))

We can thus prove Theorem 29 for X such that E[X | I] = 0
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Proof of Theorem 29 (2)

Sufficient condition: We define
X̄ = lim supn

Sn
n

D = {ω; X̄ (ω) > ε} for ε > 0
We wish to prove that

P(D) = 0

Invariance of D:
Since X̄ is invariant, we have D ∈ I
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Proof of Theorem 29 (3)
Notation: We set

X ∗(ω) = (X (ω)− ε)1D(ω)
X ∗j = X ∗(ϕj(ω))
S∗n = ∑n−1

j=0 X ∗j
M∗k = max{0, S∗1 , . . . , S∗k}
Fn = {M∗n > 0} (increasing sequence)
F = ∪n≥0Fn

Relation between F and D: We have

F = {There exists n s.t X (ϕn(ω)) > ε} ∩ D = D

We thus wish to prove that

P(D) = P(F ) = 0
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Proof of Theorem 29 (4)
Proof of E[X ∗ 1D] ≥ 0: Owing to Lemma 31 we have

E [X ∗ 1Fn ] ≥ 0

By dominated convergence we get:

E [X ∗ 1D] = E [X ∗ 1F ] ≥ 0

Proof of P(D) = 0: Since D ∈ I and E[X | I] = 0 we get

E [X ∗ 1D] = E [(X − ε) 1D]
= E {E[X | I] 1D} − εP(D) = −εP(D)

We have seen that E[X ∗ 1D] ≥ 0, which yields

P(D) = 0
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Proof of Theorem 29 (5)
Almost sure limit of Sn

n : For k ≥ 1 we have seen that

P(Dk) ≡ P
({

ω; lim sup
n

Sn

n >
1
k

})
= 0

Taking limits as k →∞ we get:

P
({

ω; lim sup
n

Sn

n > 0
})

= 0

Since the same result is true for the r.v −X we end up with:

P
({

ω; lim sup
n

Sn

n = 0
})

= 1
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Proof of Theorem 29 (6)
Truncation procedure: For the convergence in L1(Ω) we set

X 1
M = X 1(|X |≤M), and X 2

M = X 1(|X |>M)

and
An = 1

n

n−1∑
m=0

X (ϕm(ω))− E[X | I]

Then for n ≥ 1 we have

E [|An|] ≤ E
[∣∣∣A1

n

∣∣∣]+ E
[∣∣∣A2

n

∣∣∣] ,
where for j = 1, 2 we have defined:

Aj
n = 1

n

n−1∑
m=0

X j
M(ϕm(ω))− E[X j

M | I]
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Proof of Theorem 29 (7)

Limit for A1
n: We have

1 a.s− limn→∞ A1
n = 0

2 |A1
n| ≤ 2M

Therefore by dominated convergence we have:

lim
n→∞

E
[∣∣∣A1

n

∣∣∣] = 0
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Proof of Theorem 29 (8)

Limit for A2
n: We have

E
[∣∣∣A2

n

∣∣∣] ≤ 1
n

n−1∑
m=0

E
[∣∣∣X 2

M(ϕm(ω))
∣∣∣]+ E

[
E[|X 2

M | | I]
]

≤ 2E
[
|X 2

M |
]

In addition, by dominated convergence we have:

lim
n→∞

E
[
|X 2

M |
]

= 0

Therefore
lim

n→∞
E
[∣∣∣A2

n

∣∣∣] = 0
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Proof of Theorem 29 (9)

Conclusion for the L1(Ω) convergence: We have seen

lim
n→∞

E
[∣∣∣A1

n

∣∣∣] = 0, and lim
n→∞

E
[∣∣∣A2

n

∣∣∣] = 0.

We thus get

L1(Ω)− lim
n→∞

1
n

n−1∑
m=0

X j
M(ϕm(ω)) = E[X j

M | I]
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LLN for iid random variables

Let
X = {Xn; n ≥ 0} sequence of i.i.d random variables
Hypothesis: X0 ∈ L1(Ω)
X̄n ≡ 1

n
∑n

j=1 Xj

Then
lim

n→∞
X̄n = E[X0], a.s and in L1(Ω)

Example 32.

Remark:
W.r.t the usual LLN, we have obtained the L1(Ω) convergence
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Proof

Previous results: We have seen that
1 X is an ergodic sequence
2 I ⊂ T and T is trivial

Conclusion: Theorem 29 applies and can be read as

lim
n→∞

X̄n = E[X0| I] = E[X0], a.s and in L1(Ω)

Remark: The L1(Ω) convergence can also be obtained as follows
Result: If P− limn→∞ Yn = Y , then
↪→ L1(Ω)− limn→∞ Yn = Y iff limn→∞ E[|Yn|] = E[|Y |]
Apply this result successively to Yn = X +

n and Yn = X−n
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LLN for Markov chains

Let
X = {Xn; n ≥ 0} MCH on countable state space S
Hypothesis 1: unique stat. dist. π and L(X0) = π

Hypothesis 2: π(x) > 0 for all x ∈ S
Hypothesis 3: X irreducible
Hypothesis 4: f : S → R satisfies f ∈ L1(π)

Then

lim
n→∞

1
n

n∑
j=1

f (Xj) =
∑
x∈S

f (x) π(x), a.s and in L1(Ω)

Example 33.
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Proof

Previous results: We have seen that
1 X is an ergodic sequence
2 Therefore f (X ) is an ergodic sequence
3 I is trivial whenever X is irreducible

Conclusion: Theorem 29 applies and can be read as

lim
n→∞

1
n

n∑
j=1

f (Xj) = E[f (X0)| I] = E[f (X0)], a.s and in L1(Ω)

Remark: W.r.t the usual LLN for Markov chains,
we have obtained the L1(Ω) convergence
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LLN for rotation of the circle

We consider λ ≡ Lebesgue measure and:
(Ω,F ,P) = ([0, 1], Borel sets, λ)
θ ∈ (0, 1) ∩Qc

A Borel subset of [0, 1]
X = {Xn; n ≥ 0} with

Xn(ω) = (ω + nθ) mod 1 = ω + nθ − [ω + nθ].

Then

lim
n→∞

1
n

n∑
j=1

1A(Xn) = |A|, a.s and in L1(Ω)

Example 34.
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Deterministic LLN for rotation of the circle

In the context of Example 34, for 0 ≤ a < b < 1 we have

lim
n→∞

1
n

n∑
j=1

1[a,b)(Xn(x)) = b − a,

for all x ∈ [0, 1)

Theorem 35.

Proof:
Start from Example 34
Additional ingredient based on density arguments
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Benford’s law

For k ∈ {1, . . . , 9} we have

lim
n→∞

1
n

n∑
m=1

1(1st digit of 2m=k) = log10

(
k + 1

k

)
Proposition 36.

Samy T. Ergodic theorems Probability Theory 78 / 92



Proof
Notation: We set

θ = log10(2)
Ak = [log10(k), log10(k + 1))

Expression 1 for log10(2m): we have

log10(2m) = m θ

Expression 2 for log10(2m): First digit of 2m is k0 iff

2m = k010α + k1, with α ≥ 0, k1 < 10α

and
log10(2m) = α + log10

(
k0 + k1

10α

)
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Proof (2)

Ergodic sequence: We have seen that first digit of 2m is k0 iff

m θ = α + log10

(
k0 + k1

10α

)
,

which is equivalent to

m θ mod 1 ∈ Ak

Thus

lim
n→∞

1
n

n∑
m=1

1(1st digit of 2m=k) = lim
n→∞

1
n

n∑
m=1

1(m θ mod 1∈Ak)
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Proof (3)

Conclusion: We have

θ = log10(2) ∈ Qc

We can thus apply Theorem 35 with x = 0 and A = Ak . We get

lim
n→∞

1
n

n∑
m=1

1(m θ mod 1∈Ak) = |Ak | = log10

(
k + 1

k

)
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Number of points visited

Let
X stationary sequence with values in Rd

Sn = ∑n−1
j=0 Xj

A = {Sk 6= 0 for all k ≥ 1}
Rn = |{S1, . . . , Sn}| ≡ Card({S1, . . . , Sn})

Then
lim

n→∞

Rn

n = E [1A| I] , almost surely

Theorem 37.
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Proof
Lower bound: We have

Sj(ϕm(ω)) = Sj+m(ω)− Sm(ω)

Thus
Sj(ϕm(ω)) 6= 0 ⇐⇒ Sj+m(ω) 6= Sm(ω)

and
1A(ϕm(ω)) = {Sj+m(ω) 6= Sm(ω) for all j ≥ 1}

We have thus obtained

Rn ≥
n∑

m=1
1A(ϕm(ω)).

and owing to the ergodic theorem we get

lim inf
n→∞

Rn

n ≥ lim inf
n→∞

1
n

n∑
m=1

1A(ϕm(ω)) = E [1A| I]
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Proof (2)
Upper bound: For k ≥ 1 set

Ak = {Sj 6= 0 for all 1 ≤ j ≤ k} .

Then

1Ak (ϕm(ω)) = {Sj(ω) 6= Sm(ω) for all m + 1 ≤ j ≤ m + k}

and
Rn ≤ k +

n−k∑
m=1

1Ak (ϕm(ω)).

Applying the ergodic theorem again we get

lim inf
n→∞

Rn

n ≤ lim sup
n→∞

1
n

n−k∑
m=1

1Ak (ϕm(ω)) = E [1Ak | I] (5)
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Proof (3)

Limit in k : We have k 7→ Ak decreasing and
∞⋂

k=1
Ak = A.

Therefore by monotone convergence we get

lim
k→∞

E [1Ak | I] = E [1A| I] .

Thanks to (5) we have thus proved that

lim sup
n→∞

Rn

n ≤ E [1A| I]
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Recurrence criterion in Z

Let
X stationary sequence with values in Z
Hypothesis: X1 ∈ L1(Ω)
Sn = ∑n−1

j=0 Xj

A = {Sk 6= 0 for all k ≥ 1}

The following holds true:
1 If E[X1| I] = 0 then P(A) = 0
2 If P(A) = 0 then P(Sn = 0 i.o) = 1

Theorem 38.
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Proof
Standing assumption: E[X1| I] = 0, which yields

lim
n→∞

Sn

n = 0. (6)

Relation for max S: For all K ≥ 1 we have

lim sup
n→∞

max
1≤k≤n

|Sk |
n = lim sup

n→∞
max

K≤k≤n

|Sk |
n ≤ max

k≥K

|Sk |
k

Taking K →∞ and thanks to (6) we get

lim
n→∞

max
1≤k≤n

|Sk |
n = 0 (7)
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Proof (2)
Consequence on Rn: In d = 1 we have

Rn = Range {Xj ; 0 ≤ j ≤ n} .

Hence
Rn ≤ 1 + 2 max

1≤k≤n
|Sk |,

and according to (7) we get

lim
n→∞

max
1≤k≤n

|Rn|
n

Theorem 37= E [1A| I] Relation (7)= 0

Conclusion for item 1:
We take expectations in previous relation, which yields

P(A) = 0
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Proof (3)

Notation: We set

Fj = {Si 6= 0 for i < j and Sj = 0}
Gj,k = {Sj+i − Sj 6= 0 for i < k and Sj+k − Sj = 0}

Simple relations on Fj ,Gj,k :
1 Since P(A) = 0 we have ∑k≥1 P(Fk) = 1
2 By stationarity, P(Gj,k) = P(Fk)
3 Hence we also have ∑k≥1 P(Gj,k) = 1
4 For fixed j , the sets Gj,k are disjoint
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Proof (4)
More relations on Fj ,Gj,k : We have obtained∑

k≥1
P (Fj ∩ Gj,k) = P (Fj) , and

∑
j,k≥1

P (Fj ∩ Gj,k) = 1

Conclusion on recurrence: We have⋃
j,k≥1

Fj ∩ Gj,k = {Sn = 0 at least two times}

Therefore
P (Sn = 0 at least two times) = 1

Generalization:
With sets Gj1,...,jm

Taking m→∞
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Extension by Kac

Let
X stationary sequence with values in (S,S)
A ∈ S and Sn = ∑n−1

j=0 Xj

T0 = 0 and Tn = inf{m > Tn−1; Xm ∈ A}
tn = Tn − Tn−1

Hypothesis: P (Xn ∈ A at least once) = 1

Then the following holds true:
1 Under P(·|X0 ∈ A) the sequence (tn) is stationary
2 We have

E [T1|X0 ∈ A] = 1
P (X0 ∈ A)

Theorem 39.
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