\qquad Student ID:

Books, notes or any kind of calculator are NOT allowed.

Problem	Score
$1 \& 2$	
3	
4	
5	
6	
Bonus	
Total	

Honor Pledge: I have neither received nor given aid on this exam.
Signature: \qquad

1. (5 pts) Let $A=\left[\begin{array}{rrrr}a & b & c & d \\ x & e^{x} & \cos x & \sin x \\ 1 & 2 & 3 & 4\end{array}\right]$ and $B=\left[\begin{array}{rrrr}\log x & 1 & 0 & 4 \\ 2 & 0 & 0 & 4 \\ -3 & -1 & 1 & 2\end{array}\right]$. Let $C=B^{T} A$ and $c_{i j}$ denote the entries of C. What is c_{32} ?
A. b
B. 2
C. $\mathrm{c}-3$
D. $3-\mathrm{c}$
E. $B^{T} A$ is not well defined.
2. (5 pts) Given the linear system $A \mathbf{x}=\mathbf{b}$ with

$$
A=\left[\begin{array}{ccc}
1 & 4 & 2 \\
1 & 2 & 2 \\
-3 & 0 & -1
\end{array}\right], \quad \mathbf{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \quad \text { and } \quad \mathbf{b}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

Suppose we already know $|A|=-10$. By Cramer's rule, $x_{3}=$?
A. $-\frac{3}{5}$
B. $\frac{3}{5}$
C. -6
D. 6
E. 0
3. (20 pts) Given four vectors $\mathbf{v}_{1}=\left(\begin{array}{c}-1 \\ 0 \\ 0 \\ 2\end{array}\right), \mathbf{v}_{2}=\left(\begin{array}{c}-1 \\ -1 \\ 0 \\ 1\end{array}\right), \mathbf{v}_{3}=\left(\begin{array}{c}0 \\ 1 \\ -1 \\ 0\end{array}\right)$ and $\mathbf{u}=\left(\begin{array}{c}0 \\ 0 \\ -1 \\ 3\end{array}\right)$,
is \mathbf{u} a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}$ and \mathbf{v}_{3} ? If yes, find all possible coefficients.
4. (20 pts) Calculate
$\left|\begin{array}{cccc}1 & 2 & 3 & 4 \\ 1 & 0 & 3 & 0 \\ 0 & 1 & 2 & 0 \\ 1 & 0 & 0 & -3\end{array}\right|$
5. (20 pts) Consider $A=\left[a_{i j}\right]=\left[\begin{array}{cccc}3 & 1 & 2 & 0 \\ x+1 & -1 & 0 & 0 \\ \cos x & 1 & 1 & 1 \\ 0 & x-1 & 0 & 0\end{array}\right]$.
(a) Find all possible values of x such that A is nonsingular.
(b) Find all possible values of x such that the cofactor of a_{14} is equal to 1 .
6. (30 pts) Answer only TRUE or FALSE in the table for the following statements:
a. For nonsingular matrix A, if $\operatorname{adj}(A)$ is invertible, then the inverse of $\operatorname{adj}(A)$ must be $A /|A|$.
b. If $A^{2}=\mathbf{0}$, then A is singular.
c. A must be a square matrix so that $A A^{T}$ is well-defined and symmetric.
d. If a matrix is symmetric and also skew symmetric, then it must be a zero matrix.
e. $|-A|=|A|$.
f. $\left[\begin{array}{llll}0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]$ is in reduced row echelon form.
g. If A and B have the same null spaces, then A and B are row equivalent.
h. $\left|\begin{array}{lll}a & b & c \\ x & y & 0 \\ z & 0 & 0\end{array}\right|=c y z$.
i. Any plane in \mathbb{R}^{3} is a subspace of \mathbb{R}^{3}.
j. For a square matrix A, if the nonhomogeneous system $\mathbf{A x}=\mathbf{b}$ has no solutions, then A is a singular matrix.

a	b	c	d	e	f	g	h	i	j

Solutions:

1. B.
2. A.
3. If \mathbf{u} is a linear combination, then there are three numbers x_{1}, x_{2} and x_{3} such that $x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+x_{3} \mathbf{v}_{3}=\mathbf{u}$. Plug in the vectors then we get a system of four equations and three unknowns. Solve it by Gaussian elimination then we find there are no solutions. So the answer is negative.
4. 24 .
5. (a) Using cofactor expansion along the last column, we get

$$
\begin{aligned}
& |A|=1 *(-1)^{3+4}\left|\begin{array}{ccc}
3 & 1 & 2 \\
x+1 & -1 & 0 \\
0 & x-1 & 0
\end{array}\right|=-2(x+1)(x-1) \text {. Thus }|A| \neq 0 \text { implies } x \neq \pm 1 \text {. } \\
& \text { (b) The cofactor of } a_{14} \text { is }(-1)^{4+1}\left|\begin{array}{ccc}
x+1 & -1 & 0 \\
\cos x & 1 & 1 \\
0 & x-1 & 0
\end{array}\right|=x^{2}-1 \text {. Thus } x^{2}-1=1 \text { gives us } x= \pm \sqrt{2} \text {. }
\end{aligned}
$$

6. a. T. Because $\operatorname{adj}(A) A=|A| I$.
b. T. $A^{2}=\mathbf{0} \Rightarrow\left|A^{2}\right|=0 \Rightarrow|A|^{2}=0 \Rightarrow|A|=0$.
c. F. A could be any matrix.
d. T.
e. F. $|c A|=c^{n}|A|$.
f. T.
g. F. Counter example: $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ and $B=\left(\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 1 & 0\end{array}\right)$, they have the same null space $\{0\}$ but they have different sizes thus cannot be row equivalent.
h. F. By cofactor expansion, it should $-c y z$.
i. F. If the plane does not pass the origin, then the subset does not contain zero vector.
j. T. If A is nonsingular, then A^{-1} exists thus $A^{-1} \mathbf{b}$ is a solution.
