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Preface

These notes are supposed to be self-content. The main focus is currently the
classical analysis of popular algorithms for large-scale optimization. Typos
are inevitable. Use with caution.
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Notation

Unless specified otherwise:

1. x denotes a single variable, and x denotes a column vector.

2. xT is the transpose of x, thus a row vector.

3. f(x) is a scalar-valued multi-variable function.

4. ∇f(x) is a column vector.

5. For a matrix A ∈ Rn×n, ∥A∥ is the spectral norm; σi(A) and λi(A)
denote its singular values and eigenvalues respectively.

6. ∀ means for any, and ∃ means there exists.

7. Ck functions: the partial derivatives up to k-th order exist and are
continuous.

8. ⟨a, b⟩ denotes the dot product of two vectors.
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1

Taylor’s Theorems, Lipschitz
continuity and convexity

In this chapter, we first introduce some tools that will be needed for ana-
lyzing the simplest gradient descent method.

1.1 Multi-variable Taylor’s Theorems
We first start with the well-known mean value theorem in calculus without
proof:

Theorem 1.1. If a function f(x) is continuous on an interval [a, b] and
f ′(x) exists, then there exists c ∈ (a, b) s.t.

f(b)− f(a) = f ′(c)(b− a).

Remark 1.1. The geometrical meaning of this theorem is simply saying
that there is a point c where the tangent line (with slope f ′(c)) is parallel to
the secant line passing two end points at a and b (with slope f(b)−f(a)

b−a ).

Theorem 1.2 (Single variable Taylor’s Theorem). Suppose that I ⊂ R is
an open interval and that f(x) is a function of class C2 (f ′′(x) exists and
is continuous) on I. For any a ∈ I and h such that a + h ∈ I, there exists
some θ ∈ (0, 1) such that

f(a+ h) = f(a) + hf ′(a) + h2

2 f
′′(a+ θh).

Proof. Consider

g1(x) = f(x)− f(a)− (x− a)f ′(a)

then g1(a) = g′
1(a) = 0. Define

g(x) = g1(x)−
(
x− a
h

)2
g1(a+ h),
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then g(a) = g′(a) = g(a + h) = 0. By Mean Value Theorem on g(x), we
have

g(a) = g(a+ h) = 0 =⇒ g′(a+ αh) = 0, α ∈ (0, 1).
Use Mean Value Theorem again on g′(x):

g′(a) = g′(a+ αh) = 0 =⇒ g′′(a+ θh) = 0, θ ∈ (0, α).
Since g′′(x) = f ′′(x) − 2

h2 g1(a + h), g′′(a + θh) = 0 implies that we get
the explicit remainder for the second order Taylor expansion as g1(a+ h) =
h2

2 f
′′(a+ θh).

Theorem 1.3 (Multivariate First Order Taylor’s Theorem). Suppose that
S ⊂ Rn is an open set and that f : S −→ R is a function of class C1 on
S (first order partial derivatives exist and are continuous). Then for any
a ∈ S and h ∈ Rn such that the line segment connecting a and a + h is
contained in S, there exists θ ∈ (0, 1) such that

f(a + h) = f(a) +∇f(a + θh) · h.
Proof. Define g(t) = f(a + th). By Mean Value Theorem on g(t), there is
θ ∈ (0, 1) s.t.

g(1) = g(0) + g′(θ).
By chain rule, we have g′(θ) = ∇f(a+θh)·h, which completes the proof.

Theorem 1.4 (Multivariate Quadratic Taylor’s Theorem). Suppose that
S ⊂ Rn is an open set and that f : S −→ R is a function of class C2 on
S (second order partial derivatives exist and are continuous). Then for any
a ∈ S and h ∈ Rn such that the line segment connecting a and a + h is
contained in S, there exists θ ∈ (0, 1) such that

f(a + h) = f(a) +∇f(a) · h + 1
2hT∇2f(a + θh)h.

Proof. Define g(t) = f(a + th). By Theorem 1.2 on g(t), there is θ ∈ (0, 1)
s.t.

g(1) = g(0) + g′(0) + 1
2g

′′(θ).

By chain rule, we have g′(0) = ∇f(a) · h and g′′(θ) = hT∇2f(a + θh)h,
which completes the proof.

We need to be careful that these Taylor’s Theorems may not hold for a
vector-valued function. For instance, consider a smooth scalar-valued func-
tion

f : Rn −→ R,
its gradient is a vector-valued function

∇f : Rn −→ Rn.

One might presume a formula like ∇f(a + h) = ∇f(a) + ∇2f(a + θh)h,
which could be wrong!
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1.2 Convex functions

1.2.1 Definition

Definition 1.1. Consider a function f : Rn → R and any x,y ∈ Rn and
any λ ∈ (0, 1).

1. f(x) is called convex if f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y).

2. f(x) is called strictly convex if f(λx+(1−λ)y) < λf(x)+(1−λ)f(y).

3. f(x) is called strongly convex with a constant parameter µ > 0 if

f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y)− µ

2λ(1− λ)∥x− y∥2.

4. f(x) is (strictly or strongly) concave if −f(x) is (strictly or strongly)
convex.

5. East to verify that f(x) is strongly convex with µ > 0 if and only if
f(x)− µ

2∥x∥
2 is convex. Strong convexity with µ = 0 is convexity.

6. It is easy to see that

strong convexity⇒ strict convexity⇒ convexity.

A convex function does not need to be differentiable, e.g., the single
variable absolute value function f(x) = |x| is convex.

Example 1.1. Any norm of a matrix X ∈ Rn×n is convex due to the
triangle inequality of norms:

∥λX + (1− λ)Y ∥ ≤ ∥λX∥+ ∥(1− λ)Y ∥ = λ∥X∥+ (1− λ)∥Y ∥.

See Appendix A.5 for examples of matrix norms.

It is straightforward to verify the following from the definition:

Theorem 1.5. Let f(x) and g(x) be two convex functions. Then

1. f(x) + g(x) is convex;

2. If g(x) is strictly convex, so is f(x) + g(x);

3. If g(x) is strongly convex, so is f(x) + g(x).

If a single variable function is continuously differentiable, then being
convex simply means that the derivative f ′(x) is increasing, i.e., [f ′(y) −
f ′(x)](y−x) ≥ 0. If twice continuously differentiable, then convexity simply
means f ′′(x) ≥ 0, and strong convexity means f ′′(x) ≥ µ > 0. The following
subsections provide justifications.
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1.2.2 Equivalent conditions

Geometrically convexity also means that function graph is always above any
tangent line: f(x) ≥ f(y) + f ′(y)(x− y).

Lemma 1.1. Assume f : Rn → R is continuously differentiable. Then the
following are equivalent definitions of f(x) being convex:

1. f(x) ≥ f(y) + ⟨∇f(y),x− y⟩, ∀x,y.

2. ⟨∇f(y)−∇f(x),y− x⟩ ≥ 0, ∀x,y.

If replacing ≥ with > above, then we get equivalent definitions for strict
convexity. For strong convexity with parameter µ > 0, the following are
equivalent definitions:

1. f(x) ≥ f(y) + ⟨∇f(y),x− y⟩+ µ
2∥x− y∥2, ∀x,y.

2. ⟨∇f(y)−∇f(x),y− x⟩ ≥ µ∥x− y∥2, ∀x,y.

Proof. We only prove the equivalency for strong convexity, since convexity
is simply strong convexity with µ = 0 and discussion for strict convexity is
similar to convexity.

First, assume f(x) is strongly convex, then

f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y)− µ

2λ(1− λ)∥x− y∥2

⇒ f(λx + (1− λ)y)− f(y)
λ

≤ f(x)− f(y)− µ

2 (1− λ)∥x− y∥2.

Let g(t) = f(tx + (1− t)y) then g(0) = f(y) and

g′(t) = ∇f(tx + (1− t)y)T (x− y) = ⟨∇f(tx + (1− t)y),x− y⟩.

By the Mean Value Theorem on g(t), there exists s ∈ (0, t) such that g′(s) =
g(t)−g(0)

t , thus

f(tx + (1− t)y)− f(y)
t

= g(t)− g(0)
t

= g′(s) = ⟨∇f(sx +(1−s)y),x−y⟩,

and

⟨∇f(sx + (1− s)y),x− y⟩ ≤ f(x)− f(y)− µ

2 (1− t)∥x− y∥2.

Let t→ 0 then s→ 0, we get f(x) ≥ f(y) + ⟨∇f(y),x− y⟩+ µ
2∥x− y∥2.

Second, assume

f(x) ≥ f(y) + ⟨∇f(y),x− y⟩+ µ

2 ∥x− y∥2.
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Then combining with

f(y) ≥ f(x) + ⟨∇f(x),y− x⟩+ µ

2 ∥x− y∥2,

we get ⟨∇f(y)−∇f(x),y− x⟩ ≥ µ∥x− y∥2.

Third, assume ⟨∇f(y)−∇f(x),y−x⟩ ≥ µ∥x−y∥2. Let xt = tx+(1−t)y,
then

⟨∇f(xt)−∇f(y),xt − y⟩ ≥ µ∥xt − y∥2,

thus
⟨∇f(tx + (1− t)y)−∇f(y), t(x− y)⟩ ≥ µt2∥x− y∥2,

and

⟨∇f(tx + (1− t)y),x− y⟩ ≥ ⟨∇f(y),x− y⟩+ µt∥x− y∥2.

Consider g(t) = f(tx + (1− t)y), then∫ 1

0
g′(t)dt =

∫ 1

0
⟨∇f(tx+(1−t)y),x−y⟩dt ≥

∫ 1

0
(⟨∇f(y),x−y⟩+µt∥x−y∥2)dt

= ⟨∇f(y),x− y⟩+ µ

2 ∥x− y∥2.

So
f(x)− f(y) = g(1)− g(0) ≥ ⟨∇f(y),x− y⟩+ µ

2 ∥x− y∥2.

Finally, assume

f(x) ≥ f(y) + ⟨∇f(y),x− y⟩+ µ

2 ∥x− y∥2, ∀x,y.

Let xt = tx + (1− t)y, then we have

f(x) ≥ f(xt) + ⟨∇f(xt),x− xt⟩+ µ

2 ∥x− xt∥2,

f(y) ≥ f(xt) + ⟨∇f(xt),y− xt⟩+ µ

2 ∥y− xt∥2,

Combining the two inequalities with coefficients t and 1 − t, notice that
x− xt = (1− t)(x− y) and y− xt = (−t)(x− y),

f(tx + (1− t)y) ≤ tf(x) + (1− t)f(y)− µ

2 t(1− t)∥x− y∥2.

Lemma 1.2. Assume f : Rn → R is twice continuously differentiable (sec-
ond order partial derivatives exist and are continuous).
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1. f(x) is convex if and only if ∇2f(x) ≥ 0 (Hessian matrix is positive
semi-definite) for all x.

2. f(x) is strongly convex if and only if ∇2f(x) ≥ µI for all x.

3. f(x) is strictly convex if ∇2f(x) > 0 for all x. This is not necessary
even for single variable functions: f(x) = x4 is strictly convex but
f ′′(x) > 0 is not true at x = 0.

Proof. First, we shown assumptions on the Hessian are sufficient for con-
vexity, strict convexity and strong convexity. Apply Multivariate Quadratic
Taylor’s Theorem (Theorem 1.4), we get

f(x) = f(y)+∇f(y)T (x−y)+ 1
2(x−y)T∇2f [y+θ(x−y)](x−y), θ ∈ (0, 1).

Strong convexity is proven by Lemma 1.1 and the fact that

∇2f ≥ µI ⇒ 1
2(x− y)T∇2f [y + θ(x− y)](x− y) ≥ µ

2 ∥x− y∥2.

Convexity and strict convexity are similarly proven.
Second, assume f(x) is strongly convex. By Lemma 1.1, we have

∀t > 0, ∀p,x ∈ Rn, f(x + tp) ≥ f(x) + ⟨∇f(x), tp⟩+ µ

2 ∥tp∥
2.

With the Quadratic Taylor’s Theorem we get

∃θ ∈ (0, t), f(x + tp) = f(x) + t∇f(x)T p + 1
2 t

2pT∇2f [x + θp]p

thus
1
2 t

2pT∇2f [x + θp]p ≥ µ

2 ∥tp∥
2 ⇒ pT∇2f [x + θp]

∥p∥2 ≥ µ.

Let t→ 0, then θ → 0, we get

pT∇2f [x]p
∥p∥2 ≥ µ, ∀p ∈ Rn,p ̸= 0.

By the Courant-Fischer-Weyl min- max principle in Appendix A.1, we get
∇2f [x] ≥ µI. Repeat the same argument for µ = 0, we prove the Hessian
condition is sufficient for the convexity.

Problem 1.1. In gas dynamics, governing hydrodynamics equations are
defined by conservation of mass ρ, momentum m = (mx,my,mz) and total
energy E. The pressure is defined as p = (γ − 1)(E − 1

2
∥m∥2

ρ ) in equation of
state for for ideal gas where γ > 1 is a constant parameter, e.g., γ = 1.4 for
air. Regard p as a function of conservative variables ρ,mx,my,mz, E, verify
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that p(ρ,m, E) is a concave function for ρ > 0 thus satisfies the Jensen’s
inequity:

p

a1

 ρm
E

+ a2

 ρm
E


 ≤ a1p


 ρm
E


+a2p


 ρm
E


 , a1, a2 > 0, a1+a2 = 1.

Hint: show the Hessian matrix is negative definite. Start with an easier
problem by considering 1D case: p = (γ − 1)(E − 1

2
m2

ρ ) where m is scalar.

1.2.3 Jensen’s inequality

A convex function by definition satisfies the Jensen’s inequality:

∀x,y, f(a1x + a2y) ≤ a1f(x) + a2f(y), ∀a1, a2 ≥ 0, a1 + a2 = 1.

It is straightforward to extend it to n terms by induction, i.e., Jensen’s
inequality also implies

∀xi, f

(
n∑

i=1
aixi

)
≤

n∑
i=1

aif(xi), ∀ai ≥ 0,
n∑

i=1
ai = 1.

Theorem 1.6 (Jensen’s inequality in integral form). If a single variable
function ϕ : R −→ R is convex, and

∫ b
a g(x)dx exists, then

ϕ

(
1

b− a

∫ b

a
g(x)dx

)
≤ 1
b− a

∫ b

a
ϕ[g(x)]dx.

Proof. First of all, this result can be proven without assuming the differen-
tiability of the convex function. But for convenience, assume ϕ′(x) exists,
then Lemma 1.1 implies

ϕ(t) ≥ ϕ(t0) + ϕ′(t0)(t− t0). (1.1)

Plug in t0 = 1
b−a

∫ b
a g(x)dx and t = g(x) we get

ϕ[g(x)] ≥ ϕ
(

1
b− a

∫ b

a
g(x)dx

)
+ ϕ′(t0)

(
g(x)− 1

b− a

∫ b

a
g(x)dx

)
.

Integrate both sides for variable x, we get

1
b− a

∫ b

a
ϕ[g(x)]dx ≥ ϕ

(
1

b− a

∫ b

a
g(x)dx

)
.
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Remark 1.2. The proof above can be easily extended to a nondifferentiable
convex function which is bounded from below by a linear function, e.g., the
proof still holds if assuming there is a slope St0 for any t0 ∈ R such that

ϕ(t) ≥ ϕ(t0) + St0(t− t0).

For instance, ϕ(t) = |t| is not differentiable at t0 = 0, but we have

|t| ≥ |t0|+ St0(t− t0)

with St0 =
{

1, t0 ≥ 0
−1, t0 < 0

.

Recall that the spectral norm of a matrix X is a convex function due
to the triangle inequality. Next, we prove a Jensen’s inequality about the
spectral norm.

Lemma 1.3. Let g : R → Rn be a single variable vector-valued function,
which is integrable on [a, b]. Then∥∥∥∥∥

∫ b

a
g(x)dx

∥∥∥∥∥ ≤
∫ b

a
∥g(x)∥ dx.

Proof. Let v =
∫ b

a g(x)dx, then

∥v∥2 =
n∑

i=1
vi

∫ b

a
gi(x)dx =

∫ b

a

[
n∑

i=1
vigi(x)

]
dx =

∫ b

a
⟨v,g(x)⟩dx.

With Cauchy-Schwartz inequality ⟨v,g(x)⟩ ≤ ∥v∥∥g(x)∥, we get

∥v∥2 ≤
∫ b

a
∥v∥∥g(x)∥dx = ∥v∥

∫ b

a
∥g(x)∥dx⇒ ∥v∥

∫ b

a
∥g(x)∥dx.

Theorem 1.7 (Jensen’s inequality of the spectral norm). Let A(t) : R −→
Rn×n be a real symmetric matrix valued function. Assume it is integrable
on [0, 1]. Then ∥∥∥∥∫ 1

0
A(t)dt

∥∥∥∥ ≤ ∫ 1

0
∥A(t)∥dt.

Remark 1.3. The integral of a matrix-valued function A(t) is called the
Bochner integral (for functions mapping to any Banach space). And the
inequality above can be regarded as Jensen’s inequality applying to the spectral
norm, at least for Hermitian matrices, see [4, 1]
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Proof. For real symmetric matrices, the singular values are the absolute
value of eigenvalues. Let v be the unit eigenvector of the matrix

∫ 1
0 A(t)dt

for the extreme eigenvalue λ such that∫ 1

0
A(t)dtv = λv, |λ| =

∥∥∥∥∫ 1

0
A(t)dt

∥∥∥∥ .
Lemma 1.3 and ∥v∥ = 1 imply

∥λv∥ =
∥∥∥∥∫ 1

0
A(t)dtv

∥∥∥∥ ≤ ∫ 1

0
∥A(t)v∥dt ≤

∫ 1

0
∥A(t)∥∥v∥dt =

∫ 1

0
∥A(t)∥dt.

The left hand side is

∥λv∥ = |λ|∥v∥ = |λ| =
∥∥∥∥∫ 1

0
A(t)dt

∥∥∥∥ .

1.3 Lipschitz continuous functions

Definition 1.2. A function f : Rn → R is called Lipschitz continuous with
Lipschitz constant L if

∀x,y ∈ Rn, |f(x)− f(y)| ≤ L∥x− y∥.

We can easily verify that f(x) = |x| is Lipschitz continuous with L = 1.

Remark 1.4. For a continuously differentiable function f(x), by the Mean
Value Theomem, we have |f(x)−f(y)|

|x−y| = |f ′(x+ θ(y−x))| for some θ ∈ (0, 1).
Assume |f ′(x)| is bounded by L for any x, we obtain Lipschitz continuity.
Assume Lipschitz continuity, and take the limit y → x, we get |f ′(x)| ≤
L. Thus for a continuously differentible function, Lipschitz continuity is
equivalent to boundedness of first order derivative.

Example 1.2. Assume ∥∇f(x)∥ ≤ L,∀x, then f(x) is Lipschitz continuous
with Lipschitz constant L. Apply the Mean Value Theorem to g(t) = f(y +
t(x− y)), we get

|g(1)−g(0)| = |g′(θ)|, θ ∈ (0, 1)⇒ |f(x)−f(y)| = |⟨∇f(y+θ(x−y)),x−y⟩|.

With the Cauchy-Schwartz inequality for two vectors ⟨a,b⟩ ≤ ∥a∥∥b∥, we
get

|f(x)−f(y)| = |⟨∇f(y+θ(x−y)),x−y⟩| ≤ ∥∇f(y+θ(x−y))∥∥x−y∥ ≤ L∥x−y∥.
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Theorem 1.8. For a twice continuously differentiable function (second-
order derivatives exist and are continuous) f : Rn → R, if

∥∇2f(x)∥ ≤ L, ∀x,

where ∥∇2f(x)∥ denotes the spectral norm, then ∇f(x) is Lipschitz contin-
uous with Lipschitz constant L.

Example 1.3. Let f(x) = 1
2xTKx − xT b where b is a given vector and

−K is the discrete Laplacian matrix as in Appendix B. Then ∇2f = K and
we have ∥∇2f∥ < (n+ 1)2. See Appendix B.

Proof. By Fundamental Theorem of Calculus on a vector-valued single vari-
able function g(t) = ∇f(x + th), g(1)− g(0) =

∫ 1
0 g

′(t)dt gives

∇f(x + h)−∇f(x) =
∫ 1

0
∇2f(x + th)hdt.

The definition of spectral norm (See Appendix A.5) gives ∥Ax∥ ≤ ∥A∥∥x∥.
With Lemma 1.3, we have

∥∇f(x + h)−∇f(x)∥ =
∥∥∥∥∫ 1

0
∇2f(x + th)hdt

∥∥∥∥
≤
∫ 1

0

∥∥∥∇2f(x + th)h
∥∥∥ dt

≤
∫ 1

0

∥∥∥∇2f(x + th)
∥∥∥ ∥h∥dt

=
∫ 1

0

∥∥∥∇2f(x + th)
∥∥∥ dt∥h∥ = L∥h∥.

Finally, let h = y− x, we get the Lipschitz continuity.

Remark 1.5. The proof above can be also be done as the following by The-
orem 1.7:

∇f(x + h)−∇f(x) =
∫ 1

0
∇2f(x + th)hdt

=
(∫ 1

0
∇2f(x + th)dt

)
h.

thus

∥∇f(x + h)−∇f(x)∥ ≤
∥∥∥∥∫ 1

0
∇2f(x + th)dt

∥∥∥∥ ∥h∥
≤
∫ 1

0

∥∥∥∇2f(x + th)
∥∥∥ dt∥h∥

≤
∫ 1

0
Ldt∥h∥ = L∥h∥.



2

Unconstrained smooth
optimization algorithms

In this chapter, we consider the unconstrained smooth optimization, i.e.,
minimizing f(x) for x ∈ Rn.

2.1 Optimality conditions

Definition 2.1. For f : Rn −→ R, x∗ is a global minimizer if f(x∗) ≤
f(x),∀x ∈ S. x∗ is a local minimizer of f(x) if there is a ball B ⊆ Rn

centered at x∗ on which x∗ is the global minimizer of f(x) restricted on B.

We review the well-known optimality conditions.

Theorem 2.1 (First Order Necessary Conditions). For a C1 function (first
order derivatives exist and are continuous) f(x) : Rn −→ R, if x∗ is a local
minimizer, then ∇f(x∗) = 0.

Proof. Assume ∇f(x∗) ̸= 0. Let p = −∇f(x∗), then g(t) = pT∇f(x∗ + tp)
is a continuous function, thus

g(0) = −∥∇f(x∗)∥2 < 0⇒ ∃T > 0,∀t ∈ [0, T ], g(t) < 0.

For any fixed t ∈ (0, T ], by Theorem 1.3, there is θ ∈ (0, t) s.t.

f(x∗ + tp) = f(x∗) + tpT∇f(x∗ + θp) < f(x∗).

So along the line segment connecting x∗ and x∗ + tp for arbitrarily small t,
f(x∗) is not the smallest function value, which is a contradiction to the fact
that f(x∗) is a local minimizer.

Definition 2.2. x∗ is called a stationary point or a critical point of the
function f(x) if ∇f(x∗) = 0.

15
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Theorem 2.2 (Second Order Necessary Conditions). For a C2 function
(second order derivatives exist and are continuous) f(x) : Rn −→ R, if x∗

is a local minimizer, then ∇f(x∗) = 0 and ∇2f(x∗) ≥ 0 (Hessian matrix is
positive semi-definite).

Proof. Assume ∇2f(x∗) is not positive semi-definite, then there exists p ∈
Rn s.t. pT∇2f(x∗)p < 0. The continuity of the function g(t) = pT∇2f(x∗+
tp)p implies that

∃T > 0, ∀t ∈ [0, T ],pT∇2f(x∗ + tp)p < 0.

For any fixed t ∈ (0, T ], by Theorem 1.4, there is θ ∈ (0, t) s.t.

f(x∗ + tp) = f(x∗) + tpT∇f(x∗) + 1
2 t

2pT∇2f(x∗ + θp)p < f(x∗),

where we have used Theorem 2.1. So along the line segment connecting x∗

and x∗ + tp for arbitrarily small t, f(x∗) is not the smallest function value,
which is a contradiction to the fact that f(x∗) is a local minimizer.

Theorem 2.3 (Second Order Sufficient Conditions). For a C2 function
(second order derivatives exist and are continuous) f(x) : Rn −→ R, if
∇f(x∗) = 0 and ∇2f(x∗) > 0 (Hessian matrix is positive definite), then x∗

is a strict local minimizer.

Proof. First of all, for the real symmetric Hessian matrix ∇2f(x), positive
definiteness means that all eigenvalues are positive.

Second, eigenvalues are continuous functions of matrix entries because
polynomial roots are continuous functions of coefficients, thus the smallest
eigenvalue of ∇2f(x) is a continuous function of x. Thus, ∇2f(x∗) > 0
implies that there is an open ball centered at x∗ with radius r > 0:

B = {x ∈ Rn : ∥x− x∗∥ < r}

such that ∇2f(x) > 0, ∀x ∈ B.
For any y ∈ B, we have y = x∗ + p where p ∈ Rn with ∥p∥ < r. By

Theorem 1.4, there is θ ∈ (0, t) s.t.

f(x∗ + p) = f(x∗) + pT∇f(x∗) + 1
2pT∇2f(x∗ + θp)p > f(x∗),

which is due to the positive definiteness of ∇2f(x∗ +θp) (because x∗ +θp ∈
B). It implies x∗ is a strict local minimizer on the ball B.

Theorem 2.4. Assume f(x) : Rn −→ R is convex.

1. Any local minimizer is also a global minimizer.
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2. If f(x) is also continuously differentiable (the same as C1 functions),
then x∗ is a global minimizer if and only if ∇f(x∗) = 0.

Remark 2.1. A convex function may not have any minimizer at all, e.g.,
f(x) = x.

Proof. Let x∗ be a local minimizer. For any y, there exists T > 0 s.t.

∀t ∈ (0, T ], f(x∗ + t(y− x∗)) ≥ f(x∗),

because x∗ is a local minimizer. The convexity implies

f(x∗ + t(y− x∗)) = f((1− t)fx∗ + ty) ≤ (1− t)f(x∗) + tf(y)

thus we get f(x∗) ≤ f(y).
Next, assume x∗ is a global minimizer thus also a local one, then Theorem

2.1 implies ∇f(x∗) = 0. If assuming ∇f(x∗) = 0, then Lemma 1.1 implies

f(x) ≥ f(x∗) + ⟨∇f(x∗),x− x∗⟩ ≥ f(x∗).

Theorem 2.5. Assume f(x) : Rn −→ R is strongly convex and also con-
tinuously differentiable (the same as C1 functions). Then f(x) has a unique
global minimizer x∗, which is the only critical point of the function.

Proof. By Theorem 2.4, we only need to show f(x) has a global minimum
and the minimizer is unique.

By Theorem 1.1, we have

f(x) ≥ f(y) + ⟨∇f(y),x− y⟩+ µ

2 ∥x− y∥2, ∀x,y.

Plug in y = 0, we get

f(x) ≥ f(0) + ⟨∇f(0),x⟩+ µ

2 ∥x∥
2,

which implies f(x) → +∞ as ∥x∥ → ∞. Thus for any fixed number M ,
there is R > 0 s.t.,

f(x) > M, ∀x satisfying ∥x∥ > R.

In particular, consider the R > 0 for M = f(0), and the close ball

B = {x ∈ Rn : ∥x∥ ≤ R}.

The closed ball B is a compact set thus f(x) attains its minimum on B, see
Appendix C. Let x∗ be one minimizer of f(x) on B, then x∗ is the global
minimizer because f(x∗) ≤ f(0) = M.

Let x∗,y∗ be two global minimizers, then

f(x∗) ≥ f(y∗)+⟨∇f(y∗),x∗−y∗⟩+µ

2 ∥x
∗−y∗∥2 ⇒ µ

2 ∥x
∗−y∗∥2 ≤ 0⇒ x∗ = y∗,

where we have used ∇f(y∗) = 0 and f(x∗) = f(y∗).
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Similar proof also gives

Theorem 2.6. Assume f(x) : Rn −→ R is strictly convex and also con-
tinuously differentiable. If f(x) has a global minimizer x∗, then it is unique
and also the only critical point.

Remark 2.2. Strict convexity is not enough to ensure the existence of a
minimizer. For instance, f(x) = ex is strictly convex.

2.2 Gradient descent

The gradient descent method with a constant step size η > 0 is the most
popular and also the simplest algorithm for minimizing f(x):

xk+1 = xk − η∇f(xk), η > 0. (2.1)

In this section, we need to assume the gradient∇f(x) is Lipschitz contin-
uous, which however does not necessarily imply f(x) is Lipschitz continuous.
For example, f(x) = x2 is not Lipschitz continuous because f ′(x) = 2x is
not a bounded function (see Remark 1.4), but f ′(2x) = 2x is Lipschitz
continuous because its derivative is a constant.

2.2.1 Stable step sizes

Lemma 2.1 (Descent Lemma). Assume ∇f(x) is Lipschitz-continuous with
Lipschitz constant L, then

f(y) ≤ f(x) + ⟨∇f(x),y− x⟩+ L

2 ∥x− y∥2.

Remark 2.3. Notice that there is no assumption on the existence of Hes-
sian. But if assuming ∥∇2f∥ ≤ L, then by Theorem 1.4,

f(y) ≤ f(x) + ⟨∇f(x),y− x⟩+ 1
2(x− y)T∇2f(z)(x− y)

which implies

f(y) ≤ f(x) + ⟨∇f(x),y− x⟩+ L

2 ∥x− y∥2,

f(y) ≥ f(x) + ⟨∇f(x),y− x⟩ − L

2 ∥x− y∥2, .

where the spectral ∥∇2f∥ is the largest singular value thus also the largest
magnitude of eigenvalue for a real symmetric matrix, and we have used the
Courant-Fischer-Weyl min-max inequality, see Appendix A.1.
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Remark 2.4. Notice that there is no assumption on convexity. But if as-
suming strong convexity of f(x), by Theorem 1.1,

f(y) ≥ f(x) + ⟨∇f(x),y− x⟩+ µ

2 ∥x− y∥2.

Proof. Let g(t) = f(x + t(y − x)). The fundamental theorem of calculus
gives

g(1)− g(0) =
∫ 1

0
g′(t)dt,

thus
f(y)− f(x) =

∫ 1

0
⟨∇f(x + t(y− x)),y− x⟩dt.

Let z(t) = x + t(y − x). Then by subtracting ⟨∇f(x),y − x⟩ from both
sides, we get

|f(y)− f(x)− ⟨∇f(x),y− x⟩| =
∣∣∣∣∫ 1

0
⟨∇f(z(t))− f(x),y− x⟩dt

∣∣∣∣
≤
∫ 1

0
|⟨∇f(z(t))− f(x),y− x⟩| dt

(Cauchy-Schwart inequality) ≤
∫ 1

0
∥∇f(z(t))− f(x)∥∥y− x∥dt

=
∫ 1

0
∥∇f(x + t(y− x))− f(x)∥dt∥y− x∥

≤
(∫ 1

0
Lt∥y− x∥dt

)
∥y− x∥ = L

2 ∥y− x∥2.

Remark 2.5. The proof also implies

f(y) ≥ f(x) + ⟨∇f(x),y− x⟩ − L

2 ∥x− y∥2.

Lemma 2.2 (Sufficient Decrease Lemma). Assume ∇f(x) is Lipschitz-
continuous with Lipschitz constant L, then the gradient descent method (2.1)
satisfies

f(x)− f(x− η∇f(x)) ≥ η(1− L

2 η)∥∇f(x)∥2, ∀x, ∀η > 0.

Proof. Lemma 2.1 gives

f(x− η∇f(x)) ≤ f(x) + ⟨∇f(x),−η∇f(x)⟩+ L

2 ∥η∇f(x)∥2.
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Lemma 2.2 implies that the gradient descent method (2.1) decreases the
cost function, i.e., f(xk+1) < f(xk) for any η ∈ (0, L

2 ).
In practice, it is difficult to obtain the exact value of L. But any small

enough positive step size η can make the iteration (2.1) stable in the sense
of not blowing up, e.g., f(xk+1) < f(xk).

Consider an ordinary differential equation (ODE) system:

d

dt
u(t) = F (u(t)), u(0) = u0,

where u =
[
u1(t) u2(t) · · · un(t)

]T
. The simplest forward Euler scheme

for this ODE system is

uk+1 = uk + ∆tF (uk). (2.2)

If setting F = −∇f and ∆t = η, then the gradient descent method (2.1) can
be regarded as the forward Euler scheme above. However, usually (2.2) is
used for approximating the time-dependent solution u(t), whereas the (2.1)
is used for finding the minimizer ( the steady state ODE solution F (u) = 0).

Nonetheless, since (2.2) is exactly the same as (2.1), the stability re-
quirement from numerically solving ODE should give the same result as
η ≤ L

2 .

Example 2.1. Consider solving the initial boundary value problem for the
one-dimensional heat equation

ut(x, t) = uxx(x, t), x ∈ (0, 1)
u(x, 0) = u0(x), x ∈ (0, 1)
u(x, 0) = u(x, 1) = 0

.

With the second order discrete Laplacian in Appendix B, a semi-discrete
scheme defined on a uniform grid xi = i∆x with ∆x = 1

n+1 can be written
as an ordinary differential equation (ODE) system:

d

dt
u(t) = Ku(t), u(0) = u0,

where u =
[
u1(t) u2(t) · · · un(t)

]T
and ui(t) approximates u(xi, t). The

simplest forward Euler scheme for this ODE system is

uk+1 = uk + ∆tKuk (2.3)

The linear ODE solver stability requirement ∥uk+1∥ ≤ ∥uk∥ gives ∆t ≤
1
2∆x2 by using eigenvalues of K given in Appendix B.

If regarding (2.3) as the gradient descent method, then f(u) = 1
2uTKu,

and ∥∇2f∥ = ∥K∥ < 1
∆x2 as in Appendix B. This implies the gradient ∇f

is Lipschitz-continuous with L = 1
∆x2 , thus η < 2

L gives η < 1
2∆x2.
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2.2.2 Convergence for Lipschitz continuous ∇f

Theorem 2.7. Assume ∇f(x) is Lipschitz-continuous with Lipschitz con-
stant L, and assume f(x) has a global minimizer: f(x) ≥ f(x∗), ∀x. Then
for the gradient descent method (2.1) with a constant step size η ∈ (0, 2

L),
the following holds:

1.
f(xk+1)− f(xk) ≤ −η(1− L

2 η)∥∇f(xk)∥2 ≤ 0. (2.4)

2. The sequence {f(xk)} converges.

3. lim
k→∞

∥∇f(xk)∥ = 0.

4.

max
0≤k≤n

∥∇f(xk)∥ ≤ 1√
n+ 1

√
1

η(1− L
2 η)

[f(x0)− f(x∗)].

Remark 2.6. Notice that none of the conclusions can imply the sequence
{xk} converges to a critical point. As a matter of fact, {xk} may not have
a limit. See an example below.

Proof. First of all, by plugging y = xk − η∇f(xk) into Lemma 2.2, we get

f(xk+1)− f(xk) ≤ −η(1− L

2 η)∥∇f(xk)∥2.

Second, since η ∈ (0, 2
L), we have f(xk+1) < f(xk) thus {f(xk)} is a

decreasing sequence. Moreover, f(xk) has a lower bound f(xk) ≥ f(x∗).
Thus, the sequence {f(xk)} is bounded from below and decreasing, thus it
has a limit (a bounded monotone sequence has a limit, see Appendix C).

Let ω = η(1− L
2 η), then ω > 0. By summing up (2.4), we get

N∑
k=0
∥∇f(k)∥2 ≤ 1

ω
[f(x0)− f(xN+1)] ≤ 1

ω

[
f(x0)− lim

k→∞
f(xk)

]
,

because {−f(xk)} is an increasing sequence.

So
N∑

k=0
∥∇f(k)∥2 is an increasing and bounded above sequence, thus it

converges, which implies the convergence of the infinite series

∞∑
k=0
∥∇f(k)∥2 = lim

N→∞

N∑
k=0
∥∇f(k)∥2.

The convergence of the series further implies (see Appendix C.4)

lim
k→∞

∥∇f(k)∥2 = 0⇒ lim
k→∞

∥∇f(k)∥ = 0.
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Let gn = max
0≤k≤n

∥∇f(xk)∥, then

(n+ 1)g2
n ≤

n∑
k=0
∥∇f(k)∥2 ≤ 1

ω
[f(x0)− f(xn+1)] ≤ 1

ω
[f(x0)− f(x∗)] ,

Next, in order to understand the convergence of {xk}, we discuss suf-
ficient conditions for its convergence. For example, assume

∞∑
k=0
∥∇f(xk)∥

converges, then we can prove the convergence of {xk} as the following.
Define yn =

n∑
k=0

(xk+1 − xk) = η
n∑

k=0
∇f(xk), then for any m ≥ n

∥yn − ym∥ = η

∥∥∥∥∥∥
m∑

k=n+1
∇f(xk)

∥∥∥∥∥∥
≤ η

m∑
k=n+1

∥∇f(xk)∥

We need to use the notion of Cauchy sequence (see Appendix C.3). The con-
vergence of

∞∑
k=0
∥∇f(xk)∥ implies an =

n∑
k=0
∥∇f(xk)∥ is a Cauchy sequence,

thus
∀ε > 0,∃N, ∀m,n ≥ N, |am − an| < ε.

So yn is also a Cauchy sequence, because

∀ε > 0,∃N, ∀m,n ≥ N, ∥yn − ym∥ ≤ η|am − an| < ηε.

Therefore, yn has a limit, which further implies the convergence of xk. How-
ever, the assumption of convergence of

∞∑
k=0
∥∇f(xk)∥ is in general

not true. By the proof of the theorem above, we only have the convergence
∞∑

k=0
∥∇f(xk)∥2, which does not implies the convergence of

∞∑
k=0
∥∇f(xk)∥. A

quick counter-example would be ∥∇f(xk)∥ = 1
k (see Appendix C on why

∞∑
k=0

1
k2 converges but

∞∑
k=0

1
k diverges).

Example 2.2. We construct an example for which the gradient descent
method produces almost ∥∇f(xk)∥ = 1

k . Consider the following function

f(x) =
{
ex, x ≤ 0
g(x), x > 0

,

where we pick a function g(x) such that
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1. f(x) is very smooth;

2. |f ′′(x)| ≤ 1 for any x, which implies f ′(x) is L-continuous with L = 1;

3. f(x) has a global minimizer x∗.

For instance, see the plotted function f(x), which can satisfy all the
assumptions of Theorem 2.7, with Lipschitz constant L = 1 for the derivative
function f ′(x).

So a stable step size can be chosen as any positive η < 2. We consider
the following gradient descent iteration with η = 1:{

xk+1 = xk − f ′(xk)
x0 = 0

.

Notice that all iterates xk stays non-positive, it can also be written as

xk+1 = xk − exk , x0 = 0.

One can easily implement this on MATLAB to verify that numerically we
have |f ′(xk)| ≈ 1

k for this iteration.

1 % A MATLAB code of an example for Gradient Descent
2 % producing non−convergent x_k, which goes to infinity.
3 % The cost fuction f(x)=e^x if x≤0.
4 % Must use zero initial guess and step size eta=1.
5 x=0;
6 eta=1;
7 figure;
8 for k=0:10000000
9 x=x−eta*exp(x); % simple Gradient Descent

10 if (mod(k,10000)==0 | k≤100)
11 % plot the iterates (x_k, f(x_k)) the first 100
12 % then every 10,000 iterations
13

14 semilogy(x,exp(x),'o');
15 xlabel('x_k')
16 ylabel('log[f(x_k)]')
17 hold all



24 2. UNCONSTRAINED SMOOTH OPTIMIZATION ALGORITHMS

18 drawnow
19

20 end
21 % print values of [|f'(x_k)|−1/k](1/k): an indicator
22 % of how close |f'(x_k)| is to 1/k
23 fprintf('%d %d \n', k, abs(exp(x)−1/k)*k)
24 end

More importantly, Theorem 2.7 implies that exk = |f ′(xk)| → 0 thus
xk → −∞. Even though we can informally write it as xk → −∞, the
sequence {xk} diverges because it is not Cauchy (see Appendix C.3), e.g., it
does not have any cluster point.

So in the example above, we can see that Lipschitz-continuity of ∇f may
not ensure the convergence of the gradient descent to even a critical point!

2.2.3 Convergence for convex functions

Theorem 2.8. Assume ∇f(x) is Lipschitz-continuous with Lipschitz con-
stant L and f(x) : Rn −→ R is convex. Then for any x,y:

1. f(y) ≥ f(x) + ⟨∇f(x),y− x⟩+ 1
2L∥∇f(x)−∇f(y)∥2

2. ∥∇f(x)−∇f(y)∥2 ≤ L⟨∇f(x)−∇f(y),x− y⟩.

Remark 2.7. Without convexity, by the proof of Lemma 2.1, we only have

f(y) ≤ f(x) + ⟨∇f(x),y− x⟩+ L

2 ∥x− y∥2,

f(y) ≥ f(x) + ⟨∇f(x),y− x⟩ − L

2 ∥x− y∥2.

With strong convexity, we can have

f(y) ≥ f(x) + ⟨∇f(x),y− x⟩+ µ

2 ∥x− y∥2.

Proof. Define ϕ(x) = f(x) − ⟨∇f(x0),x⟩. Then ϕ(x) also has Lipschitz
continuous gradient:

∥∇ϕ(x)−∇ϕ(y)∥ = ∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥.

Apply Lemma 2.1 to ϕ(x):

ϕ(x) ≤ ϕ(y) + ⟨∇ϕ(y),x− y⟩+ L

2 ∥x− y∥2

(|⟨a,b⟩| ≤ ∥a∥∥b∥) ≤ ϕ(y) + ∥∇ϕ(y)∥∥x− y∥+ L

2 ∥x− y∥2
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By Theorem 1.5, ϕ(x) is also convex because −⟨∇f(x0),x⟩ is convex. More-
over, ∇ϕ(x0) = 0, thus by Theorem 2.4, x0 is a global minimizer of ∇ϕ(x).
So we get

ϕ(x0) = min
x
ϕ(x) ≤ min

x

[
ϕ(y) + ∥∇ϕ(y)∥∥x− y∥+ L

2 ∥x− y∥2
]

≤ min
r≥0

[
ϕ(y) + ∥∇ϕ(y)∥r + L

2 r
2
]

= ϕ(y)− 1
2L∥∇ϕ(y)∥2.

Thus ϕ(x0) ≤ ϕ(y)− 1
2L∥∇ϕ(y)∥2 implies

f(x0)− ⟨∇f(x0),x0⟩ ≤ f(y)− ⟨∇f(x0),y⟩ − 1
2L∥∇f(y)−∇f(x0)∥2.

Since x0,y are arbitrary, we can also write is as

f(x)− ⟨∇f(x),x⟩ ≤ f(y)− ⟨∇f(x),y⟩ − 1
2L∥∇f(y)−∇f(x)∥2,

which implies

f(x) + ⟨∇f(x),y− x⟩+ 1
2L∥∇f(y)−∇f(x)∥2 ≤ f(y).

Switching x and y, we get

f(y) + ⟨∇f(y),x− y⟩+ 1
2L∥∇f(y)−∇f(x)∥2 ≤ f(x),

and adding two we get

∥∇f(x)−∇f(y)∥2 ≤ L⟨∇f(x)−∇f(y),x− y⟩.

Theorem 2.9. Assume f(x) : Rn −→ R is convex and ∇f(x) is Lipschitz-
continuous with Lipschitz constant L, and assume f(x) has a global mini-
mizer: f(x) ≥ f(x∗),∀x. Then for the gradient descent method (2.1) with
a constant step size η ∈ (0, 2

L), in addition to conclusions in Theorem 2.7,
the following holds:

f(xk)− f(x∗) ≤ 1
1

f(x0)−f(x∗) + kω 1
∥x0−x∗∥2

<
1
kω
∥x0 − x∗∥2,

where ω = η( 2
L − η).

Remark 2.8. We obtain convergence rate O( 1
k ), assuming only convexity of

the cost function and Lipschitz-continuity of its gradient. We cannot expect
convergence of xk to x∗ because a convex function may have multiple global
minimizers, e.g., f(x) ≡ 0.
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Proof. Define rk = ∥xk − x∗∥. With ∇f(x∗) = 0, we get

r2
k+1 = ∥xk+1 − x∗∥2

= ∥xk − η∥∇f(xk)− x∗∥2

= ∥xk − x∗∥2 + ∥η∇f(xk)∥2 + 2⟨xk − x∗,−η∇f(xk)⟩
= ∥xk − x∗∥2 + η2∥∇f(xk)∥2 − 2η⟨xk − x∗,∇f(xk)−∇f(x∗)⟩

≤ ∥xk − x∗∥2 + η2∥∇f(xk)∥2 − 2
L
η∥∇f(xk)−∇f(x∗)∥2

= r2
k + (η2 − 2

L
η)∥∇f(xk)∥2,

where we have used Theorem 2.8 in the last inequality.
Define Rk = f(xk)− f(x∗). By Lemma 1.1, we have

f(x) ≥ f(xk) + ⟨∇f(xk),x− xk⟩, ∀x,

thus
f(x∗) ≥ f(xk) + ⟨∇f(xk),x∗ − xk⟩.

With Cauchy-Schwartz inequality,

f(xk)− f(x∗) ≤ −⟨∇f(xk),x∗ − xk⟩ ≤ ∥∇f(xk)∥∥x∗ − xk∥,

which can be written as
Rk ≤ rk∥∇f(xk)∥

thus
−∥∇f(xk)∥ ≤ Rk

rk
.

Recall Theorem 2.7 gives

f(xk+1) ≤ f(xk)− ω∥∇f(xk)∥2,

thus
f(xk+1)− f(x∗) ≤ f(xk)− f(x∗)− ω∥∇f(xk)∥2,

0 ≤ Rk+1 ≤ Rk − ω∥∇f(xk)∥2 ≤ Rk − ω
R2

k

r2
k

.

Multiplying both sides by 1
RkRk+1

, we get

1
Rk
≤ 1
Rk+1

− ω 1
r2

k

Rk

Rk+1

1
Rk+1

≥ 1
Rk

+ ω
1
r2

k

Rk

Rk+1
≥ 1
Rk

+ ω
1
r2

k

.

Summing it up for all k = 0, 1, · · · , N , we get

1
RN+1

≥ 1
R0

+ ω
N∑

k=0

1
r2

k

≥ 1
R0

+ ω(N + 1) 1
r2

0
.
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Example 2.3. Consider minimizing f(x) = 1
4x

4. Its derivative f ′(x) = x3

is NOT Lipschitz continuous because f ′′(x) = 3x2 is not bounded. Theorem
2.9 in this section can still apply, because f ′(x) = x3 is Lipschitz continuous
with L = 3a2 on the interval x ∈ [−a, a], and the gradient descent with
x0 = a and sufficiently small step size satisfies xk ∈ [−a, a].

2.2.4 Convergence for strongly convex functions

Now we consider a strongly convex function f(x) : Rn −→ R with parameter
µ > 0, and assume ∇f(x) is Lipschitz continuous with Lipschitz constant
L. Then Lemma 1.1 gives

⟨∇f(x)−∇f(y),x− y⟩ ≥ µ∥x− y∥2,

and Lipschitz continuity with Cauchy Schwartz inequality gives

⟨∇f(x)−∇f(y),x− y⟩ ≤ ∥∇f(x)−∇f(y)∥∥x− y∥ ≤ L∥x− y∥2.

Thus µ ≤ L and the Qf = L
µ can be called the condition number of the

function f(x).

Example 2.4. Consider a quadratic function f(x) = 1
2xTKx − xT b with

the negative discrete Laplacian matrix K, then ∇2f(x) = K > 0. Let σ1
and σn be the largest and the smallest singular values of K, respectively.
Then by Appendix B, we have

σnI ≤ K ≤ σ1I,

which implies that the Lipschitz constant L for ∇f (see Theorem 1.8) is σ1.
By Lemma 1.2, the strong convexity parameter µ = σn. The number σ1

σn
is

also called the condition number of the matrix K. So the condition number
of a strongly convex function with Lipschitz continuous gradient, is also the
condition number of the Hessian matrix, if the Hessian matrix is a constant
matrix.

Theorem 2.10. For a function f(x) : Rn −→ R with continuous gradi-
ent ∇f(x), the assumptions that f(x) is convex and ∇f(x) is Lipschitz-
continuous with Lipschitz constant L are equivalent to the following for any
x,y:

0 ≤ f(y)− f(x)− ⟨∇f(x),y− x⟩ ≤ L

2 ∥x− y∥2. (2.5)

f(x) + ⟨∇f(x),y− x⟩+ 1
2L∥∇f(x)−∇f(y)∥2 ≤ f(y). (2.6)

1
L
∥∇f(x)−∇f(y)∥2 ≤ ⟨∇f(x)−∇f(y),x− y⟩. (2.7)

0 ≤ ⟨∇f(x)−∇f(y),x− y⟩ ≤ L∥x− y∥2. (2.8)
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Proof. The proof is done by the following steps:

1. convexity of f(x) and Lipschitz continuity of ∇f(x) imply (2.5);

2. (2.5) implies (2.6);

3. (2.6) implies (2.7);

4. (2.7) implies convexity of f(x) and Lipschitz continuity of ∇f(x);

5. (2.8) is equivalent to (2.5).

First of all, assume f(x) is convex and ∇f(x) is Lipschitz-continuous
with Lipschitz constant L, then (2.5) holds because of the first order condi-
tion of convexity (Lemma 1.1) and descent lemma (Lemma 2.1).

Second, assume (2.5) holds, then (2.5) implies ϕ(x) = f(x)−⟨∇f(x0),x⟩
satisfies

0 ≤ ϕ(x)− ϕ(y)− ⟨∇ϕ(y),x− y⟩

and

ϕ(x) ≤ ϕ(y) + ⟨∇ϕ(y),x− y⟩+ L

2 ∥x− y∥2

(|⟨a,b⟩| ≤ ∥a∥∥b∥) ≤ ϕ(y) + ∥∇ϕ(y)∥∥x− y∥+ L

2 ∥x− y∥2.

By Lemma 1.1, ϕ(x) is also convex. Moreover,∇ϕ(x0) = 0, thus by Theorem
2.4, x0 is a global minimizer of ∇ϕ(x). So we get

ϕ(x0) = min
x
ϕ(x) ≤ ϕ(y) + ∥∇ϕ(y)∥∥x− y∥+ L

2 ∥x− y∥2

thus

ϕ(x0) ≤ min
x

[
ϕ(y) + ∥∇ϕ(y)∥∥x− y∥+ L

2 ∥x− y∥2
]

≤ min
r≥0

[
ϕ(y) + ∥∇ϕ(y)∥r + L

2 r
2
]

= ϕ(y)− 1
2L∥∇ϕ(y)∥2.

Thus ϕ(x0) ≤ ϕ(y)− 1
2L∥∇ϕ(y)∥2 implies

f(x0)− ⟨∇f(x0),x0⟩ ≤ f(y)− ⟨∇f(x0),y⟩ − 1
2L∥∇f(y)−∇f(x0)∥2.

Since x0,y are arbitrary, we can also write is as

f(x)− ⟨∇f(x),x⟩ ≤ f(y)− ⟨∇f(x),y⟩ − 1
2L∥∇f(y)−∇f(x)∥2,
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which implies

f(x) + ⟨∇f(x),y− x⟩+ 1
2L∥∇f(y)−∇f(x)∥2 ≤ f(y).

Switching x and y, we get

f(y) + ⟨∇f(y),x− y⟩+ 1
2L∥∇f(y)−∇f(x)∥2 ≤ f(x),

and adding two we get (2.7).
Third, assume (2.7) holds, then ⟨∇f(x)−∇f(y),x− y⟩ ≥ 0 implies the

convexity by Lemma 1.1, and Cauchy-Schwartz inequality gives Lipschitz
continuity by

1
L
∥∇f(x)−∇f(y)∥2 ≤ ⟨∇f(x)−∇f(y),x−y⟩ ≤ ∥∇f(x)−∇f(y)∥∥x−y∥.

Finally, we want to show (2.8) is equivalent to (2.5). Assume (2.5) holds,
we get (2.8) by adding the following two:

0 ≤ f(y)− f(x)− ⟨∇f(x),y− x⟩ ≤ L

2 ∥x− y∥2,

0 ≤ f(x)− f(y)− ⟨∇f(y),x− y⟩ ≤ L

2 ∥y− x∥2.

Assume (2.8) holds, we get (2.5) by Fundamental Theorem of Calculus on
g(t) = f(x + t(y− x)):

f(y)− f(x) =
∫ 1

0
⟨∇f(x + t(y− x)),y− x⟩dt

⇒ f(y)− f(x)− ⟨∇f(x),y− x⟩ =
∫ 1

0
⟨∇f(x + t(y− x))−∇f(x),y− x⟩dt

=
∫ 1

0

1
t
⟨∇f(x + t(y− x))−∇f(x), t(y− x)⟩dt

(2.8) ≤
∫ 1

0
Lt∥y− x∥2dt = L

2 ∥y− x∥2.

Theorem 2.11. Assume ∇f(x) is Lipschitz-continuous with Lipschitz con-
stant L and f(x) : Rn −→ R is strongly convex with µ > 0. Then for any
x,y:

⟨∇f(x)−∇f(y),x− y⟩ ≥ µL

µ+ L
∥x− y∥2 + 1

µ+ L
∥∇f(x)−∇f(y)∥2.

Remark 2.9. Plug in µ = 0 and compare it with Theorem 2.8.
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Proof. We prove it by discussing two cases.
First, if µ = L, then we need to show

⟨∇f(x)−∇f(y),x− y⟩ ≥ L

2 ∥x− y∥2 + 1
2L∥∇f(x)−∇f(y)∥2.

Theorem 2.8 gives

1
2L∥∇f(x)−∇f(y)∥2 ≤ 1

2⟨∇f(x)−∇f(y),x− y⟩

and Lemma 1.1 gives

⟨∇f(x)−∇f(y),x−y⟩ ≥ µ∥x−y∥2 ⇒ 1
2⟨∇f(x)−∇f(y),x−y⟩ ≥ L

2 ∥x−y∥2.

Thus adding two gives the desired inequality.
Second, if µ ̸= L, define ϕ(x) = f(x)− µ

2∥x∥
2, then∇ϕ(x) = ∇f(x)−µx.

So ϕ(x) is a convex function, thus

0 ≤ ⟨∇ϕ(y)−∇ϕ(x),y−x⟩ = ⟨∇f(y)−∇f(x),y−x⟩−µ∥y−x∥2 ≤ (L−µ)∥y−x∥2.

By (2.8), ∇ϕ is Lipschitz continuous with the Lipschitz constant L− µ.
Thus by using (2.7) on ϕ(x), we get

⟨∇ϕ(y)−∇ϕ(x),y− x⟩ ≥ 1
L− µ

∥∇ϕ(y)−∇ϕ(x)∥2

⟨∇f(y)−∇f(x),y− x⟩ − µ∥x− y∥2 ≥ 1
L− µ

∥∇f(y)−∇f(x)− µ(y− x)∥2

⟨∇f(y)−∇f(x),y− x⟩ − µ∥x− y∥2 ≥ 1
L− µ

∥∇f(y)−∇f(x)∥2

+ µ2

L− µ
∥y− x∥2+ −2µ

L− µ
⟨∇f(y)−∇f(x),y− x⟩

L+ µ

L− µ
⟨∇f(y)−∇f(x),y− x⟩ ≥ 1

L− µ
∥∇f(y)−∇f(x)∥2 + Lµ

L− µ
∥y− x∥2.

Theorem 2.12 (Global linear rate of gradient descent). Assume f(x) :
Rn −→ R is strongly convex with µ > 0 and ∇f(x) is Lipschitz-continuous
with Lipschitz constant L. Then f(x) has a unique global minimizer: f(x) ≥
f(x∗), ∀x. The gradient descent method (2.1) with a constant step size η ∈
(0, 2

L+µ ] satisfies

∥xk+1 − x∗∥2 ≤
(

1− 2ηµL
L+ µ

)k

∥x0 − x∗∥2.
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In particular, if η = 2
L+µ , then we have

∥xk+1 − x∗∥ ≤
( L

µ − 1
L
µ + 1

)k

∥x0 − x∗∥,

f(xk+1)− f(x∗) ≤ L

2

( L
µ − 1
L
µ + 1

)2k

∥x0 − x∗∥.

Remark 2.10. For any η ∈ (0, 2
L+µ ], the convergence rate for the error

∥xk − x∗∥ has a linear convergence rate O(ck) with c =
√

1− 2ηµL
L+µ which

is a decreasing function of η. The best rate is achieved at η = 2
L+µ with

c =
L
µ

−1
L
µ

+1 which is an increasing function of the condition number L
µ . This

implies that the best convergence rate will be worse for a larger condition
number.

Proof. Define rk = ∥xk − x∗∥. With ∇f(x∗) = 0 and Theorem 2.11, we get

r2
k+1 = ∥xk+1 − x∗∥2

= ∥xk − η∥∇f(xk)− x∗∥2

= ∥xk − x∗∥2 + ∥η∇f(xk)∥2 + 2⟨xk − x∗,−η∇f(xk)⟩
= ∥xk − x∗∥2 + η2∥∇f(xk)∥2 − 2η⟨xk − x∗,∇f(xk)−∇f(x∗)⟩

≤ ∥xk − x∗∥2 + η2∥∇f(xk)∥2 − 2η µ

µ+ L
∥xk+1 − x∗∥2

− 2η 1
L+ µ

∥∇f(xk)−∇f(x∗)∥2

=
(

1− 2η µ

µ+ L

)
r2

k + (η2 − 2
L+ µ

η)∥∇f(xk)∥2.

Thus for any η ∈ (0, 2
L+µ),

r2
k+1 ≤

(
1− 2η µ

µ+ L

)
r2

k.

With descent lemma (Lemma 2.1), we get

f(xk)−f(x∗) = ⟨∇f(x∗),x−x∗⟩+
L

2 ∥xk−x∗∥2 = L

2 r
2
k ≤

L

2

(
1− 2η µ

µ+ L

)2k

r2
0.
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2.2.5 Steepest descent

We can consider a variable step size ηk > 0 in the gradient descent method

xk+1 = xk − ηk∇f(xk) (2.9a)

where ηk can be taken as the best step size in the following sense

ηk = arg min
α>0

f(xk − α∇f(xk)). (2.9b)

Such an optimal step size is also called full relaxation. The method (2.9)
is often called the steepest descent, which is rarely used in practice unless
(2.9b) can be easily computed. Nonetheless, analyzing its convergence rate
is a starting point for understanding practical algorithms.

Theorem 2.13. For a twice continuously differentiable function f : Rn →
R, assume µI ≤ ∇2f(x) ≤ LI where L > µ > 0 are constants (eigenvalues
of Hessian have uniform positive bounds), thus f is strongly convex has a
unique minimizer x∗. Then the steepest descent method (2.9) satisfies

f(xk+1)− f(x∗) ≤
(

1− µ

L

)k

[f(x0)− f(x∗)].

Remark 2.11. The rate (1 − µ
L) is not sharp and in general we have(

L−µ
L+µ

)2
< 1 − µ

L , e.g., the provable fastest rate in Theorem 2.12 for a con-
stant step size η is better than the provable rate of steepest descent.

Proof. For convenience, let hk = ∇f(xk). By Multivariate Quadratic Tay-
lor’s Theorem (Theorem 1.4), for any α > 0, there exists θ ∈ (0, 1) and
zk = xk + θ(xk − αhk) such that

f(xk − αhk) = f(xk)− αhT
k∇f(xk) + 1

2α
2hT

k∇2f(zk)hk.

The assumption ∇2f(x) ≤ LI, ∀x and the Courant-Fischer-Weyl min-max
principle (Appendix A.1) implies

f(xk − αhk) ≤ f(xk)− αhT
k∇f(xk) + 1

2Lα
2∥hk∥2.

The minimum of the left hand side with respect to α is f(xk+1). The
right hand side is a quadratic function of α. The inequality above still holds
if minimizing both sides with respect to α:

f(xk+1) = min
α
f(xk − αhk) ≤ f(xk)− αhT

k∇f(xk) + 1
2Lα

2∥hk∥2,

f(xk+1) ≤ min
α

[f(xk)−αhT
k∇f(xk)+ 1

2Lα
2∥hk∥2] = f(xk)− 1

2L∥∇f(xk)∥2,
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thus
f(xk+1)− f(x∗) ≤ f(xk)− f(x∗)− 1

2L∥∇f(xk)∥2. (2.10)

Similarly, by Multivariate Quadratic Taylor’s Theorem, and lower bound
assumption µI ≤ ∇2f(x) with the Courant-Fischer-Weyl min-max principle
(Appendix A.1), we get

f(x) ≥ f(xk) +∇f(xk)T (x− xk) + µ

2 ∥x− xk∥2.

Minimizing first the right hand side then the left hand side w.r.t. x, we get

f(x) ≥ f(xk)− 1
2µ∥∇f(xk)∥2,

f(x∗) ≥ f(xk)− 1
2µ∥∇f(xk)∥2,

thus −∥∇f(xk)∥2 ≤ 2µ[f(x∗) − f(xk)]. Plugging it into (2.10), we get the
convergence rate.

2.2.6 Quadratic functions

The better convergence rate
(

L−µ
L+µ

)2
can be proven for the steep descent

method (2.9) for a quadratic function

f(x) = 1
2xTAx− xT b,

where A is a positive definite matrix with eigenvalues

0 < λ1 ≤ λ2 · · · ≤ λn.

Since ∇2f(x) ≡ A ≥ µI, f(x) is strongly convex thus has a unique
minimizer x∗ satisfying ∇f(x∗) = 0⇔ Ax∗ = b. Define

E(x) = 1
2(x− x∗)TA(x− x∗).

Notice that

Ax∗ = b⇒ 1
2xT

∗ Ax∗ = 1
2xT

∗ b⇒ f(x∗) = −1
2xT

∗ Ax∗,

thus
E(x) = f(x) + 1

2xT
∗ Ax∗ = f(x)− f(x∗).

For convenience, let hk = ∇f(xk) = Axk − b, then

f(xk − ηhk) = 1
2(xk − ηhk)TA(xk − ηhk)− (xk − ηhk)T b.
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The quadratic function of η above is minimized at ηk = hT
k hk

hT
k

Ahk
. Thus (2.9)

becomes
xk+1 = xk −

hT
k hk

hT
kAhk

hk.

So
E(xk+1) = 1

2(xk − x∗ − ηkhk)TA(xk − x∗ − ηkhk)

= E(xk)− ηkhT
kA(xk − x∗) + 1

2η
2
khT

kAhk,

⇒ E(xk)− E(xk+1)
E(xk) =

ηkhT
kA(xk − x∗)− 1

2η
2
khT

kAhk
1
2(xk − x∗)TA(xk − x∗)

.

Notice that A(xk − x∗) = Axk − b = hk and ηk = hT
k hk

hT
k

Ahk
, we get

E(xk)− E(xk+1)
E(xk) = 2ηkhT

k h− η2
khT

kAhk

hTA−1h = ∥h∥4

(hTAh)(hTA−1h) .

We have proved that

E(xk+1) =
(

1− ∥h∥4

(hTAh)(hTA−1h)

)
E(xk),

or equivalently

f(xk+1)− f(x∗) =
(

1− ∥h∥4

(hTAh)(hTA−1h)

)
[f(xk)− f(x∗)].

By the min-max principle (Theorem A.1), we can only get

hTAh
∥h∥2 ≤ λn,

hTA−1h
∥h∥2 ≤ 1

λ1
⇒ 1− ∥h∥4

(hTAh)(hTA−1h) ≤ 1− λ1
λn
,

which is the same rate as in Theorem 2.13. In order to get a better rate, we
can use the Kantorovich inequality in Theorem A.2:

1− ∥h∥4

(hTAh)(hTA−1h) ≤ 1− 4λ1λn

(λ1 + λn)2 = (λn/λ1 − 1)2

(λn/λ1 + 1)2 .

2.3 Line search method
Now we consider a more general method for minimizing f(x):

xk+1 = xk + ηkpk,

where ηk > 0 is a step size and pk ∈ Rn is a search direction. Examples of
the search direction include:
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1. Gradient method pk = −∇f(xk).

2. Newton’s method pk = −[∇2f(xk)]−1∇f(xk).

3. Quasi Newton’s method pk = −Bk∇f(xk), whereBk ≈ [∇2f(xk)]−1.

4. Conjugate Gradient Method pk = −(xk − xk−1 + βk∇f(xk)), where
βk is designed such that pk and xk − xk−1 are conjugate (orthogonal
in some sense).

The search direction pk is a descent direction if ⟨pk,−∇f(xk)⟩ > 0, i.e.,
pk pointing to the negative gradient direction.

2.3.1 The step size

To find a proper step size ηk, it is natural to ask for a sufficient decrease in
the cost function:

f(xk + ηkpk) ≤ f(xk) + c1ηk⟨∇f(xk),pk⟩, c1 ∈ (0, 1). (2.11a)

The constant c1 is usually taken as a small number such as 10−4, and (2.11a)
is called Amijo condition. To avoid unacceptably small step sizes, the cur-
vature condition requires

⟨∇f(xk + ηkpk),pk⟩ ≥ c2⟨∇f(xk),pk⟩, c2 ∈ (c1, 1). (2.11b)

Define ϕ(η) = f(xk + ηpk), then ϕ′(η) = ⟨∇f(xk + ηpk),pk⟩, thus (2.11b)
simply requires ϕ′(ηk) ≥ c2ϕ

′(0), where ϕ′(0) = ⟨∇f(xk),pk⟩ < 0 for a
descent direction pk. Usually, c2 is taken as 0.9 for Newton and quasi-
Newton methods, and 0.1 in conjugate gradient methods.

The two conditions in (2.11) with 0 < c1 < c2 < 1 are called the Wolfe
conditions.

The following are called the strong Wolfe conditions.

f(xk + ηpk) ≤ f(xk) + c1η⟨∇f(xk),pk⟩, c1 ∈ (0, 1). (2.12a)

|⟨∇f(xk + ηkpk),pk⟩| ≤ c2|⟨∇f(xk),pk⟩|, c2 ∈ (c1, 1). (2.12b)

Lemma 2.3. Assume f : Rn −→ R is continuously differentiable and has
a lower bound, and pk is a descent direction. Then for any 0 < c1 < c2 < 1,
there are intervals of η satisfying the Wolfe conditions (2.11) and the strong
Wolfe conditions (2.12).

Proof. The line ℓ(η) = f(xk) + ηc1⟨∇f(xk),pk⟩ has a negative slope with
0 < c1 < 1. So the line must intersect with the graph of ϕ(η) = f(xk + ηpk)
at least once for η > 0, because 0 > ℓ′(0) > ϕ′(0), ℓ(0) = ϕ(0) and ϕ(η) is
bounded below for all η.
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Let η1 > 0 be the smallest such intersection point. Then
f(xk + η1pk) = f(xk) + η1c1⟨∇f(xk),pk⟩,

and (2.11a) holds for any η ∈ (0, η1) because η1 > 0 is the smallest intersec-
tion point.

By the Mean Value Theorem on ϕ(η) = f(xk +ηpk), there is η2 ∈ (0, η1)
such that

f(xk + η1pk)− f(xk) = ⟨∇f(xk + η2pk), η1pk⟩.

By the two equations above, we have
⟨∇f(xk + η2pk),pk⟩ = c1⟨∇f(xk),pk⟩ > c2⟨∇f(xk),pk⟩.

So η2 satisfies (2.11b). Since ∇f is continuous, there is a small interval
containing η2, in which η satisfies (2.11b). Notice that the left hand side of
the inequality above is negative, thus the strong Wolfe conditions also hold
at η2 and in a small interval containing η2.

In practice, the search of a proper step size satisfying the Wolfe condi-
tions can be achieved by backtracking, e.g., use η ← cη with c ∈ (0, 1) until
the step size satisfies (2.11).
Example 2.5. For the gradient descent method pk = −∇f(xk) with a fixed
step size η < 2

L , where L is the Lipschitz constant for the gradient ∇f(x),
the descent lemma (Lemma 2.1) and sufficient descrease lemma (Lemma
2.2) gives

f(xk)− f(xk+1) ≥ η(1− L

2 η)∥∇f(x)∥2,
i.e.,

f(xk + ηpk) ≤ f(xk) + η(1− L

2 η)⟨∇f(xk),pk⟩.

So η < 2
L satisfies (2.11a) with c1 = 1− L

2 η.
If we further assume f(x) is strongly convex with µ > 0. Then Lemma

1.1 gives

⟨∇f(xk+1)−∇f(xk),xk+1 − xk⟩ ≥ µ∥xk+1 − xk∥2,

thus
⟨∇f(xk + ηpk)−∇f(xk),−η∇f(xk)⟩ ≥ µ∥η∇f(xk)∥2.

So we get

⟨∇f(xk + ηpk),−∇f(xk)⟩ ≥ (µη − 1)∥∇f(xk)∥2,
which can be written as

⟨∇f(xk + ηkpk),pk⟩ ≥ c2⟨∇f(xk),pk⟩

with c2 = 1 − µη. By requiring c1 < c2 < 1. So if assuming L > 2µ, which
is usually satisfied in practice, then any stable step size η < 2

L satisfies the
Wolfe condition (2.11).
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2.3.2 The convergence

We consider the angle θk between the negative gradient and the search
direction:

cos θk = ⟨−∇f(xk),pk⟩
∥∇f(xk)∥∥pk∥

.

Theorem 2.14 (Zoutendijk’s Theorem). Assume f : Rn −→ R is contin-
uously differentiable with Lipschitz continuous gradient ∇f(x), and f(x) is
bounded from below. Consider a line search method xk+1 = xk +ηkpk, where
pk is a descent direction and ηk satisfies the Wolfe conditions (2.11). Then

∞∑
k=1

cos2 θk∥∇f(xk)∥2 < +∞.

Proof. By (2.11b), we have

⟨∇f(xk+1)−∇f(xk),pk⟩ ≥ (c2 − 1)⟨∇f(xk),pk⟩.

The Lipschitz continuity and Cauchy Schwartz inequality give

⟨∇f(xk+1)−∇f(xk),pk⟩ ≤ ∥∇f(xk+1)−∇f(xk)∥∥pk∥ ≤ L∥ηkpk∥∥pk∥.

Combining the two inequalities, we get

ηk ≥
c2 − 1
L

⟨∇f(xk),pk⟩
∥pk∥2

.

Plugging it into (2.11a), we get

f(xk + ηkpk) ≤ f(xk)− c1
1− c2
L

|⟨∇f(xk),pk⟩|2

∥pk∥2
,

which can be written as

f(xk+1) ≤ f(xk)− ω cos2 θk∥∇f(xk)∥2, ω = c1
1− c2
L

.

Summing it up, since f(x) ≥ C, we get

N∑
k=0

cos2 θk∥∇f(xk)∥2 ≤ 1
ω

[f(x0)− f(xN+1)] ≤ 1
ω

[f(x0)− C].

So aN =
N∑

k=0
cos2 θk∥∇f(xk)∥2 is a bounded and increasing sequence, thus

the infinite series converges.

The convergence of the series in Zoutendijk’s Theorem gives cos2 θk∥∇f(xk)∥ →
0. Thus if cos2 θk ≥ δ > 0, ∀k, then ∥∇f(xk)∥ → 0.
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Example 2.6. Consider Newton’s method with pk = −[∇2f(xk)]−1∇f(xk).
Assume the Hessian has some uniform positive bounds for eigenvalues (i.e.,
the Hessian is positive definite with a uniformly bounded condition num-
ber:):

µI ≤ ∇2f(x) ≤ LI, L ≥ µ > 0,∀x,

then we have (eigenvalues of A are reciprocals of eigenvalues of A−1)

1
L
I ≤ [∇2f(x)]−1 ≤ 1

µ
I, L ≥ µ > 0,∀x.

For convenience, let Bk = [∇2f(x)]−1 and hk = ∇f(xk). Since Bk is
positive definite, its eigenvalues are also singular values. By the definition
of spectral norm, we get

∥pk∥ = ∥Bk∇f(xk)∥ ≤ ∥Bk∥∥∇f(xk)∥ ≤ 1
µ
∥∇f(xk)∥ = 1

µ
∥hk∥.

By the Courant-Fischer-Weyl min-max principle (Appendix A.1), we have

cos θk = ⟨−∇f(xk),pk⟩
∥∇f(xk)∥∥pk∥

= hT
kBkhk

∥hk∥∥pk∥
≥ µ hT

kBkhk

∥hk∥∥hk∥
≥ µ

L
= 1
L/µ

,

where L/µ = ∥Bk∥∥B−1
k ∥ is the condition number of the Hessian. With

Theorem 2.14, we get ∥∇f(xk)∥ → 0. Recall that a strongly convex function
has a unique critical point which is the global minimizer. So the Newton’s
method with a step size satisfying the Wolfe conditions (2.11) converges to
the unique minimizer x∗ for a strongly convex function f(x) if ∥∇2f(x)∥
has a uniform upper bound, see the problem below.

Problem 2.1. Recall that ∥∇f(xk)∥ → 0 may not even imply xk converges
to a critical point, see Example 2.2. Prove that ∥∇f(xk)∥ → 0 implies xk

converges to the global minimizer under the assumption

µI ≤ ∇2f(x) ≤ LI, L ≥ µ > 0,∀x.

2.4 Local convergence rate
So far we have only discussed the global convergence, e.g., the convergence
for arbitrary initial guess x0 in an iterative method. If the initial guess is
very close to a minimizer, we can discuss the local convergence.

We will make the following assumptions:

1. The Hessian exists and is Lipschitiz continuous with parameter M > 0:

∥∇2f(x)−∇2f(y)∥ ≤M∥x− y∥, ∀x,y,

where the left hand side is the matrix spectral norm.
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2. There exists a local minimum x∗, and the Hessian ∇2f(x∗) is posi-
tive definite:

µI ≤ ∇2f(x∗) ≤ LI, L ≥ µ > 0.

Notice that this does not imply the function is strongly convex.

2.4.1 Gradient descent

Consider the gradient descent method

xk+1 = xk − η∇f(xk).

By Fundamental Theorem of Calculus on the single variable vector-
valued function g(t) = ∇f(x∗ + t(xk − x∗)), we get

∇f(xk) = ∇f(x∗)−∇f(x∗) =
∫ 1

0
∇2f(x∗+t(xk−x∗))(xk−x∗)dt = G(xk−x∗),

where
Gk =

∫ 1

0
∇2f(x∗ + t(xk − x∗))dt.

Then

xk+1 − x∗ = xk − x∗ − ηGk(xk − x∗) = (I − ηGk)(xk − x∗)

⇒ ∥xk+1 − x∗∥ ≤ ∥I − ηGk∥∥xk − x∗∥.

Lemma 2.4. If ∇2f(x) is Lipschitiz continuous with parameter M > 0 and
∥x− y∥ = r, then

∇2f(x)−MrI ≤ ∇2f(y) ≤ ∇2f(x) +MrI.

Proof. Let H = ∇2f(y) − ∇2f(x). Since H is real symmetric, its singu-
lar values are absolute values of its eigenvalues, Lipschitiz continuity gives
∥H∥ ≤ M∥x − y∥ = Mr ⇒ |λi(H)| ≤ Mr, where λi(H) denotes the eigen-
value. So λi(H)−Mr ≤ 0 and Mr − λi(H) ≥ 0.

Theorem 2.15 (Local linear rate of gradient descent). Let f(x) satisfy
the assumptions in this section. Let x0 be close enough to a strict local
minimizer x∗:

r0 = ∥x0 − x∗∥ < r̄ = 2µ
M
.

Then the gradient descent method with a fixed step size 0 < η < 2
L+µ satisfies

∥xk+1 − x∗∥ ≤ ck∥xk − x∗∥,

where

ck = max{|1− η(µ− 1
2M∥xk − x∗∥)|, |1− η(L+ 1

2M∥xk − x∗∥)|} < 1.
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In particular, if η = 2
L+µ ,

∥xk+1 − x∗∥ ≤
r̄r0
r̄ − r0

(
1− 2µ

L+ 3µ

)k

∥x0 − x∗∥.

Remark 2.12. The numbers µ and L in this local convergence rate theorem
are eigenvalues bounds of the Hessian at only x∗, rather than uniform bounds
for the Hessian at all x.

Proof. Let rk = ∥xk − x∗∥, by the lemma above, we have

∇2f(x∗)− tMrkI ≤ ∇2f(x∗ + t(xk − x∗)) ≤ ∇2f(x∗) + tMrkI

thus
(µ− tMrk)I ≤ ∇2f(x∗ + t(xk − x∗)) ≤ (L+ tMrk)I.

Notice that the inequalities still hold after integration. For instance,

(µ−tMrk)I ≤ ∇2f(x∗+t(xk−x∗))⇔ ∇2f(x∗+t(xk−x∗))−(µ−tMrk)I ≥ 0,

and ∫ 1

0
[∇2f(x∗ + t(xk − x∗))− (µ− tMrk)I]dt ≥ 0

because

∀z, zT [∇2f(x∗ + t(xk − x∗))− (µ− tMrk)I]z ≥ 0

⇒ zT
∫ 1

0
[∇2f(x∗ + t(xk − x∗))− (µ− tMrk)I]dtz ≥ 0.

So after integration we get

(µ− 1
2Mrk)I ≤ Gk ≤ (L+ 1

2Mrk)I,

[1− η(L+ 1
2Mrk)]I ≤ I − ηGk ≤ [1− η(µ− 1

2Mrk)]I.

So
∥I − ηGk∥ ≤ max{|ak(η)|, |bk(η)|}

where

ak(η) = 1− η(µ− 1
2Mrk), bk(η) = 1− η(L+ 1

2Mrk).

Notice that ak(0) = 1 and a′
k(η) = −(µ − 1

2Mrk) < 0, if assuming
rk < 2µ

M . And bk(0) = 1 and b′
k(η) = −(L + 1

2Mrk) < 0. For small
enough η, ∥I − ηGk∥ < 1, which can ensure rk+1 < rk since ∥xk+1 − x∗∥ ≤
∥I − ηGk∥∥xk − x∗∥.
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In particular, under the assumption rk < r̄, it is straightforward to check
that

η <
2
µ
⇒ |ak(η)| < 1,

η ≤ 2
L+ µ

⇒ |bk(η)| < 1.

Now set η = 2
L+µ , then bk(η) < 0 and ak(η) > 0. In this case, with

η = 2
L+µ it is straightforward to check that

|ak(η)| = |bk(η)| = L− µ
L+ µ

+ η
1
2Mrk.

Therefore, rk+1 ≤ ∥I − ηGk∥rk gives

rk+1 ≤
L− µ
L+ µ

rk + M

L+ µ
r2

k.

Let ak = M
L+µrk and q = 2µ

L+µ < 1, then it is equivalent to

ak+1 ≤ (1−q)ak+a2
k = ak[1+(ak−q)] = ak

1− (ak − q)2

1− (ak − q)
≤ ak

1
1− (ak − q)

= ak

1 + q − ak
.

⇒ 1
ak+1

≥ 1 + q

a+ k
− 1⇒ q

ak+1
− 1 ≥ q(1 + q)

ak
− q − 1 = (1 + q)( q

ak
− 1).

So we get

q

ak+1
− 1 ≥ (1 + q)k( q

a0
− 1) = (1 + q)k( r̄

r0
− 1),

thus
ak ≤

qr0
r0 + (1 + q)k(r̄ − r0) ≤

qr0
r̄ − r0

1
(1 + q)k

.

2.4.2 Newton’s method

Newton’s method is the most well-known method to approximately solve a
nonlinear equation F (x) = 0 where F : Rn −→ Rn is a smooth function:

xk+1 = xk −∇F (xk)−1F (xk),

where ∇F is the Jacobian matrix.
The Babylonian method for finding square roots, especially the root of 2,

has been known since the ancient Babylon period around the 17th century
BC. It is preciously Newton’s method applying to the function F (x) = x2−2:

xk+1 = xk − F (xk)/F ′(xk) = xk − (x2
k − 2)/(2xk) = xk/2 + 1/xk.
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If x0 = 1, then x3 = 1.41421568627 and |x3 −
√

2| = 2.12E − 6.
When applying the Newton’s method to ∇f(x) = 0 for finding minimiz-

ers of f(x), we obtain the Newton’s method for finding critical points:

xk+1 = xk − [∇2f(xk)]−1∇f(xk).

Another way to derive the simplest Newton’s method is to consider a
quadratic function:

ϕ(x) = f(xk) + (x− xk)T∇f(xk) + 1
2(x− xk)T∇2f(xk)(x− xk).

Assume the Hessian is positive definite, define xk+1 as the minimizer of ϕ(x).
Then

0 = ∇ϕ(xk+1) = ∇f(xk) +∇2f(xk)(xk+1 − xk)

gives the Newton’s method.

Theorem 2.16 (Local quadratic rate of Newton’s method). Let f(x) satisfy
the assumptions in this section. Let x0 be close enough to a strict local
minimizer x∗:

r0 = ∥x0 − x∗∥ < r̄ = 2µ
3M .

Then rk = ∥xk − x∗∥ < r̄, and Newton’s method converges quadratically,

∥xk+1 − x∗∥ ≤
M∥xk − x∗∥2

2(µ−M∥xk − x∗∥)
≤ 3M

2µ ∥xk − x∗∥2.

Proof.

xk+1 − x∗ = xk − x∗ − [∇2f(xk)]−1[∇f(xk)−∇f(x∗)]

= xk − x∗ − [∇2f(xk)]−1
∫ 1

0
∇f2(x∗ + t(xk − x∗))(xk − x∗)dt

= [∇2f(xk)]−1Gk(xk − x∗)

where
Gk =

∫ 1

0
[∇2f(xk)−∇f2(x∗ + t(xk − x∗)]dt.

By Theorem 1.7 and Lipschitz continuity of the Hessian,

∥Gk∥ ≤
∫ 1

0
∥∇2f(xk)−∇f2(x∗ + t(xk − x∗)∥dt

≤
∫ 1

0
M(1− t)∥xk − x∗∥dt

= 1
2rkM.
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With Lemma 2.4, We also have

∇f2(xk) ≥ ∇f2(x∗)−MrkI ≥ (µ−Mrk)I.

So if rk <
µ
M , ∇f2(xk) > 0 and

∥[∇f2(xk)]−1∥ ≤ (µ−Mrk)−1.

Thus if rk <
2µ
3M , we get

rk+1 ≤ ∥[∇f2(xk)]−1∥∥Gk(xk−x∗)∥ ≤ ∥[∇f2(xk)]−1∥∥Gk∥rk ≤
Mr2

k

2(µ−Mrk) ≤ rk.

2.5 Accelerated gradient method
The accelerated gradient descent method is a very popular class of first order
methods for large scale minimization problems. The original accelerated
gradient method [3] proposed by Nesterov in 1983 takes the following form:


xk+1 = yk − ηk∇f(yk)
tk+1 = 1

2

(
1 +

√
4t2k + 1

)
yk+1 = xk+1 + tk−1

tk+1
(xk+1 − xk)

x0 = y0, t0 = 1.

For convenience, we can take ηk = 1
L where L is Lipschitz constant of the

gradient ∇f(x), and use a slightly different tk+1 = k+2
2 , then we have a

slightly different version of Nesterov’s accelerated gradient method:

{
xk+1 = yk − 1

L∇f(yk)
yk+1 = xk+1 + k−1

k+2(xk+1 − xk)
x0 = y0.

This method requires only one evaluation of the gradient per iteration,
yet a global O( 1

k2 ) convergence rate can be proven for a convex function
f(x) with a Lipschtitz continuous gradient. Recall that the gradient descent
method has a global O( 1

k ) convergence rate for the same function as proven
in Theorem 2.9.

However, the provable rate O( 1
k ) or O( 1

k2 ) usually represents the worst
case scenario of all iterates in an iterative algorithm. The worst case may
or may not happen in practice. Thus the accelerated gradient method is
not necessarily faster than the gradient descent method for a given convex
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functions f(x) with Lipschtitz continuous gradient, even though it is indeed
better in many applications.

Recall that we get the stable step size η ∈ (0, 2
L ] for the gradient descent

method by requiring cost function to decrease in each iteration f(xk+1) <
f(xk). But in the accelerated gradient method, there is no monotonicity
guarantee on the sequences {f(xk)} and {f(yk)}.

2.5.1 Convergence rate

To prove the convergence rate O( 1
k2 ) and also to see how the sequence tk

and step sizes ηk should be chosen, we consider the following method for
a convex function f(x) with Lipschitz continuous gradient (with Lipschitz
constant L):

xk+1 = yk − ηk∇f(yk)
yk+1 = xk+1 + tk−1

tk+1
(xk+1 − xk)

x0 = y0.

Apply the descent lemme (Lemma 2.1) to y = xk+1 and x = yk:

f(xk+1) ≤ f(yk) + ⟨∇f(yk),xk+1 − yk⟩+ L

2 ∥yk − xk+1∥2. (2.13)

The convexity implies

f(x) ≥ f(y) + ⟨x− y,∇f(y)⟩,

thus
f(xk) ≥ f(yk) + ⟨xk − yk,∇f(yk)⟩.

Subtracting two inequalities, we get

f(xk)− f(xk+1) ≥ −L2 ∥yk − xk+1∥2 + ⟨xk − xk+1,∇f(yk)⟩

= −L2 ∥yk − xk+1∥2 + ⟨xk − xk+1,
1
ηk

(yk − xk+1)⟩

= −L2 ∥yk − xk+1∥2 + ⟨xk − yk + yk − xk+1,
1
ηk

(yk − xk+1)⟩

= ( 1
ηk
− L

2 )∥yk − xk+1∥2 + 1
ηk
⟨yk − xk+1,xk − yk⟩.

Thus

ηk[f(xk)− f(xk+1)] ≥ (1− ηk
L

2 )∥yk − xk+1∥2 + ⟨yk − xk+1,xk − yk⟩.

Similarly, convexity implies

f(x∗) ≥ f(yk) + ⟨x∗ − yk,∇f(yk)⟩.
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Subtract it with (2.13), we get

f(x∗)− f(xk+1) ≥ −L2 ∥yk − xk+1∥2 + ⟨x∗ − xk+1,∇f(yk)⟩

= −L2 ∥yk − xk+1∥2 + ⟨x∗ − xk+1,
1
ηk

(yk − xk+1)⟩

= −L2 ∥yk − xk+1∥2 + ⟨x∗ − yk + yk − xk+1,
1
ηk

(yk − xk+1)⟩

= ( 1
ηk
− L

2 )∥yk − xk+1∥2 + 1
ηk
⟨yk − xk+1,x∗ − yk⟩.

Now assume ηk = 1
L , then we have

f(xk)− f(xk+1) ≥ L

2 ∥yk − xk+1∥2 + L⟨yk − xk+1,xk − yk⟩,

f(x∗)− f(xk+1) ≥ L

2 ∥yk − xk+1∥2 + L⟨yk − xk+1,x∗ − yk⟩.

Next, let Rk = f(xk) − f(x∗) where x∗ is a global minimizer. Then
multiplying the first inequality by tk − 1 and add it the second one, we get

(tk−1)Rk−tkRk+1 ≥
L

2 tk∥yk−xk+1∥2+L⟨yk−xk+1, (tk−1)xk−tkyk−x∗⟩.

Multiply it by tk:

tk(tk−1)Rk−t2kRk+1 ≥
L

2 ∥tk(yk−xk+1)∥2+L⟨tk(yk−xk+1), (tk−1)xk−tkyk−x∗⟩.
(2.14)

Assume we have
t2k+1 − tk+1 ≤ t2k,

then

t2k−1Rk−t2kRk+1 ≥
L

2 ∥tk(yk−xk+1)∥2+L⟨tk(yk−xk+1), (tk−1)xk−tkyk−x∗⟩.
(2.15)

For the right hand side dot product, let

a = tkyk, b = tkxk+1, c = (tk − 1)xk + x∗,

then the right hand side can be written as

L

2
(
∥a − b∥2 + 2⟨c− a,a − b⟩

)
= L

2
(
∥b− c∥2 − ∥a − c∥2.

)
It can be written as

t2k−1Rk−t2kRk+1 ≥
L

2
(
∥tkxk+1 − [(tk − 1)xk + x∗]∥2 − ∥tkyk − [(tk − 1)xk + x∗]∥2

)
.
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Let uk+1 = tkxk+1 − [(tk − 1)xk + x∗], then with

yk+1 = xk+1 + tk − 1
tk+1

(xk+1 − xk)⇒ tk+1xk+1 + (tk − 1)xk = tk+1yk+1,

we get

tkyk − [(tk − 1)xk + x∗] = tk−1xk − [(tk−1 − 1)xk−1 + x∗] = uk.

So
t2k−1Rk − t2kRk+1 ≥

L

2 (∥uk+1∥2 − ∥uk∥2)

thus
t2kRk+1 + L

2 ∥uk+1∥2 ≤ t2k−1Rk + L

2 ∥uk∥2,

which implies

t2kRk+1 ≤ t2kRk+1 + L

2 ∥uk+1∥2 ≤ t20R1 + L

2 ∥u1∥2,

and
Rk+1 ≤

1
t2k

[t20R1 + L

2 ∥u1∥2].

So in order to obtain O( 1
k2 ), we should use tk satisfying tk = O(k).

For instance, assume t2k − tk = t2k−1 with t0 = 1, then we can easily show
tk ≥ k+1

2 by induction.
All the discussions can be summarized as:

Theorem 2.17. Assume the function f(x) : Rn −→ R is convex with a
global minimizer x∗. Assume ∇f(x) is Lipschitz continuous with constant
L. Assume t2k − tk = t2k−1 with t0 = 1. Then the following accelerated
gradient method

xk+1 = yk − 1
L∇f(yk)

yk+1 = xk+1 + tk−1
tk+1

(xk+1 − xk)
x0 = y0,

satisfies

f(xk)− f(x∗) ≤ 4
k2

(
f(x1)− f(x∗) + L

2 ∥x1 − x∗∥2
)
.

Remark 2.13. Obviously the theorem still holds if we plug in tk = k+1
2 ,

then the algorithm is simplied to

{
xk+1 = yk − 1

L∇f(yk)
yk+1 = xk+1 + k−1

k+2(xk+1 − xk)
x0 = y0.
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To consider a variable step size, now assume ηk = 1
bk

1
L ≤

1
(a+ 1

2 )
1
L with

a > 0, then
ηk −

L

2 ≥ aL,
1
ηk

= bkL, bk ≥ a+ 1
2

we have

f(xk)− f(xk+1) ≥ aL∥yk − xk+1∥2 + bkL⟨yk − xk+1,xk − yk⟩,
f(x∗)− f(xk+1) ≥ aL∥yk − xk+1∥2 + bkL⟨yk − xk+1,x∗ − yk⟩.

Multiplying the first one by (tk−1) and add it to the second one, we get

(tk−1)Rk−tkRk+1 ≥ aLtk∥yk−xk+1∥2+bkL⟨yk−xk+1, (tk−1)xk−tkyk−x∗⟩.

Multiply it by tk:

tk(tk−1)Rk−t2kRk+1 ≥ aL∥tk(yk−xk+1)∥2+bkL⟨tk(yk−xk+1), (tk−1)xk−tkyk−x∗⟩.
(2.16)

Assume we have
t2k+1 − tk+1 ≤ t2k,

then

t2k−1Rk−t2kRk+1 ≥ aL∥tk(yk−xk+1)∥2+bkL⟨tk(yk−xk+1), (tk−1)xk−tkyk−x∗⟩.
(2.17)

For the right hand side dot product, let

a = tkyk, b = tkxk+1, c = (tk − 1)xk + x∗.

Assume bk ≤ 2a, which implies a ≥ 1
2 , then the right hand side can be

written as

t2k−1Rk − t2kRk+1 ≥
bkL

2

(2a
bk
∥a − b∥2 + 2⟨c− a,a − b⟩

)
≥ bkL

2
(
∥a − b∥2 + 2⟨c− a,a − b⟩

)
= bkL

2
(
∥b− c∥2 − ∥a − c∥2

)
≥

(a+ 1
2)L

2
(
∥b− c∥2 − ∥a − c∥2

)
It can be written as

t2k−1Rk − t2kRk+1 ≥
2a+ 1

4 L(∥uk+1∥2 − ∥uk∥2)

thus
t2kRk+1 + 2a+ 1

4 L∥uk+1∥2 ≤ t2k−1Rk + 2a+ 1
4 L∥uk∥2,
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which implies

t2kRk+1 ≤ t2kRk+1 + 2a+ 1
4 L∥uk+1∥2 ≤ t20R1 + 2a+ 1

4 L∥u1∥2,

and
Rk+1 ≤

1
t2k

[t20R1 + 2a+ 1
4 L∥u1∥2].

Theorem 2.18. Assume the function f(x) : Rn −→ R is convex with a
global minimizer x∗. Assume ∇f(x) is Lipschitz continuous with constant
L. Assume t2k − tk = t2k−1 with t0 = 1. Consider the following accelerated
gradient method

xk+1 = yk − ηk∇f(yk)
yk+1 = xk+1 + tk−1

tk+1
(xk+1 − xk)

x0 = y0.

If
1
2a

1
L
≤ ηk ≤

1
a+ 1

2

1
L
, a ≥ 1

2 , ∀k,

then

f(xk)− f(x∗) ≤ 4
k2

(
f(x1)− f(x∗) + 2a+ 1

4 L∥x1 − x∗∥2
)
.

Remark 2.14. Notice that we only have ηk ≤ 1
L . Even though it may

converge with a slightly larger ηk in practice, the accelerated gradient method
might blow up for a step size like η = 2

L , which is however a stable one for
the gradient descent method.
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Appendix A

Linear algebra

A.1 Eigenvalues and Courant-Fischer-Weyl min-
max principle

Notations and quick facts:

• AT denote the transpose. A∗ denote the conjugate transpose of A.

• A matrix A ∈ Cn×n is called Hermitian if A∗ = A. Any Hermitian
matrix A has real eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn with a complete set
of orthonormal eigenvectors.

• Any real symmetric matrix has real eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn

with a complete set of real orthonormal eigenvectors.

For a Hermitian matrix A, Rayleigh-Ritz quotient is defined as

RA(x) = x∗Ax

x∗x
, x ∈ Cn.

Let {vj ∈ Cn : j = 1, · · · , n} be orthonormal eigenvectors of A then they
form a basis. Thus any vector x can be expressed as x =

n∑
j=1

ajvj . Let V be

a matrix with columns as vj and a be a column vector with entries aj . Then
x = V a and x∗x = a∗V ∗V a = a∗a =

n∑
j=1
|aj |2. Let Λ be a diagonal matrix

with diagonal entries λj . We have Avj = λjvj thus Ax =
n∑

j=1
ajAvj =

n∑
j=1

ajλjvj = V Λa. Thus x∗Ax = a∗V ∗V Λa = a∗Λa =
n∑

j=1
λj |aj |2. So we get

λn

n∑
j=1
|aj |2 ≤

n∑
j=1

λj |aj |2 ≤ λ1

n∑
j=1
|aj |2,

which is the min-max principle.
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Theorem A.1 (Courant-Fischer-Weyl min-max principle). Let λ1 and λn

be the largest and the smallest eigenvalues of a Hermitian matrix A, then
for any vector x ∈ Cn,

λn ≤
x∗Ax

x∗x
≤ λ1.

Next, we consider a positive definite matrix A, i.e., the eigenvalues are
positive:

λ1 ≥ λ2 ≥ · · · ≥ λn > 0.

Then A is invertible and A−1 has the same eigenvectors vi with eigenvalues
λ−1

i .

Theorem A.2 (Kantorovich inequality). Let A ∈ Cn×n be a positive defi-
nite matrix, then

∥x∥4

(x∗Ax)(x∗A−1x) ≥
4λ1λn

(λ1 + λn)2 , ∀x ∈ Cn.

Proof. With similar discussions as before, we get

∥x∥4

(x∗Ax)(x∗A−1x) =

[
n∑

j=1
|aj |2

]2

[
n∑

j=1
λj |aj |2

] [
n∑

j=1
|aj |2/λj

] = 1
n∑

j=1
λjbj

1
n∑

j=1
bj/λj

,

where bj = |aj |2
n∑

j=1
|aj |2

. We can rewrite it as

∥x∥4

(x∗Ax)(x∗A−1x) = ϕ(b)
ψ(b) ,

where ϕ(b) = 1
n∑

j=1
λjbj

and ψ(b) =
n∑

j=1
bj/λj .

Consider the convex function g(λ) = 1
λ , then ϕ(b) = g(λ∗) with a specific

point λ∗ =
n∑

j=1
λjbj .

Consider a line segment connecting (λ1,
1

λ1
) and (λn,

1
λn

) in the same
plane where the graph of g(λ) lies. Then this line segment intersects with
the vertical line λ = λ∗ at some point (λ∗,

c
λ1

+ d
λn

) where c + d = 1 and
c, d > 0.

Notice that all the bj form a set of convex combination coefficients, thus
the value of ψ(b) can be regarded as a convex combination of points (λj ,

1
λj

)
for all j, which is a point in the same plane. In particular, this point is on
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the vertical line λ = λ∗, and lower than the intersection point (λ∗,
c

λ1
+ d

λn
),

and higher than (λ∗,
1

λ∗
) due to the convexity of the function g(λ) = 1

λ .
So we have

ϕ(b)
ψ(b) ≥

1/λ∗
c

λ1
+ d

λn

.

Notice that λ∗ can also be written as λ∗ = cλ1 + dλn. Since c = 1− d and
d = 1− c, we get

c

λ1
+ d

λn
= cλn + dλ1

λ1λn
= (1− d)λn + (1− c)λ1

λ1λn
= λ1 + λn − λ∗

λ1λn
.

Thus
ϕ(b)
ψ(b) ≥

1/λ∗
c

λ1
+ d

λn

= 1/λ∗
λ1+λn−λ∗

λ1λn

≥ min
λ∈(λn,λ1)

1/λ
λ1+λn−λ

λ1λn

.

The minimum value is achieved at λ = (λ1 + λn)/2. Plug it in, the proof is
concluded.

A.2 Singular values
For a matrix A ∈ Cm×n, let A∗ denote the conjugate transpose of A. Then
A∗A and AA∗ are both positive semi-definite (or definite) Hermitian matri-
ces thus have real non-negative eigenvalues, denoted as λi(A∗A) and λi(AA∗)
ordering by magnitudes.

The matrix A has l = min{m,n} singular values, defined as

σi(A) =
√
λi(A∗A) =

√
λi(AA∗).

The singular values are defined for any matrix A and are always real non-
negative. Eigenvalues are defined for square matrices and are not necessarily
real.

A.3 Singular value decomposition
Theorem A.3. Let l ≤ min{m,n}. Any matrix A ∈ Cm×n of rank k has a
decomposition A = UΣV ∗ (singular value decomposition (SVD) where
U of size m × l and V of size n × l have orthonormal columns and Σ of
size l× l is diagonal matrix with singular values of A. It also has a compact
decomposition A = U1Σ1V1 (compact SVD) where where U of size m× k
and V of size n×k have orthonormal columns and Σ1 of size k×k is diagonal
matrix with nonzero singular values of A.

Proof. Assume n ≤ m, we consider the matrix A∗A (if n > m, similar
procedure for AA∗). The matrix A∗A is positive semi-definite Hermitian
thus has non-negative real eigenvalues with a complete set of orthonormal
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eigenvectors. And A∗A has the same rank as A (why? good excercise to
figure it out), thus A∗A has k nonzero eigenvalues. Let D be a k×k diagonal
matrix with all nonzero eigenvalues of A∗A as diagonal entries, and V be a
n× n matrix with orthonormal eigenvectors as columns. Then

V ∗A∗AV =
[
D 0
0 0

]
.

Let V = [V1 V2] corresponding to nonzero and zero eigenvalues, then[
V ∗

1
V ∗

2

]
A∗A

[
V1 V2

]
=
[
D 0
0 0

]
.

By multiplying matrices in the left hand side above, we get

V ∗
1 A

∗AV1 = D, V ∗
2 A

∗AV2 = 0.

Recall V = [V1 V2] has orthonormal columns thus V V ∗ = I, which implies
V1V

∗
1 + V2V

∗
2 = I.

Next, since V2 consists of eigenvectors to zero eigenvalue of A∗A, we
get A∗AV2 = 0 thus V ∗

2 A
∗AV2 = 0. So we must have AV2 = 0 because it

contradicts with V ∗
2 A

∗AV2 = 0 otherwise.
Let U1 = AV1D

− 1
2 where D 1

2 is defined as taking square root for diagonal
entries of D. Then

U1D
1
2V ∗

1 = AV1V
∗

1 = A(I − V2V
∗

2 ) = A− (AV2)V ∗
2 = A.

The decomposition A = U1D
1
2V ∗

1 is exactly the compact SVD. Pick any U2
of size n × (n − k) such that U = [U1 U2] is a unitary matrix and define Σ
of size n× n as

Σ =
[
D

1
2 0

0 0

]
,

then A = UΣV is the full SVD.

From the proof above, we get the following facts:

• The columns of V (right-singular vectors) are eigenvectors of A∗A.

• The columns of U (left-singular vectors) are eigenvectors of AA∗.

• A real matrix A has real singular vectors.

• Let ui and vi be i-th columns of U and V corresponding i-th singular
value σi(A), then

Avi = σiui, A∗ui = σivi.
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• The rank of A is also the number of nonzero singular values of A.

• The compact SVD of A looks like this:

A = U1 Σ1 V ∗
1

with

Σ1 =

σ1
. . .

σk

 .
It is a convention to order σi in decreasing order: σ1 ≥ σ2 ≥ · · · ≥ σk.

• For a Hermitian (or real symmetric) positive semi-definite (PSD) ma-
trix A and its SVD A = UΣV ∗ we must have U = V , thus its SVD
A = UΣU∗ is also its eigenvalue decomposition. Therefore, singular
values are also eigenvalues for PSD matrices.

A.4 Vector norms

For x =
[
x1 x2 · · · xn

]T
:

• 2-norm: ∥x∥ =
√

n∑
j=1
|x|2j .

• 1-norm: ∥x∥1 =
n∑

j=1
|x|j .

• ∞-norm: ∥x∥∞ = maxj |x|j .

A.5 Matrix norms
For a rank k matrix A = (aij) of sizem×n, assume its SVD is A = UΣV with
nonzero singular values σ1 ≥ σ2 ≥ · · · ≥ σk. Let σ =

[
σ1 σ2 · · · σk

]T
.

There are many norms of matrices. The following are a few important ones:

• Spectral norm: ∥A∥ is defined as ∥A∥ = max
x∈Cn

∥Ax∥
∥x∥ (x ∈ Rn for real

matrices) and ∥A∥ is equal to the largest singular value of A. By
Courant-Fischer-Weyl min-max principle Theorem A.1,

∥Ax∥
∥x∥

=
√
∥Ax∥2
∥x∥2

=
√
x∗A∗Ax

x∗x
≤
√
λ1(A∗A).

By taking x = v1, the eigenvector of A∗A corresponding to λ1(A∗A),
we get ∥A∥ =

√
λ1(A∗A) = σ1.
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• Frobenius norm: ∥A∥F =
√
tr(A∗A) =

√
m∑

i=1

n∑
j=1
|aij |2.We have ∥A∥F =

∥σ∥ because

∥A∥F =
√
tr(V ∗ΣU∗UΣV ) =

√
tr(V ∗Σ2V ) =

√
tr(V V ∗Σ2) =

√∑
j

σ2
j ,

where we have used the property of trace function tr(ABC) = tr(CAB)
for three matrices A,B,C of proper sizes.

• Nuclear norm: ∥A∥∗ = σ1 + σ2 + · · ·σk. Then the nuclear norm of A
is simply ∥σ∥1.

• Matrix 1-norm: ∥A∥1 = max
x∈Cn

∥Ax∥1
∥x∥1

(x ∈ Rn for real matrices). Since
Ax is a linear combination of columns of A, therefore ∥Ax∥1 for ∥x∥1 =
1 is less than or equal to a convex combination of 1-norm of columns
of A thus ∥A∥1 = max

j

m∑
i=1
|aij |.

• Matrix ∞-norm: ∥A∥∞ = max
x∈Cn

∥Ax∥∞
∥x∥∞

(x ∈ Rn for real matrices). It

is easy to show ∥A∥∞ = max
i

n∑
j=1
|aij |.

Useful facts:

• For a matrix norm |||A||| induced by vector norms such as spectral
norm, 1− norm and ∞-norm, by definition we have

|||Ax||| ≤ |||A||| · |||x|||.

Since |||ABx||| ≤ |||A||| · |||Bx||| ≤ |||A||| · |||B||| · |||x|||, we also have

|||AB||| ≤ |||A||| · |||B|||.

• For a matrix norm |||A||| defined through singular values such as spec-
tral norm, Frobenius norm and nuclear norm, it is invariant after uni-
tary transformation: let T and S be unitary matrices, then |||A||| =
|||TAS|||. Notice that TAS = (TU)Σ(V ∗S) is the SVD of TAS, so
TAS has the same singular values as A.

A.6 Normal matrices

A matrix A is normal if A∗A = AA∗. The following are equivalent:

• A∗A = AA∗.
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• σi(A) = |λi(A)|.

• A is diagonalizable by unitary matrix: A = UΛU∗ where Λ is diago-
nal. (Obviously, A = UΛU∗ is also its eigenvalue decomposition. In
other words, A has a complete set of orthonormal eigenvectors (but
eigenvalues could be negative, could be complex). If Λ has negative
or complex diagonal entries, then A = UΛU∗ is not SVD and its SVD
has the form A = U |Λ|V ∗ where |Λ| is a diagonal matrix with diagonal
entries |λi|. )

The equivalency can be easily established by SVD. All Hermitian matrices
including PSD matrices are normal. Here is one non-Hermitian normal
matrix example: a matrix A is skew-Hermitian if A∗ = −A. Skew-Hermitian
matrices are normal and always have purely imaginary eigenvalues.
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Appendix B

Discrete Laplacian

B.1 Finite difference approximations
For a smooth function u(x), define the following finite difference operators
approximating u′(x) at the point x̄:

• Forward Difference: D+u(x̄) = u(x̄+h)−u(x̄)
h .

• Backward Difference: D−u(x̄) = u(x̄)−u(x̄−h)
h .

• Centered Difference: D0u(x̄) = u(x̄+h)−u(x̄−h)
2h .

By Taylor expansion, the truncation errors of these operators are

D±u(x̄) = u′(x̄) +O(h), D0u(x̄) = u′(x̄) +O(h2).

Define D̂0u(x̄) = u(x̄+h/2)−u(x̄−h/2)
h , then a classial second order finite

difference approximation to u′′(x) at x̄ is given by (denoted by D2):

D2u(x̄) = D+D−u(x̄) = D̂0D̂0u(x̄) = u(x̄+ h)− 2u(x̄) + u(x̄− h)
h2 = u′′(x̄)+O(h2).

The Poisson’s equations are

• 1D: u′′(x) = f(x)

• 2D: ∆u(x, y) = uxx + uyy = f(x, y).

• 3D: ∆u(x, y, z) = f(x, y, z).

B.2 1D BVP: Dirichlet b.c.
Consider solving the 1D Poisson’s equation with homogeneous Dirichlet
boundary conditions:{

−u′′(x) = f(x), x ∈ (0, 1),
u(0) = 0, u(1) = 0. (B.1)
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Discretize the domain [0, 1] by a uniform grid with spacing h = 1
n+1 and

n interior nodes: xj = jh, j = 1, 2, · · · , n. See Figure B.1. Let u(x) denote
the true solution and fj = f(xj). For convenience, define two ghost points
x0 = 0 and xn+1 = 1. Let uj be the value of the numerical solution at xj .
Since two end values are given as u(0) = 0, u(1) = 0, only the interior point
values uj(j = 1, · · · , n) are unknowns. After approximating d2

dx2 by D2, we
get a finite difference scheme

−D2uj = −uj−1 + 2uj − uj+1
h2 = fj , j = 1, 2, · · · , n (B.2)

0 x1 x2 x3 xj = jh xn−1 xn 1

Figure B.1: An illustration of the discretized domain.

Define

Uh =


u1
u2
...
un

 , F =


f1
f2
...
fn

 , K = 1
h2



2 −1
−1 2 −1

−1 2 −1
. . . . . . . . .

−1 2 −1
−1 2


.

With the boundary values u0 = 0 and un+1 = 0 from the boundary condi-
tion, we can rewrite the finite difference scheme in the matrix vector form:

KUh = F.

B.2.1 Eigenvalues of K

In general it is difficult to find exact eigenvalues of a large matrix. For
the K matrix, if U is an eigenvector, then KU = λU approximates the
eigenfunction problem:

−u′′ = λu, u(0) = u(1) = 0. (B.3)

This is standard knowledge in an ordinary differential equation course to
find such eigenfunctions as sin(mπx) with eigenvalues λm = m2π2 for m =
1, 2, · · · . So we expect that the eigenvectors of K would look like sin(mπx)
for small h. With the following trigonometric formulas,

sin(mπxj+1) = sin(mπ(xj+h)) = sin(mπxj) cos(mπh)+cos(mπxj) sin(mπh),

sin(mπxj−1) = sin(mπ(xj−h)) = sin(mπxj) cos(mπh)−cos(mπxj) sin(mπh),
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thus,

− sin(mπxj−1) + 2 sin(mπxj)− sin(mπxj+1) = (2− 2 cos(mπh)) sin(mπxj).

Notice the facts that sin(mπx0) = 0 and sin(mπxn+1) = 0, we also have

2 sin(mπx1)− sin(mπx2) = (2− 2 cos(mπh)) sin(mπx1),

− sin(mπxn−1) + 2 sin(mπxn) = (2− 2 cos(mπh)) sin(mπxn).

Let x = [x1, x2, · · · , xn]T , then the eigenvectors of K are vm = sin(mπx):

K sin(mπx) = 1
h2 (2− 2 cos(mπh)) sin(mπx), m = 1, 2, · · · , n,

with eigenvalues

λm = 1
h2 [2− 2 cos(mπh)] = 4 1

h2 sin2(mπ

2h).

Since all eigenvalues are positive, K is a positive definite matrix, thus
singular values are also eigenvalues. We have

∥K∥ = σ1 = max
m

4 sin2(mπ

2h) = 4 1
h2 sin2(π2

n

n+ 1) ≤ 4 1
h2 ,

and
min

m
4 sin2(mπ

2h) = 4 1
h2 sin2(π2

1
n+ 1)

Thus we have
4 1
h2 sin2(π2h)I ≤ K <

4
h2 I

for any n where h = 1
n+1 .

Define the eigenvector matrix as S = [sin(πx) sin(2πx) · · · sin(nπx)]
and consider the diagonal matrix Λ with diagonal entries 2−2 cos(mπh)

h2 ,m =
1, · · · , n. Then K = SΛS−1, and K−1 = SΛ−1S−1. Therefore we get

1
4h

2I ≤ K−1 <
h2

4 sin2(π
2h)I.

We can check that 4 1
h2 sin2(π

2h) is a decreasing function of h, and 4 1
h2 sin2(π

2h)→
π2 as h→ 0 L’Hospital’s rule.

Thus we also have
1
4h

2I ≤ K−1 <
1
π2 I,

and ∥K−1∥ ≤ 1
π2 .
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Appendix C

Basic Theorems in Analysis

The following results are standard in many real analysis books, e.g. [2].

C.1 Completeness of Real Numbers
Theorem C.1 (Completeness Theorem for Sequences). If a sequence of real
numbers {an} ⊂ R is monotone and bounded, then it converges.

Theorem C.2 (Completeness Theorem for Sets). If a set of real numbers
S ⊂ R is bounded, then its supremum and infimum exist.

C.2 Compactness
Definition C.1. A subset S in Rn is called compact if any sequence {an} ⊆
S has a convergent subsequence {ani} with limit point in S.

Theorem C.3 (Heine–Borel). A subset S in Rn is compact if and only if
it is closed and bounded.

Theorem C.4 (Bolzano–Weierstrass). Any bounded sequence in Rn has a
convergent subsequence.

Using Theorems above and proof by contradiction, we can show
Theorem C.5. A continuous function f(x) attains its maximum and min-
imum on a compact set in Rn.

C.3 Cauchy Sequence
Definition C.2. A sequence {xk} ⊂ Rn is Cauchy if

∀ε > 0,∃N, ∀m,n ≥ N, ∥xm − xn∥ < ε.

Theorem C.6. A sequence {xk} ⊂ Rn converges if and only if it is a
Cauchy sequence.

63



64 APPENDIX C. BASIC THEOREMS IN ANALYSIS

C.4 Infinite Series

Theorem C.7. If
∞∑

n=0
an converges, then lim

n→∞
an = 0.

Theorem C.8. For a decreasing function f(x),
∞∑

n=1
f(n) converges if and

only if
∫∞

N f(x)dx is finite for some N > 0.

The theorem above implies
∞∑

n=1
1

n2 converges and the Harmonic Sum
∞∑

n=1
1
n = +∞.
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