1. Let $A=\left[\begin{array}{rrrr}0 & 4 & 8 & 4 \\ 1 & 1 & -5 & 2 \\ 1 & 2 & -3 & 1\end{array}\right]$ and $B=\left[\begin{array}{rrrr}1 & -1 & -2 & 4 \\ 2 & 2 & 0 & 2 \\ 3 & 1 & 6 & 1\end{array}\right]$. Let $C=B^{T} A$ and $c_{i j}$ denote the entries of C. What is c_{21} ?

Answer: $c_{21}=\left(\begin{array}{r}-1 \\ 2 \\ 1\end{array}\right) \bullet\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)=3$.
2. (5 pts) Given the linear system $A \mathbf{x}=\mathbf{b}$ with

$$
A=\left[\begin{array}{ccc}
3 & 4 & 2 \\
1 & 2 & 2 \\
3 & 0 & 1
\end{array}\right], \quad \mathbf{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \quad \text { and } \quad \mathbf{b}=\left[\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right]
$$

By Cramer's rule, $x_{2}=\frac{\left|A_{2}\right|}{|A|}$ if $|A| \neq 0$. What is A_{2} ?
Answer: $A_{2}=\left[\begin{array}{ccc}3 & 1 & 2 \\ 1 & -1 & 2 \\ 3 & 2 & 1\end{array}\right]$.
3. $(20 \mathrm{pts})$ Given four vectors $\mathbf{v}_{1}=\left(\begin{array}{c}-1 \\ 0 \\ 2\end{array}\right), \mathbf{v}_{2}=\left(\begin{array}{c}-1 \\ -1 \\ 0\end{array}\right), \mathbf{v}_{3}=\left(\begin{array}{c}2 \\ 1 \\ -1\end{array}\right)$ and $\mathbf{u}=\left(\begin{array}{l}2 \\ 1 \\ 0\end{array}\right)$,
is \mathbf{u} a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}$ and \mathbf{v}_{3} ? If yes, find all possible coefficients.
Answer: If \mathbf{u} a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}$ and \mathbf{v}_{3}, then there are numbers x_{1}, x_{2} and x_{3} such that $\mathbf{u}=x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+x_{3} \mathbf{v}_{3}$. So the answer will be affirmative if the following linear system has at least one solution:

$$
\left[\begin{array}{ccc}
-1 & -1 & 2 \\
0 & -1 & 1 \\
2 & 0 & -1
\end{array}\right]\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
2 \\
1 \\
0
\end{array}\right)
$$

Solve the linear system above by Gaussian elimination:

$$
\begin{aligned}
& {\left[\begin{array}{ccc|c}
-1 & -1 & 2 & 2 \\
0 & -1 & 1 & 1 \\
2 & 0 & -1 & 0
\end{array}\right] \xrightarrow{-r_{1} \rightarrow r_{1}}\left[\begin{array}{ccc|c}
1 & 1 & -2 & -2 \\
0 & -1 & 1 & 1 \\
2 & 0 & -1 & 0
\end{array}\right] \xrightarrow{-2 r_{1}+r_{3} \rightarrow r_{3}}\left[\begin{array}{ccc|c}
1 & 1 & -2 & -2 \\
0 & -1 & 1 & 1 \\
0 & -2 & 3 & 4
\end{array}\right]} \\
& \xrightarrow{-r_{2} \rightarrow r_{2}}\left[\begin{array}{ccc|c}
1 & 1 & -2 & -2 \\
0 & 1 & -1 & -1 \\
0 & -2 & 3 & 4
\end{array}\right] \xrightarrow{2 r_{2}+r_{3} \rightarrow r_{3}}\left[\begin{array}{ccc|c}
1 & 1 & -2 & -2 \\
0 & 1 & -1 & -1 \\
0 & 0 & 1 & 2
\end{array}\right] .
\end{aligned}
$$

By back substitution, we get $x_{3}=2, x_{2}=1$ and $x_{1}=1$.
4. (20 pts)

$$
A=\left[\begin{array}{cccc}
0 & 1 & 0 & 1 \\
-1 & 0 & 3 & 0 \\
-1 & 0 & 2 & 0 \\
0 & 1 & 0 & -3
\end{array}\right]
$$

(a) Evaluate $|A|$.
(b) Find the inverse of the 3×3 submatrix obtained after deleting the first column and the second row.

Answer:

(a) To compute the det, we do row operations to create more zeros then use cofactor expansion:

$$
\begin{aligned}
\text { (row operation } \left.r_{3}-r_{2} \rightarrow r_{3}\right) \quad|A| & =\left|\begin{array}{cccc}
0 & 1 & 0 & 1 \\
-1 & 0 & 3 & 0 \\
0 & 0 & -1 & 0 \\
0 & 1 & 0 & -3
\end{array}\right| \\
\text { (cofactor expansion using the first column) } & =(-1) *(-1)^{2+1}\left|\begin{array}{ccc}
1 & 0 & 1 \\
0 & -1 & 0 \\
1 & 0 & -3
\end{array}\right| \\
& =\left|\begin{array}{ccc}
1 & 0 & 1 \\
0 & -1 & 0 \\
1 & 0 & -3
\end{array}\right|
\end{aligned}
$$

$($ Compute the det directly) $=1 *(-1) *(-3)-1 *(-1) * 1=4$.
(b) The 3×3 submatrix obtained after deleting the first column and the second row is $\left[\begin{array}{ccc}1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & -3\end{array}\right]$. To find the inverse:
$\left[\begin{array}{ccc|ccc}1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 & 1 & 0 \\ 1 & 0 & -3 & 0 & 0 & 1\end{array}\right] \xrightarrow{-r_{1}+r_{3} \rightarrow r_{3}}\left[\begin{array}{ccc|ccc}1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 & 1 & 0 \\ 0 & 0 & -4 & -1 & 0 & 1\end{array}\right] \xrightarrow{\frac{1}{2} r_{2} \rightarrow r_{2}}\left[\begin{array}{ccc|ccc}1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 1 & \frac{1}{4} & 0 & -\frac{1}{4}\end{array}\right]$

$$
\xrightarrow{r_{1}-r_{3} \rightarrow r_{1}}=\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & \frac{3}{4} & 0 & \frac{1}{4} \\
0 & 1 & 0 & 0 & \frac{1}{2} & 0 \\
0 & 0 & 1 & \frac{1}{4} & 0 & -\frac{1}{4}
\end{array}\right]
$$

So the inverse is $\left[\begin{array}{ccc}\frac{3}{4} & 0 & \frac{1}{4} \\ 0 & \frac{1}{2} & 0 \\ \frac{1}{4} & 0 & -\frac{1}{4}\end{array}\right]$.
5. (20 pts) Consider $A=\left[\begin{array}{ccc}3 & 1 & 2 \\ x & -1 & 2 \\ 0 & 1 & x-2\end{array}\right]$.
(a) Find all possible values of x such that A is singular.
(b) Let $b_{i j}$ denote the entries of the adjoint $\operatorname{adj}(A)$. Namely,

$$
\operatorname{adj} A=\left[\begin{array}{lll}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23} \\
b_{31} & b_{32} & b_{33}
\end{array}\right]
$$

Find all possible values of x such that $b_{21}=1$.

Answer:

(a) A being Singular means $|A|$ should be zero. Calculate the det
$|A|=3 *(-1) *(x-2)+x * 1 * 2-3 * 1 * 2-1 * x *(x-2)=-x^{2}+x$. So $|A|=0$ implies $-x^{2}+x=0$ thus $x=0 \quad$ or 1.
(b) By the definition of the adjoint, b_{21} is the cofactor of a_{12}, which is equal to

$$
(-1)^{1+2}\left|\begin{array}{cc}
x & 2 \\
0 & x-2
\end{array}\right|=-x(x-2) . \text { So }-x(x-2)=1 \text { implies } x^{2}-2 x+1=0 \text { thus } x=1
$$

6. (30 pts) Answer only TRUE or FALSE in the table for the following statements:
a. $\left[\begin{array}{llll}1 & 4 & 0 & 2 \\ 0 & 0 & 1 & 1\end{array}\right]$ is in row echelon form but not reduced row echelon form.

False: it is in reduced row echelon form.
b. By cofactor expansion, $\left|\begin{array}{cccc}\cos x & \sin ^{2} x & \cos ^{4} x & -\sin ^{4} x \\ -\cos ^{2} x & \sin ^{4} x & -\sin ^{3} x & 0 \\ \sin ^{3} x & \cos ^{3} x & 0 & 0 \\ \cos ^{4} x & 0 & 0 & 0\end{array}\right|=-\sin ^{7} x \cos ^{7} x$.

False: it should be $\sin ^{7} x \cos ^{7} x$.
c. Let A be a 4×7 matrix, then $A \mathbf{x}=\mathbf{0}$ has either a unique solution or infinitely many solutions. It is impossible for $A \mathbf{x}=\mathbf{0}$ to have three and only three solutions.

True: if the homogeneous system has more than one solution, then it has a nonzero solution $\mathbf{x}_{\mathbf{0}}$. For any real number $c, c \mathbf{x}_{\mathbf{0}}$ is also a solution. Thus the homogeneous system has more than one solution, it has infinitely many solutions.
d. Let A be a 20×17 matrix. Then $A A^{T}$ is well defined and it is a symmetric matrix.

True: by socks-shoes rule, $\left(A A^{T}\right)^{T}=\left(A^{T}\right)^{T} A^{T}=A A^{T}$.
e. Let A be a nonsingular matrix, then $A^{T} A$ is also nonsingular and it has a positive determinant. True: if $|A| \neq 0$, then $\left|A^{T} A\right|=\left|A^{T}\right||A|=|A|^{2}>0$.
f. If A and B are row equivalent, then they must have the same null spaces.

True: row eqwuivalence implies $A \mathbf{x}=\mathbf{0}$ and $B \mathbf{x}=\mathbf{0}$ have the same solutions.
g. For two generic $n \times n$ invertible matrices A and B, $\operatorname{det}\left(A B A^{-1}\right)$ is not equal to $\operatorname{det}(B)$.

False: $\left|A B A^{-1}\right|=|A||B|\left|A^{-1}\right|=|B||A|\left|A^{-1}\right|=|B|$.
h. The set of all 3-vectors of the form $\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$ satisfying $2 a-b+c=0$ is a subspace of \mathbb{R}^{3}.

True.

i. For a nonsingular matrix $A, \operatorname{adj}(A)$ may be singular.

False: if A is nonsingular, then $A^{-1}=\frac{1}{|A|} \operatorname{adj}(A)$ thus $\operatorname{adj}(A)=|A| A^{-1}$ is invertible, and its inverse is $\frac{1}{|A|} A$.
j. If A is a singular matrix, then the nonhomogeneous system $\mathbf{A x}=\mathbf{b}$ has infinitely many solutions.

False: if A is a singular matrix, the homogeneous system has infinitely many solutions but the nonhomogeneous system may have no solutions.
7. (Bonus Problem, 15 pts) Prove the following.
(a) Let A be a 101×101 matrix. If $A^{101}=-A$, then A must be singular.

Proof: $A^{101}=-A \Rightarrow\left|A^{101}\right|=|-A|$. First, $\left|A^{101}\right|=|A|^{101}$. Second,
$|-A|=|-I A|=|-I||A|=(-1)^{101}|A|=-|A|$. Therefore, $|A|^{101}=-|A| \Rightarrow|A|^{101}+|A|=0$ thus $|A|\left(|A|^{100}+1\right)=0$. So $|A|=0$.
(b) If an upper triangular matrix A is invertible, then its inverse is also upper triangular.

Proof: First of all, the determinant of an upper triangular matrix A is the product of diagonal entries. Thus $|A| \neq 0$ implies all diagonal entries are nonzero. Then to obtain A^{-1}, we do row operations to $[A \mid I]$. Since A is upper triangular and diagonal entries are nonzero, all we need to do in the row operations is to normalize each row so that the diagonal entries are 1 then zero the entries above the diagonal. Such row operations will not change entries of I below the diagonal, thus the result will always be upper triangular.
One may also use the formula $A^{-1}=\operatorname{adj}(A) /|A|$ and show that $\operatorname{adj}(A)$ is upper triangular.

