The actual exam will be shorter and probably easier, and all problems will be multiple-choice.

1. Find all real numbers a such that the polynomial $3 a t^{2}-a^{2} t+2$ is in the span of $2 t^{2}+t+3, t+1$, and $3 t^{2}+t+4$.
2. Find all real numbers a such that the vectors $[1,2],[a, 2]$, and $[2, a]$ span R_{2}.
3. Find all real numbers a such that the matrices $\left[\begin{array}{ll}a & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ a & 0\end{array}\right]$ are linearly independent.
4. Find a basis for the subspace of R_{5} spanned by $[5,1,4,3,2],[0,0,1,0,0],[0,0,0,0,2],[10,2,5,6,4]$, and [10, 2, 8, 6, 5].
5. Let $A=\left[\begin{array}{cccc}3 & 3 & 2 & 5 \\ 0 & 3 & 1 & -2 \\ 1 & 2 & 1 & 1\end{array}\right]$.
a. Find a basis for the column space of A.
b. Find a basis for the null space of A.
c. What is the rank of A?
d. What is the nullity of A?
6. Suppose the matrix $A=\left[\begin{array}{cccc}a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ m & n & p & q\end{array}\right]$ has reduced row echelon form $\left[\begin{array}{llll}1 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$.
a. Find the determinant of A.
b. Find the rank of A.
c. Find the nullity of A.
d. Find a basis for the column space of A.
e. Find a basis for the row space of A.
f. Find a basis for the null space of A.
7. Let A be a 4×6 matrix whose nullspace is spanned by $\left[\begin{array}{l}3 \\ 1 \\ 0 \\ 1 \\ 2 \\ 1\end{array}\right]$ and $\left[\begin{array}{c}2 \\ -2 \\ 3 \\ -1 \\ -1 \\ 2\end{array}\right]$.
a. Find the rank of A.
b. Is $\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1\end{array}\right]$ a solution to $A x=0$?
c. How many solutions are there for $A x=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]$?
8. Find a basis for the set of 3×2 matrices of the form $\left[\begin{array}{cc}a+2 c & b+c \\ a+b+3 c & a+b+3 c \\ 2 a+b+5 c & 3 a+6 c\end{array}\right]$ where a, b and c are any real numbers.
9. Find all real numbers a such that the vectors $\left[\begin{array}{c}-8 \\ a \\ 0\end{array}\right]$ and $\left[\begin{array}{l}2 \\ a \\ 5\end{array}\right]$ are orthogonal.
10. Let \mathbf{u} and \mathbf{v} be two vectors satisfying $\langle\mathbf{u}, \mathbf{v}\rangle=0,\|\mathbf{u}\|=2$, and $\|\mathbf{v}\|=3$. What is $\|2 \mathbf{u}-3 \mathbf{v}\|$?
11. Find the orthonormal set of vectors obtained by applying the GramSchmidt process to the three vectors $\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}5 \\ 1 \\ 0\end{array}\right]$.
12. Let W be the subspace of R_{3} spanned by $[1,2,3],[2, k, 3]$ and $[4,5, k]$. Find all values of k such that the dimension of W^{\perp} is 0 .
13. Let W be the subspace of R_{4} spanned by $\left[\begin{array}{llll}1 & 2 & 3 & 4\end{array}\right],\left[\begin{array}{llll}5 & 6 & 7 & 8\end{array}\right],\left[\begin{array}{llll}9 & 10 & 11 & 12\end{array}\right],\left[\begin{array}{llll}0 & 0 & 0 & 1\end{array}\right]$. Find a basis for the orthogonal complement of W.
14. Let W be the subspace of R_{4} spanned by the orthonormal set $\{[1 / \sqrt{2}, 0,0,1 / \sqrt{2}],[0,0,1,0],[-1 / \sqrt{2}, 0,0,1 / \sqrt{2}]\}$. Suppose $[2,1,0,4]=\mathbf{w}+\mathbf{v}$ with \mathbf{w} in W and \mathbf{v} in W^{\perp}. Find \mathbf{w} and \mathbf{v}.
15. Let W be the subspace of R_{3} with basis $\{[1,1,0],[0,1,1]\}$. Find the vector in W closest to $[2,4,0]$
16. Find the least squares solution to

$$
\left[\begin{array}{ll}
2 & 1 \\
1 & 2 \\
3 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] .
$$

17. Find the least squares line $y=a x+b$ for the data table below

$$
\begin{array}{c|c|c|c|c}
\mathrm{x} & -3 & 0 & 1 & 2 \\
\hline \mathrm{y} & 1 & 0 & 1 & 2
\end{array}
$$

