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Adaptation

Context: We are given
@ A probability space (22, F, P)
e A filtration {F,; n > 0}
— Sequence of o-algebras such that F, C F,i1.

Definition 1.}
A sequence of random variables {X,; n > 0} is adapted if:

Xn € Fh.
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Martingales, Supermartingales, Submartingales

~ Definition 2. .

We consider a sequence of random variables X = {X,; n > 0}
such that

Q {X,; n> 0} is adapted.
Q X, € LYQ) forall n>0.
Then
e X is a martingale if X, = E[X,, 1| F,].
e X is a supermartingale if X, > E[X,.1| F,].
e X is a submartingale if X, < E[X,.1| F.].
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Interpretation

Adaptation: The data X,, only depends on information until instant n.
Martingale: n+— X, constant plus fluctuations.
Submartingale: n — X, increasing plus fluctuations.

Supermartingale: n — X, decreasing plus fluctuations.
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Random walk

Definition: Let

e {Z; i > 1} independent Rademacher r.v
@ Weset Xy =0, and for n > 1,

X is called random walk in Z.

Property: X is a martingale.
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Conditional expectation in the past

,—[Proposition 3.] \

Let X be a F,-martingale and m > 0.
For all n > m we have

E [Xu| Fin] = X

Proof: Recursive procedure.

Important corollary: Let X be a F,-martingale and m > 0.
For all n > m we have

E[Xh] = E[Xn] = E[Xo]. (1)
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Composition with a convex function

,—[Proposition 4.] \
Let
e X a F,-martingale.

@ ¢ : R — R a convex function
— such that ¢(X,) € L}(Q) for all n > 0.

o Yn - @(Xn)

Then Y is a submartingale.

\ J

Proof: application of Jensen for conditional expectation.

Example: If X, is a random walk, X? is a submartingale
< Fluctuations increase with time.
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Martingale transformation

—~ Definition 5.

Let (F,)n>0 be a filtration and X, H F,-adapted-processes.
@ We say that H is predictable if H, € F,_1.
@ The transform of X by H is

[H-X], =S H;AX;, where AX;=X;—X; 4

j=1

\ J

Interpretation:

@ H = game strategy
— Today's decision depends on the information until yesterday

@ H - X = value if strategy H is used
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D’'Alembert

Some facts about d'Alembert:

@ Abandoned after birth

@ Mathematician

@ Contribution in fluid dynamics

@ Philosopher

@ Participation in 1st Encyclopedia
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D’Alembert’s Martingale

Example: Let X, = >_7 ; & be a random walk.

We interpret &; as a gain ou a loss at ith iteration of the game.
The filtration is F, = o(&1, ..., &)

Strategy: We define H in the following way:
@ Hy =1, thus H; € F.
(] Hn =2 Hn—l 1(£n—1:_1)

Let N =inf{j > 1; ¢ =1}. Then

N N N-1
[H- Xy =2 HAX; =3 Hig=- 27" +2" =1
Jj=1 j=1 j=1

We get an almost sure gain!
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Strategies and martingales

~ Theorem 6. \

Let

@ X a martingale.

e H a predictable process such that H; AX; € L* for all j.
Then H - X is a martingale.

\ J

Interpretation: One cannot win in a fair game context
— Compare with d'Alembert’s martingale
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Proof

Main ingredients: We write
[H ) X]n+1 = [H ’ X]n + Hpi1 (Xn+1 - Xn)-

Then we use the fact that
@ H is predictable
@ X is a martingale
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Stopping time

— Definition 7. | \
Let
e T:Q — N random time
e F, a filtration
We say that T is a stopping time for F, if
e For all n € N, the set {w; T(w) = n} is F,-measurable.

Recall: basic examples are hitting times.
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Stopped martingales

~ Theorem 8. N

Let
@ X martingale
e N stopping time

We set Y, = X,an. Then Y is a martingale.

\ J
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Proof
Decomposition of Y: We have
Yi = Vi1 = (X = Xj1) Lj-1<m).-

Expression as transformed martingale: Set H; = 1(;_;-n). Then
n
Yo = Yo+ (Yi—Yi)
j=1

= Yo+ 2 (X = Xi1) Ljmaem)

j=1

= Yo+ HAX

Jj=1

In addition H is predictable. Thus Y is a martingale.

Samy T. Martingales Probability Theory 18 / 52



© Convergence

Samy T. Martingales



Convergence in L?

—~ Theorem 9.

Let X such that
e {X,; n>1} is a martingale.
e For all n we have X, € L?(Q) and

sup{E[Xf]; n> 0} =M < 0. (2)

Then
Q L2 —limy X, = Xso.
@ For all n >0, we have X, = E[X| Fn].
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Proof

Step 1: We set a, = E[X?]. We will show that if n > m, then
E [(Xo = Xm)?| = a0 — am.

Indeed,
E[XmX,] = E{Xn E[X,| F]} = E [X2].

Therefore
E[(X,— Xn)?] = E[X2|+E[X2] - 2E[XX,]
= E[X}]-E[X2]

= a,— anm.
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Proof (2)

Step 2: Convergence in L.

® a,;1 — a, = E[(Xoy1 — X,)?] = n+ a, increasing.

e Inequality (2) = (a,)n>0 bounded = (a,),>0 convergent.
e E[(X, — Xn)?] = a, — am = (X,))n>0 Cauchy in L3(Q)

Conclusion: (X,),>0 converges in L?(Q) towards X.
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Proof (3)
Step 3: We have X, = E[X,| F,].

Set
V= ’E[Xoo‘ fn] - Xn| :
We are reduced to show that E[V] = 0.

Computation: For n, k > 0,

V= [E[Xs| Fn] — E[Xny«| Fil|
|E[Xoo _Xn—l—k‘fn” < E[|Xoo _Xn-l-kl "Fn]

Hence

E[V] < E[[Xac — Xniul] < BV [(Xoo = Xoi)?]

We get E[V] = 0 whenever k — oo above.
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Almost sure convergence

r—[Theorem 10.] \
Let X satisfying

e {X,; n> 0} is a martingale or a submartingale.

@ We have
sup{E[X,ﬂ; nZO}EM<oo. (3)

Then
Q as—lim, X, = X.
@ We have E[|X,|] < oc.
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Particular cases

Particular case 1:
(Xn)n>o positive martingale = a.s — lim,_,, X, = X.

Particular case 2:

sup{E[X?]; n > 0} = M < 00 = a.5 — limy_00 X = Xox.
< We have both a.s and L? convergence.
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Convergence counterexample

,—{ Example 11.

Let

e {&,; n> 1} i.i.d Rademacher sequence
e {S,; n> 0} defined by
s So=1
» Sp=S1+&, forn>1
e N=inf{n>1,S,=0}
o X, = Span
Then the following holds true:

@ X, converges almost surely to 0
@ X, does not converge in L}(Q)

\
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Proof

Almost sure convergence: We have

@ Theorem 8 = X is a martingale
e X, >0

Thus X, converges almost surely to X, >0

Identification of the limit: Assume P(€,) > 0 with kK > 0 and

Qe = {w; nli_)ngoX,,(w) = k}.

For w € €, we have the following:
@ Set ng(w) = inf{n > 0; X;,(w) = k for m > n}.
@ For m > ng we have X, 1 = X, =1

This yields a contradiction. Hence P(€x) =0 and X, =0 ass
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Proof (2)

Convergence in L'(€): According to (1) we have

Thus we cannot have L}(Q) — lim, o X, =0

Samy T. Martingales Probability Theory 28 / 52



Doob’s decomposition

r—[Theorem 12.] \
Let
@ X submartingale

Then X can be decomposed uniquely as:
Xn - Mn + A,,,

where
e M is a martingale
@ A s a predictable increasing process such that A; =0
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Proof

Expression for M and A: We wish
° E[Mn|fnfl] =M,_1
° An € fn—l

Therefore if X, = M, + A,, we have
E[X,| Foo1] = E[M,| Fo1] + E[As] Foi]

Mn—l + An
= Xn—l + An - An—l

We thus take:

An - An—l =E [Xn| fn—l] - Xn—la and Mn - Xn - An
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Proof (2)

Expression for A and M: recall that

A, — A1 =E[X,| Fooi] — Xoo1, and M, =X, — A,

Proof of Doob's properties: We have
@ A, is increasing since E [X,| F,_1] > X,_1
Q@ A, € F,_1 by induction
© The martingale property for M is obtained as follows:

E[Ma| Foi]l = E[X, — An| Foi]
= E [Xn| Jrn—l] - An
= A— A+ X, — A,
= M,
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Doob’s inequality
r—[Theorem 13.]

We consider

@ A submartingale X

o X, = mMaXm<n X,

@ A real number A >0
o Theset A= {X, > \}

Then we have

AP(A) < E[X, 1] <E|[X/]|
Otherwise stated:
_l’_
_EDX]

P(X,>))

\ J
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LP maximum inequality

r—[Theorem 14.] ‘

We consider

@ A submartingale X
o X, = maXm<n X
e pe(1,00)

Then we have

%] <G E[()]. wih o= (2)
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LP bound for | Y|

r—[Theorem 15.}
We consider

@ A martingale Y
® Y =maxm<n|Ynml
e pe(l,00)

Then we have

EIV;PI< GEIVPL with 6=

p p
p—1>
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Counterexample in L1(9)

,—{ Example 16. \

As in Example 11, set

e {&,, n> 1} i.i.d Rademacher sequence
@ {S,; n> 0} defined by

> 50:]_
» 5, =S5, 1+&,forn>1

e N=inf{n>1,5,=0}
° Xn = 9nAN
Then Theorem 14 is not satisfied for p = 1 and X:

Q@ E[X.] =

\.
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Proof

[tem 1: We have already seen in Example 11 that
E[X,]=1, forall n>0.
Hence we trivially have

lim E[X,] = 1.
n—o0
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Proof (2)

Hitting times: For x € 7Z set
T, =inf{n>0; S, = x}.
Then for a < 1 < b we have (see Section 5):

1—2a

P(Ty< T =3 @

Item 2: Thanks to (4) we have, for all M > 1

_ 1
P(Xe> M) =P(Ty< To) =
Therefore .
E X, | = — =00
2w
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Convergence in LP

r—[Theorem 17.]

Let X and p such that
e {X,; n> 1} is a martingale.
o p>1.
@ For all n we have X, € LP(Q2) and

sup {E[|Xa|P]; n >0} =M < 0.

Then
Q [P —lim, o X, = Xo.
Q as—Ilim, o X, = X
@ For all n > 0, we have X, = E[X| F,].
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Simple optional stopping theorem

r—[Theorem 18.]

Let
e {X,; n >0} a martingale.
@ T stopping time.

We assume that ONE of those two assumptions is satisfied:
@ 7 is a.s bounded by a constant M;.

@ The sequence of random variables {X,.7; n > 0}
is a.s bounded by a constant M.

Then
E[X7] = E[Xo].
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Proof

Under Hypothesis 1: Let k € N such that T < k a.s.
Computation: We use the fact that {X,,7; n < k} is a martingale.

E[Xo] = E[Xon7] = E[X,7] = E[Xer7] = E[X7]

Under Hypothesis 2: We set Y, = X,,7. Then

e (Y,)n>0 bounded martingale in L2
= Y, — Y, in L2 and a.s. Hence E[Y,] = E[Y(].

e We have Y, = X7 and Yy = X;. Therefore

E[Yx] = E[Yo] = E[X7] =E[X].
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Case of a submartingale

,—[Proposition 19.] \

Let

e {X,; n> 0} a submartingale.

e T stopping time.
We assume that:

e T is a.s bounded by a constant M.
Then

E[Xo] < E[X7] < E[Xum].
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LP(€2) bound for stopped martingales
,—[Proposition 20.] \

Let X and p such that
e {X,; n>1} is a submartingale.
e p>1
e For all n we have X, € LP(2) and

sup{E[|X,|P]; n >0} =M < cc.
For a stopping time N we set
Yn - Xn/\N-

Then

sup {E[|Ya|P]; n >0} < M.

\.
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Proof

Definition of a submartingale: If X, is a submartingale then

| Xn|P is a submartingale

Application of Proposition 19:
Since N A n is a stopping time bounded by n, we have

E [ Xnnnl?] < E[[XA]],

and hence
sup E [|[XnanlP] < supE[|X,P] =M
n>0 n=0
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Optional stopping in LP(2)

r—[Theorem 21.] ‘

Let X and p > 1 such that
e {X,; n>1} is a submartingale.
e For all n we have X, € LP(2) and

sup {E[|X,|P]; n >0} =M < .

o X =as—lim, X,

Then for any stopping time N we have

E[Xo] < E[Xn] < E[X,]
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Proof

Application of Proposition 19: for n > 1 we have

E [Xo] < E [Xund] < E[X,] (5)

Application of Proposition 20:

n+ Xyan and n — X, are bounded submartingales in LP(Q).
Thus:

s, LP s, LP
Xn/\N L) XN, and X,, L> Xoo

Therefore taking limits in (5) we get:

E[Xo] < E[Xn] < E[X]
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Optional sampling: the general form

r—[Theorem 22.} \
Let X, p > 1 and two stopping times M, N such that

o {X,; n> 1} is a submartingale.
e For all n we have X, y € LP(Q2) and

sup {E[|Xoan|P; n >0} = A < 0.

o M < N almost surely
Then we have

E [XM] S E [XN] y and XM S E [XN‘ FM] 5
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Proof

Proof of E[Xy] < E[Xn]: Set Y, = Xyan. Then

@ Y is a submartingale satisfying the assumptions of Theorem 21
(] Yoo = XN

Invoking Theorem 21 we thus get

E[Yu] <E[Ye] <= E[Xu] <E[Xy].
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Proof (2)

Definition of a stopping time: For A € Fj; we set
T=M1p+ N1jx.
Then T is a stopping time. Indeed:

{T<ny = (M<npnA) U {N < n}pnAT
= ((M<nnA) N <n}n{M<n}n A,

and hence:
{T <n}eF,
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Proof (3)

Inequality involving A:
For A, T as before, applying E[X7] < E[Xy] we get

E [X7] < E[X\]
—E [XM ]-A] +E [XN ]-AC] <E [XN ]-A] +E [XN ].Ac]
< E[XM ]-A] < E[XN ]-A]

Therefore, by definition of the conditional expectation we get:

E [Xuv 1a] < E{E[Xn| Fum] 14} (6)
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Proof (4)

Conclusion: For k > 1 we set
1
A = {XM —E[Xu| Fu] > ;}.
Then Ax € Fu and according to (6) we have

P(Ax) = 0.

Hence:
P (Xum — E[Xy| Fum] > 0) = P (Ug>1A,) =0

and thus:
Xu < E[Xy| Fum], almost surely.
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