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A GENERALIZATION OF CEVA’S THEOREM

JoE LipmaN, University of Toronto

Ceva's theorem in elemeﬁtary geometry deals with a triangle 4.4.4; and
a point P in general position in its plane. The lines 4,P, 4,P, 4;P, intersect
the sides 4243, 4:4:, A14., respectively, in points I, I, I3. The theorem states
that

Aody Asly Al
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We propose to generalize this result by considering a plane polygon 4;(x:, 31),

<« +, Aa(xn, ¥2), and 3d(d+3) — 1 points (P) in general position in its plane.

A preliminary example, with =35, d=2, will help to clarify what follows.
Each vertex 4, of a pentagon 4,4,4;4,45 determines with four fixed points
P,P.P;P; a unique conic Q,. Name the six points in which 4,4, intersects
0s, Qs, and Qs, Pi; (¢=1, - - -, 6); name the six points in which 4.4; intersects
Qs Qs, and Qy, Pis; define similarly Pj,, Pjs, Pg,. What is to be proved is that the
product

= (—1)%

(A1Phy - - - A1P32)(AsPs - - - AsPa) - - - (AsPy - - - AsPg)

s equal to (—1)® times the similar product taken in the opposite direction, i.e.,
to

(=D (4P - - - A1P3)(AsPis - - - AsPis) - - - (AaPra - - + AsPla).
The theorem can now be stated in general terms.

THEOREM. Let Q.(x, ¥) =0 be the unique curve of degree d determined by the
points (P) and the vertex* A, of a plane polygon A,, - - -, An. Let A3y 4qy denote
the product of all the signed lengths of the segments joining A, to the d points of
intersection of Q,=0 with the line A Ao Then

8
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A’+l = (— ) M
re=1 s=r4-1 <1g(s s+1)

Proof. The proof that follows uses a result of Newton’s which we recall.}
Let the two points B(bi, « - - , bwm), C(c1, + * + , ¢m) determine a line in euclidean

* We shall identify 4) and A; provided k=k (mod z).
t See G. Salmon, Higher Plane Curves, 3rd ed., Dublin 1879, p. 108.
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m-space which intersects H(xy, - - -, x4) =0, a hypersurface of order g. Then
(1) Pbch=H(b1; ° "bm)/H(cl’ ""cﬂ'))

where P; is the product of the directed distances from B to the g points of inter-
section and P,, the corresponding product for C. When this last formula is
applied to 4,, 4,41, and the intersection of the line passing through them with
the curve Q,=0, we obtain

Ararny Ol 32)
A:}‘:ﬁl) Qr(%as1, Yot1)

and hence

Hﬁz Ar.(c,t+l) Qf(xr+1’ yr-!-l) Qf(xﬁh }'r-;-l)

syl A:'.als-l-l) Qr(xr-l-n—b yr+n—1) Qr(xr—ly yr—l)

To show that []%J,=(—1)", write Q, as D srisa @s%y7. Since all the Q-
together form a linear pencil, the points %, in $d(d+3)-space, whose homogene-

ous coordinates are ,a;;, lie on a straight line. Furthermore, %, is the unique point
of intersection of this line (L) with the hyperplane

W,= 2 (#))iXy=0.

+isd

]r.

It is also clear that W,(%,) =Q,(x,, ¥,) for any r, p. Applying (1) to the points
Zr41, %1 and the intersection #, of the line (L) through them with the hyper-
plane W,=0, we obtain

Zp1%y ks r(xr—l) Qr—l(xr’ yf) 3
- Jr.
I;I Zrp 1%, I;I W o (%p41) I;I Ore1(zr, ) :[1I

Hence []3 J, turns out to be the product of the # distances %,%,41 taken in one
direction divided by the same product taken in the opposite direction, and so,
must equal (—1)=,

The same method may readily be extended to prove the theorem for
Ay, - - -, Aa in three or more dimensions so long as the number of points (P)
(which would now be in general position in the space determined by the 4’s)
is such that the points (P) will determine with each 4, a unique hypersurface.

- We can also deduce two geometrical interpretations of the cross ratio (c) of
any linear pencil of four d-ic hypersurfaces. First it is clear that ¢ = (#1%%:%),
where the %; are related to the four hypersurfaces Q; as above. Secondly, choose
A, arbitrarily on Q) and 42 on Q.. Then

A:(x,z) Aiu,z) QS(AI) Q4(A1) 13 257 P
- < = (%1%2%3%¢) = c.

A:u,z) ) A%a,z) Qs(Az) Q4(A2) %1%4 Koy




