
Solutions 1 (to homework 1). (1) Let C be the region defined by −1 <
x1 < 1 and −1 < x2 < 1. This is a square without its boundary.
Suppose we try to maximize z = x1+x2 over C, which is linear. The
optimal thing would be x1 = x2 = 1, but we can’t do that because
the corner is not part of C. So z is bounded on C (it is never bigger
or equal to 1), but there is no optimal point in C.

(2) Take the region −1 ≤ x1 ≤ 1 and −1 ≤ x2 ≤ 1, the square with
its boundary. If z = 1− x21 − x22 then z has a critical point at (0,0)
which turns out to be a maximum. But, the maximum is not on the
boundary. This could happen because z is not linear.

(3) The max is at x1 = 4, x2 = 5, z = 37. It is easy to see that this point
satisfies the constraints. The other corners of the feasible region are
(2, 6), (0, 6), (4, 0), (0, 0). None of the others get z = 37.

(4) The corners of the feasible region are (9, 0), (45/7, 30/7), (0, 15/2).
The best z occurs at both the second and the third point.
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Solutions 2 (for homework 2).

(1) If we let x1 and x2 stand for the wheat and the corn, we get an initial
problem

x1 + x2 ≤ 100

2x1 + x2 ≤ 150

5x1 + 10x2 ≤ 800

x1, x2 ≥ 0

z = 80x1 + 60x2 → max

With slack, that is

x3 = 100− x1 − x2

x4 = 150− 2x1 − x2

x5 = 800− 5x1 − 10x2

x1, x2 ≥ 0

z = 80x1 + 60x2 → max

Now x1 in, x1 ≤ 100, 75, 160, so x4 out:

x3 = 25− x2/2 + x4/2

x1 = 75− x2/2− x4/2

x5 = 425− 15/2x2 + 5/2x4

x1, x2 ≥ 0

z = 6000 + 20x2 − 40x4 → max

Now x2 in, x3 out:

x2 = 50− 2x3 + x4

x1 = 50 + x3 − x4

x5 = 50 + 15x3 − 5x4

x1, x2 ≥ 0

z = 7000− 20x3 − 20x4 → max

This is optimal, Jones should use half his land for wheat and the
other for corn. He’ll make $ 7000, and $ 50 of his capital will be
unspent.

(2) Let x1, x2 be the steak/potato amounts. Then we have

5x1 + 15x2 ≥ 50

20x1 + 5x2 ≥ 40

15x1 + 2x2 ≤ 60

x1, x2 ≥ 0

4x1 + 2x2 → min
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With slack that is

5x1 + 15x2 = 50 + x3

20x1 + 5x2 = 40 + x4

15x1 + 2x2 + x5 = 60

x1, x2 ≥ 0

4x1 + 2x2 → min

The initial meal schedule calls for x1 = 0, x2 = 30 and hence x3 =
400, x4 = 110, x5 = 0. So the first dictionary is

x2 = 30− 15x1/2− x5/2

x3 = 400− 215x1/2− 15x5/2

x4 = 110− 35x1/2− 5x5/2

xi ≥ 0

z = 60− 11x1 − x5 → min

Since this is written as a min-problem, we look for variables that
make this z smaller, for example x1. Then x1 ≤ 4, 160/43, 44/7. So
x1 = 160/43 and x3 exits. On the other hand, we could introduce x5,
which has restrictions x5 ≤ 60, 44, 160/3. So x5 = 44 and x3 exits.
This is a much nicer fraction than 160/43, so we use this second
substitution:

x2 = 8− 4x1 + x4/5

x3 = 70− 55x1 + 3x4

x5 = 44− 7x1 − 2x4/5

xi ≥ 0

z = 16− 4x1 + 2x4/5→ min

Now we have to bring in x1, subject to x1 ≤ 44/7, 8/4, 70/55. So
x1 = 14/11 and x3 exits:

x1 = 14/11− x3/55 + 3x4/55

x2 = 32/11 + 4x3/55− x4/55

x5 = 386/11 + 7x3/55− 43x4/55

xi ≥ 0

z = 120/11 + 4x3/55 + 10x4/55→ min

This is now optimal. Hence one ought to eat 14/11 steaks and 32/11
potatoes per day for a price of about $ 10.91. One eats exactly the
required amounts of carbohydrates and protein, and stays way under
the limit for fat.
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Solutions 3 (to homework 3).

(1) The first dictionary is

x4 = −8 + x1 + 4x2 + 2x3 + x0

x5 = −6 + 3x1 + 2x2 + x0

z = −x0

x0 in, x4 out:

x0 = 8− x1 − 4x2 − 2x3 + x4

x5 = −6 + 3x1 + 2x2 + (8− x1 − 4x2 − 2x3 + x4)

= 2 + 2x1 − 2x2 − 2x3 + x4

z = −8 + x1 + 4x2 + 2x3 − x4

this is feasible. x1 in, x0 out:

x1 = 8− 4x2 − 2x3 + x4 − x0

x5 = 2− 2x2 − 2x3 + x4 + 2(8− 4x2 − 2x3 + x4 − x0)

= 18− 10x2 − 6x6 + 3x4 − 2x0

z = −8 + 4x2 + 2x3 − x4 + (8− 4x2 − 2x3 + x4 − x0)

= −x0

This is optimal. So x1 = 8, x5 = 18, x4 = 0, x2 = 0, x3 = 0 are the
initial solution for the original problem:

x1 = 8− 4x2 − 2x3 + x4

x5 = 18− 10x2 − 6x6 + 3x4

z = 2(8− 4x2 − 2x3 + x4) + 3x2 + x3

= 16− 5x2 − 3x3

Next, x4 in, but no candidate for leaving the basis. Means: problem
unbounded.

(2) Auxiliary problem is

x3 = −10 + 2x1 + x2 + x0

x4 = 6 + 3x1 − 2x2

z = −x0

This is infeasible. x0 in, x3 out:

x0 = 10− 2x1 − x2 + x3

x4 = 6 + 3x1 − 2x2

z = −10 + 2x1 + x2 − x3
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This is now feasible. x1 in, x3 out:

x1 = 5− x2/2 + x3/2− x0/2

x4 = 6− 2x2 + 3(5− x2/2 + x3/2− x0/2)

= 21− 7x2/2 + 3x3/2− 3x0/2

z = −x0
This is optimal. So the start solution for the original problem is
x1 = 5, x4 = 6, x2 = x3 = 0:

x1 = 5− x2/2 + x3/2

x4 = 21− 7x2/2 + 3x3/2

z = 2x2 − 3(5− x2/2 + x3/2)

= −15− x2/2− 3x3/2

This is optimal and the optimal z as stated in the problem is 15
(recall, that we turned it around to make it a max!)
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Solutions 4 (to homework 4).

(1) Given is

x1 + x2 + x3 ≤ 480

x4 + x5 + x6 ≤ 400

x7 + x8 + x9 ≤ 230

x2 + x5 + x8 ≤ 420

x3 + x6 + x9 ≤ 250

xi ≥ 0

8x1 + 14x4 + 11x3 + 4x4 + 12x5 + 7x6 + 4x7 + 13x8 + 9x9 → max

The proposed optimal solution is ~x∗ = (440, 0, 40, 0, 400, 0, 0, 20, 210).
By (5.22) we must have

y∗1 = 8

y∗1 + y∗5 = 11

y∗2 + y∗4 = 12

y∗3 + y∗4 = 13

y∗3 + y∗5 = 9

which solves to ~y∗ = (8, 5, 6, 7, 3). By (5.23) the following need to
be satisfied:

y∗1 + y∗4 ≥ 14

y∗2 ≥ 4

y∗2 + y∗5 ≥ 7

y∗3 ≥ 4

Plugging in the numbers one sees that all inequalities hold. Hence
~x∗ (~y∗) is the optimal primal (dual) solution by Theorem 5.3 in the
book.

(2) An example would be

x1 − x2 ≤ −2

−x1 + x2 ≤ 1

x1 − x2 → max

with dual

y1 − y2 ≥ 1

−y1 + y2 ≥ −1

−2y1 + y2 → min

but there are many many more.
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(3)

x1 − x2 ≤ −2

−x1 + x2 ≤ 1

2x1 − x2 → max

with dual

y1 − y2 ≥ 2

−y1 + y2 ≥ −1

−2y1 + y2 → min

but there are many many more.
(4) What I had in mind was an example of the sort

x1 + x2 ≤ 2

x1 ≤ 1

x1 + x2 → max

This has as optimal solutions all points on the line segment from
(1, 1) to (0, 2).

Its dual is

y1 + y2 ≥ 1

y2 ≥ 1

y1 + 2y2 → min

This has its optimum in the point (0, 1). Note that this point is
degenerate (the meeting point of more than 2 lines). In fact, this is
typical:

Proposition 0.1. If the primal has infinitely many optimal solu-
tions, the dual has degenerate optimal solutions.

Proof. It is easy to see (I think) that if you have an LP with infinitely
many optimal solutions, then this is kind of an accident: if you
change the objective function coefficients all just slightly, most of
the previously optimal solutions won’t be optimal any more.

This is to say that in the given problem a bunch of optimal dic-
tionaries exist, but in the disturbed one only one (or a few) are still
optimal.

Now each optimal primal dictionary comes from a basis, and by
the complimentary basis/slackness theorem corresponds to a basis
for the dual. For the given LP, there are a bunch of dual optimal
dictionaries then of which only one (or a few) survive as optimal
in the disturbed problem. Comparing the optimal dictionaries of
different disturbances we see that they may be very different.

Let’s now inspect the possibility of a non-degenerate optimal dual
solution for the given LP. If we wiggle in the objective function for the
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primal, we change slightly the right hand side of the constraints in
the dual. If an optimal solution is non-degenerate, such a change will
have only mild changes for the y-variables as consequence. But, we
know that depending on the changes in ~c we administer the changes
in the y-variables are quite dramatic: switching dictionaries com-
pletely changes the values of many variables!

The conclusion is that the dual system cannot have non-degenerate
optimal solutions.(That is, all optimal solutions are degenerate.)
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Solutions 5 (to homework 5).

(1) From the solution to Exercise 5.4 (last assignment) we know that
the optimal solution is

~x∗ = (440, 0, 40, 0, 400, 0, 0, 20, 210).

You also found the optimal dual solution ~y∗ = (8, 5, 6, 7, 3). The
primal solution will be optimal as long as the dual is. (Recall that
the dual and primal have the same optimal value.) The dual solution
(assuming that the price for fresh bellies grows by the number x to
4+x) stays optimal until the condition that relates to the fresh belly
price is violates. The constraint in question is y2 ≥ 4 + x (this is
just the 4-th column of the given LP, with modified belly price).
Since y∗2 = 5, x larger than 1 will cause the optimal dual solution to
become infeasible. That means that the optimal value for the dual
will rise and hence so will the optimal value for the primal.

To answer the second part, the price of fresh picnics is also 4
bucks. The variable that talks about fresh picnics is x7. The 7-th
equation of the dual with price 4+y for the fresh picnics is y3 ≥ 4+y.
This will be violated if y exceeds 2.

(2) “Degenerate” in 2 dimensions means that at least 3 lines meet in
a point. (Because 2 are needed to define a point, and degeneracy
speaks about accidents.)

Now, the non-negativity conditions give 2 lines, and the 2 con-
straints 2 more. So let’s say we make (1, 0) our optimum. It is on
the line x2 = 0, so we need two more that go through there. For
example, take x1 +x2 = 1 and x1 + 4x2 = 1. The feasible region is a
triangle with corners (0, 0), (0, 1), (1, 0). The LP should be therefore

x1 + x2 ≤ 1

x1 + 4x2 ≤ 1

xi ≥ 0

It remains to find an objective function that picks (1, 0) as optimum
and not either of the 2 other corners. One that works is 5x1 + x2 →
max.

What is the dual system then?

y1 + y2 ≥ 5

y1 + 4y2 ≥ 1

yi ≥ 0

y1 + y2 → min

The point of this example is that if you increase the right hand
side of just one of the primal constraints, nothing happens to the
optimal solution. This is because whichever you relax, the other
makes sure the optimum does not move.
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The dual optimal solution is (easy check) the line segment from
(0, 5) to (5, 0). So, no matter what optimal y-solution you take,
one of the values (usually both) is positive. Hence, Theorem 5.5
suggests that the marginal value of at least one primal constraint is
positive. So the primal optimum should grow if one primal constraint
is relaxed. The fact that it does not is not a violation of Theorem
5.5, because our problem is degenerate, and such problems are not
considered in Theorem 5.5.

(3) Complementary slackness says that if a primal constraint is an in-
equality then the marginal value of the resource is zero. Conversely,
if a marginal value is nonzero, the corresponding constraint must
be maxed out (an equality). The economic implication is that one
should try to trade some of the unused resources for buying resources
corresponding to maxed out constraints.
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Solutions 6 (to homework 6).

(1) Given is ~xT = (0, 0, 0, 0, 1, 0, 7, 5) with ~cT = (1, 2,−1,−, 1, 2, 1,−3, 1)
and z = 14.

(a) ~cTB = (2,−3, 1), B =

 −1, 0, 1
−2, 0,−1
2,−1, 1

. This gives ~vT = (1/3, 2, 8/3).

Then ~vTAN = (5,−13/3,−4, 5/3,−1). We pick j = 2. Then

~aT = (−1,−2, 0) and ~dT = (1, 2, 0). It turns out that t can go
up to 1, and i = 5.
The new ~xT is then (0, 1, 0, 0, 0, 0, 5, 5). It has z = −8.

(b) This time, B =

 −1, 0, 1
−2, 0,−1
0,−1, 1

, ~cTB = (2,−3, 1). Then ~vT =

(1/3, 4/3, 7/3) and ~vTAN = (13/3,−10/3, 1, 5/3, 1/3). We pick

j = 3. So ~aT = (1,−1,−1) and ~dT = (0, 2, 1). t may go up to
2.5 and therefore i = 7.
The new ~xT is (0, 1, 5/2, 0, 0, 0, 0, 5/2) with z = 2.

(c) Now B =

 −1, 1, 1
−2,−1,−1

0,−1, 1

 and ~cTB = (2,−1, 1). Then ~vT =

(−1/3, 1/3, 4/3) and ~vTAN = (1, 2/3, 7/3, 0,−4/3). We pick

j = 6. So ~aT = (2,−2, 1) and ~dT = (0, 1/2, 3/2). Then t is 5/3,
i = 8.
The new ~x is then (0, 1, 5/3, 0, 0, 5/3, 0, 0). It has z = 2.

(d) Now B =

−1 1 2
−2 −1 −2
0 −1 1

 and ~cTB = (2,−1, 1). Then ~vT =

(−2/3,−2/3, 1) and ~vTAN = (−1, 0, 4,−1, 1). We pick j = 1.

So ~aT = (2, 1, 1) and ~dT = (−1,−1/3, 2/3). Then t = 5/2,
i = 6.
The new ~x is (5/2, 7/2, 5/2, 0, 0, 0, 0, 0). It has z = 7.

(e) Now B =
(
2,−1, 1; 1,−2,−1; 1, 0,−1

)
and ~cTB = (1, 2,−1). Then

~vT = (0,−1, 2) and ~vTAN = (−1, 6, 4,−2, 3). No component of
this vector is smaller than the corresponding component of ~cT .
Hence we have an optimal solution in our hands.

(2) If a1x1 + . . . + anxn ≤ b, then since all ai are positive and xi may
not be negative, we get individual estimates aixi ≤ b or x1 ≤ b/ai.
Now xi is bounded from below by 0, from above by b/ai, and it must
be an integer. There are only finitely many possibilities for xi, say
mi is the number of these possibilities. Then let ~x∗ be a feasible
solution. The component x∗i must be using one of the mi possible
integer values between 0 and b/ai. Hence there are m1 ·m2 · · ·mn

possibilities for picking values in a feasible solution, which is a finite
number. (Note: the actual number of feasible solutions is likely to
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be much smaller than m1 · · ·mn. We only found this product to be
an upper bound.)

(3) The point is that the displayed equations with the boxes are all linear
combinations of those given initially. Imagine you introduce slack:

2x1 + 2x2 + x3/2 + x4 = 2

−4x1 − 2x2 − 3x3/2 + x5 = 3

x1 + 2x2 + x3/2 + x6 = 1

6x1 + x2 + 2x3 = z

Now make a linear combination of those equalities with coefficients
L4, L5, L6, Lz, all real numbers. It is quite obvious (I think) that the
result is an expression that has L4 copies of x4, L5 copies of x5, L6

copies of x6 and Lz copies of z.
One can therefore read off the coefficients that were used to make

any of the 4 equalities with boxes from the numbers in front of
x4, x5, x6 and z. For example, the first equality says you must have
used minus one times the x4-constraint, none of the x5-constraint,
and one copy of the x6-constraint. This implies that the whole equa-
tion looks like

x1 = 1 + 0x1 + 0x2 + 0x3 − 1x4 + 0x5 + 1x6.

Similarly, the other ones come out as

x1 = 1 + 0x1 + 0x2 + 0x3 − 1x4 + 0x5 + 1x6

x3 = 0 + 0x1 − 4x2 + 0x3 + 2x4 + 0x5 − 4x6

x5 = 7 + 0x1 − 4x2 + 0x3 − 1x4 + 0x5 − 2x6

z = 6− 0x1 − 0x2 − 0x3 − 2x4 − 0x5 − 2x6
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Solutions 7. (1) The number z(k) is the best value we can fit into a
knapsack of volume k. Suppose that the knapsack has volume at
least equal to the smallest item. That means k ≥ minj(aj). (Note:
this is given as hypothesis in the problem.) Of course this means
that z(k) is not zero, because we could put the at least the smallest
item into the knapsack.

Then imagine that a copy of one of the items in the optimal knap-
sack of volume k is actually in a side pocket all by itself that it fills
completely. Let’s say this is the t-th item. This means that the
rest of the knapsack has space equal to k − at. The best value of a
backpack with this volume is z(k − at). This means that the value
for the original backpack of volume k is z(k−at) + ct (recall that we
have an item t in the side pocket!).

This proves that z(k) = z(k − at) + ct. The problem is that we
have no clue which item item t is, because a priori we have no idea
what items are in the best backpack of volume k at all. The only
things we know for sure are a) the backpack is not empty, and b)
the only items in there are those of volume at most k. Consider
all expressions ci + z(k − ai) where i runs through those indices
whose items fit in the volume-k-backpack. Each of them stands for
a different way of packing the k-th knapsack. The optimal way of
packing the knapsack will therefore correspond to the maximum of
these numbers.

(2) First order them by efficiency:

27x1 + 34x2 + 41x3 + 31x4 + 33x5 + 23x6 = 168

59x1 + 74x2 + 89x3 + 67x4 + 71x5 + 23x6 → max

xi ∈ N
The start solution is (6, 0, 0, 0, 0, 0) with value 354. The next branch
is (5, ∗, ∗, ∗, ∗, ∗) with potential value 366. Its top leaf is (5, 0, 0, 0, 1, 0)
with value 366. The next lower branch is (4, ∗, ∗, ∗, ∗, ∗) of potential
value 366. Thus we can prune this branch. By the lemma we proved,
we can also prune the branches directly underneath this branch. But
that prunes the whole tree. So the optimal value is 366.

(3) The algorithm goes like this: Start with k = minj(aj). (Before, the
knapsack question is easy: it has to be empty.) Make a chart in
which k, a particular index tk, and z(k) For now the chart contains
minj(aj) (for k), the index t for which at is minimal, and ct (for z(k).

Now move to k + 1. For each i that has ai ≤ k + 1, look up in
the chart each z(k + 1− ai). Between these indices, find the index t
which maximizes ct + z(k + 1− ai). Record this index as tk+1 in the
chart. Record ctk+1

+ z(k + 1− ai) as z(k + 1) in the chart.
Then move to k+2 and so on. The flowchart is a bit difficult with

this text-setting program. . .


