PICARD SCHEMES OF FORMAL SCHEMES; APPLICATION TO RINGS WITH DISCRETE DIVISOR CLASS GROUP

Joseph Lipman⁽¹⁾

Introduction.

We are going to apply scheme-theoretic methods - originating in the classification theory for codimension one subvarieties of a given variety - to questions which have grown out of the problem of unique factorization in power series rings.

Say, with Danilov [D2], that a normal noetherian ring A has <u>discrete divisor class group</u> (abbreviated DCG) if the canonical map of divisor class groups $\overline{i}:C(A) \rightarrow C(A[[T]])$ is <u>bijective</u>⁽²⁾. In §1, a proof (due partially to J.-F. Boutot) of the following theorem is outlined:

THEOREM 1. Let A be a complete normal noetherian local ring with algebraically closed residue field. If the divisor class group C(A) is finitely generated (as an abelian group), then A has DCG.

⁽¹⁾Supported by National Science Foundation grant GP-29216 at Purdue University.

⁽²⁾For the standard definition of \overline{i} , cf. [AC, ch. 7, §1.10]. (Note that the formal power series ring A[[T]] is <u>noetherian</u> [AC, ch. 3, §2.10, Cor. 6], <u>integrally closed</u> [AC, ch. 5, §1.4], and <u>flat</u> over A [AC, ch. 3, §3.4, Cor. 3].)

The terminology DCG is explained by the fact that in certain cases (cf. [B];[SGA 2, pp. 189-191]) with A complete and local, C(A) can be made into a locally algebraic group over the residue field of A, and this locally algebraic group is <u>discrete</u> (i.e. zero-dimensional) if and only if i is bijective.

A survey of results about rings with DCG is given in [F, ch. V].

Recall that A is <u>factorial</u> if and only if C(A) = (0)[AC, ch. 7, §3]. Also, A local \Rightarrow A[[T]] local, with the same residue field as A; and A complete \Rightarrow A[[T]] complete [AC, ch. 3, §2.6]. Hence (by induction):

COROLLARY 1. If A (as in Theorem 1) is factorial, then so is any formal power series ring $A[[T_1, T_2, ..., T_n]]$.

When the singularities of A are resolvable, more can be said:

THEOREM 1'. Let A be as in Theorem 1, with C(A) finitely generated, and suppose that there exists a proper birational map $X \rightarrow Spec(A)$ with X a regular scheme (i.e. all the local rings of points on X are regular). Let B be a noetherian local ring and let $f:A \rightarrow B$ be a local homomorphism making B into a formally smooth A-algebra (for the usual maximal ideal topologies on A and B).⁽³⁾ Then B is normal, and the canonical map $C(A) \rightarrow C(B)$ is bijective.

Some brief historical remarks are in order here. Corollary 1 was conjectured by Samuel [S2, p. 171];⁽⁴⁾ however Samuel did not

⁽³⁾"Formal smoothness" means that the completion \hat{B} is A-isomorphic to a formal power series ring $\bar{A}[[T_1,T_2,\ldots,T_n]]$, where \bar{A} is a complete local noetherian flat A-algebra with maximal ideal generated by that of A (cf. [EGA 0_{IV}, §§19.3, 19.6, 19.7]). In particular, B is flat over A.

(4) For some earlier work on unique factorization in power series rings cf. [S1] and [K].

assume that the residue field of A was algebraically closed, and without this assumption, the conjecture was found by Salmon to be false [SMN]. Later, a whole series of counterexamples was constructed by Danilov [D1] and Grothendieck [unpublished].⁽⁵⁾ Danilov's work led him to the following modification of Samuel's conjecture [D1, p. 131]:

If A is a local ring which is "geometrically factorial" (i.e. the strict henselization of A is factorial) then also A[[T]] is geometrically factorial.

In this general form, the conjecture remains open, though some progress has been made by Boutot [unpublished].

The study of Samuel's conjecture evolved into the study of rings with DCG. A complete normal noetherian local ring A has been shown to have DCG in the following cases (6):

(i) (Scheja [SH]). A is factorial and depth $A \ge 3$.

 (\underline{ii}) (Storch [ST2]) A contains a field, and the residue field of A is algebraically closed and uncountable, with cardinality greater than that of C(A).

[Actually, for such A, Storch essentially proves Theorem 1' without needing any desingularization $X \rightarrow \text{Spec}(A)$. Storch's proof uses a theorem of Ramanujam-Samuel (cf. proof of Theorem 1' in §1) and an elementary counting argument.]

⁽⁵⁾ In these counterexamples the locally algebraic group of footnote (2) above has dimension > 0, but has just one point - namely zero - rational over the residue field of A.

 $^{^{(6)}}$ For some investigations in the context of analytic geometry, cf. [ST1] and [P].

(<u>iii</u>) (<u>Danilov</u> [D3]) If <u>either</u> (a) A contains a field of characteristic zero <u>or</u> (b) A contains a field, the residue field of A is separably closed, and there exists a projective map $g:X \rightarrow Spec(A)$ with X a regular scheme, such that g induces an isomorphism $X - g^{-1}(\{\underline{m}\}) \xrightarrow{\sim} Spec(A) - \{\underline{m}\}$ (\underline{m} = maximal ideal of A)

then C(A) finitely generated \Rightarrow A has DCG.

[Danilov uses a number of results from algebraic geometry, among them the theory of the Picard scheme of schemes proper over a field, and the resolution of singularities (by Hironaka in case (a), and by assumption in case (b)).]

Significant simplifications have been brought about by <u>Boutot</u>. His lemma (§1) enabled him to eliminate all assumptions about resolution of singularities in the above-quoted result of Danilov, and also to modify the proof of Theorem 1' to obtain the proof of Theorem 1 which appears in §1 below.

Our proof of Theorem 1' is basically a combination of ideas of Danilov and Storch, except that in order to treat the case when A does not contain a field, we need a theory of <u>Picard</u> <u>schemes for schemes proper over a complete local ring of mixed</u> <u>characteristic.</u> This theory - which is the main underlying novelty in the paper - is given in §§2-3.

\$1. Proofs of Theorems 1 and 1'.

The two theorems have much in common, and we will prove them together. Let A, B be as in Theorem 1'; for Theorem 1 we will simply take B = A[[T]]. Since A is local and B is faithfully flat over A, the canonical map $C(A) \rightarrow C(B)$ is <u>injective</u> [F, Prop. 6.10]; so we need only show that $C(A) \rightarrow C(B)$ is surjective.

Both B and its completion \hat{B} are normal: when B = A[[T]]this is clear; and under the assumption of Theorem 1', since B and \hat{B} are formally smooth over A, it follows from the existence of the "desingularization" $X \rightarrow \text{Spec}(A)$ [L1, Lemma 16.1]. As above, since \hat{B} is faithfully flat over B, $C(B) \rightarrow C(\hat{B})$ is injective, and consequently we may assume that $B = \hat{B}$ (= $\bar{A}[[T_1, T_2, ..., T_n]]$, cf. footnote (3) in the Introduction). [Note here that if $R \subseteq S \subseteq T$ are normal noetherian rings with S flat over R and T flat over S (and hence over R), then the composition of the canonical maps

$$C(R) \rightarrow C(S) \rightarrow C(T)$$

is the canonical map $C(S) \rightarrow C(T)$.]

Let M be the maximal ideal of A. Then $M\bar{A}$ is the maximal ideal of \bar{A} , and by the theorem of Ramanujam-Samuel [F, Prop. 19.14],

$$C(B) \rightarrow C(B_{MB})$$

is bijective. Furthermore [EGA 01, p. 170, Cor. (6.8.3)], there

98

exists a complete local noetherian flat B_{MB} -algebra B* such that B*/MB* is an algebraically closed field. B* is formally smooth over A (footnote (3) above) so under the hypotheses of Theorem 1', B* is normal; furthermore B* is faithfully flat over B_{MR} , so that, as before

$$C(B_{MB}) \rightarrow C(B^*)$$

is injective. Thus for Theorem 1' it suffices to show that $C(A) \rightarrow C(B^*)$ is surjective.

To continue the proof of Theorem 1', let U_A be the domain of definition of the rational map inverse to $X \rightarrow \text{Spec}(A)$. Then U_A is isomorphic to an open subscheme of X, so we have a <u>surjective</u> map $\text{Pic}(X) \rightarrow \text{Pic}(U_A)$ [EGA IV, (21.6.11)]; furthermore the codimension of $\text{Spec}(A) - U_A$ in Spec(A) is ≥ 2 , so there is a <u>natural isomorphism</u> $\text{Pic}(U_A) \xrightarrow{\sim} C(A)$ [<u>ibid</u>, (21.6.12)]. Similar considerations hold with B* in place of A, and $X^* = X \otimes_A B^*$ in place of X. (The projection $X^* \rightarrow \text{Spec}(B)$ is proper and birational, and X^* is a regular scheme [L1, Lemma 16.1].) There results a commutative diagram

$$\begin{array}{ccc} \operatorname{Pic}(X) & \longrightarrow & \operatorname{Pic}(U_{A}) & \xrightarrow{\sim} & \operatorname{C}(A) \\ & & & & \downarrow & & \downarrow \\ \operatorname{Pic}(X^{*}) & \longrightarrow & \operatorname{Pic}(U_{B^{*}}) & \xrightarrow{\sim} & \operatorname{C}(B^{*}) \end{array}$$

Since $Pic(X^*) \rightarrow Pic(U_{B^*})$ is surjective, it will be more than enough to show that $Pic(X) \rightarrow Pic(X^*)$ is bijective. The corresponding step in the proof of Theorem 1 is more involved, and goes as follows. Let B = A[[T]], let B^* be as above, and let I be a divisorial ideal in B. We will show below that there exists an open subset U_A of Spec(A) whose complement has codimension ≥ 2 , and such that, with

 $U_{B} = (U_{A}) \otimes_{A} B \quad (\subseteq \text{Spec}(B)), \quad U^{*} = (U_{A}) \otimes_{A} B^{*} (\subseteq \text{Spec}(B^{*}))$

we have that

- (i) IB_q is a principal ideal in B_q for all prime ideals $q \in U_R$, and
- (ii) the canonical map $v: Pic(U_B) \rightarrow Pic(U^*)$ is injective.

Now there is a natural commutative diagram

$$\begin{array}{ccc} \operatorname{Pic}(\operatorname{U}_{A}) & \xrightarrow{\lambda} & \operatorname{Pic}(\operatorname{U}_{B}) \\ & & \mu_{A} \downarrow & & \downarrow^{\mu_{B}} \\ & & C(A) & \xrightarrow{} & C(B) \end{array}$$

cf. [EGA IV, (21.6.10)]. Since B is flat over A, it is immediate (from the corresponding property for U_A) that the complement of U_B in Spec(B) has codimension ≥ 2 ; hence (i) signifies that the element of C(B) determined by I is of the form $\mu_B(\xi)$ for some $\xi \in Pic(U_B)$. So if we could show that ξ lies in the image of λ , then we would have the desired surjectivity of C(A) + C(B).

At this point we need:

LEMMA (J.-F. Boutot)⁽¹⁾. There exists a projective birational map $\phi: X \to \operatorname{Spec}(A)$ such that ϕ induces an isomorphism $\phi^{-1}(U_A) \xrightarrow{\sim} U_A$, and such that ξ lies in the image of the canonical map $\operatorname{Pic}(X \otimes_A B) \to \operatorname{Pic}(U_B)$.

(Here X may be taken to be <u>normal</u>, but not necessarily regular.) Setting $X^* = X \otimes_A B^*$, we have a natural commutative diagram

$$\begin{array}{cccc} \operatorname{Pic}(X) & \longrightarrow & \operatorname{Pic}(X \otimes_A B) & \longrightarrow & \operatorname{Pic}(X^*) \\ & & & \downarrow & & \downarrow \\ \operatorname{Pic}(U_A) & \xrightarrow{\lambda} & \operatorname{Pic}(U_B) & \xrightarrow{\nu} & \operatorname{Pic}(U^*) \end{array}$$

with ν injective (cf. (ii) above). A simple diagram chase shows then that for ξ to lie in the image of λ , it more than suffices that $\underline{Pic(X)} \rightarrow \underline{Pic(X^*)}$ be bijective.

Let us finish off this part of the argument by constructing U_A satisfying (i) and (ii). [It will then remain - for proving both Theorems 1 and 1' - to examine the map $Pic(X) + Pic(X^*)$.]

Let

$$U_A = \{p \in Spec(A) | A_p \text{ is a regular local ring} \}$$

By a theorem of Nagata [EGA IV (6.12.7)], U_A is open in Spec(A); and certainly, A being normal, the codimension of Spec(A) - U_A in Spec(A) is ≥ 2 . Since the fibres of Spec(B) \rightarrow Spec(A) are regular [EGA IV, (7.5.1)], therefore B_q is regular for all $q \in U_B$ [EGA 0_{IV} , (17.3.3)], and (i) follows.

(1) The proof, which will appear in Boutot's thèse, was presented at a seminar at Harvard University in January, 1972.

As for (ii), setting U' = $U_A \otimes_A B_{MB}$ (M = maximal ideal of A) we have the commutative diagram

in which the vertical arrows are <u>isomorphisms</u> [EGA IV, (21.6.12)], and also $C(B) \rightarrow C(B_{MB})$ is an isomorphism (cf. above); so we have to show that $\underline{Pic(U')} \rightarrow \underline{Pic(U^*)}$ is injective. Since $\underline{Pic(U')}$ is isomorphic to $C(B_{MB})$, this injectivity amounts to the following statement:

(#) Let I be a divisorial ideal of B_{MB} , and let \mathscr{I}^* be the coherent ideal sheaf on Spec(B*) determined by the ideal IB*. If $\mathscr{I}^* | U^* \cong \mathscr{O}_{U^*}$, then I is a principal ideal.

Since ${\rm B}_{\mbox{MB}}$ is local, and B* is faithfully flat over ${\rm B}_{\mbox{MB}},$ we have

I principal ⇔ I invertible ⇔ IB* invertible.

Now I is a reflexive B_{MB} -module [CA, p. 519, Ex. (2)], and therefore IB* is a reflexive B*-module [<u>ibid</u>, p. 520, Prop. 8]. Since B* is flat over B_{MB} , it follows (from the corresponding property of U') that for every prime ideal P in B* such that P & U*, the local ring B_{P}^{*} has depth \geq 2. This being so, if i:U* + Spec(B*) is the inclusion map, then the natural map

$$\mathcal{O}_{\text{Spec}(B^*)} \neq i_*(\mathcal{O}_{U^*})$$

is an isomorphism [EGA IV, (5.10.5)]. Since IB* is reflexive, application of $\text{Hom}_{B^*}(\cdot, B^*)$ to a 'finite presentation''

$$(B^*)^n \rightarrow (B^*)^m \rightarrow \operatorname{Hom}_{B^*}(IB^*, B^*) \rightarrow 0,$$

gives an exact sequence

$$0 \rightarrow IB^* \rightarrow (B^*)^m \rightarrow (B^*)^n,$$

whence a commutative diagram, with exact rows,

$$0 \longrightarrow \mathscr{I}^{*} \longrightarrow \mathscr{O}^{m} \longrightarrow \mathscr{O}^{n}$$

$$\downarrow \qquad \qquad \downarrow^{\mathfrak{V}} \qquad \qquad \downarrow^{\mathfrak{V}} \qquad \qquad \downarrow^{\mathfrak{V}} \qquad \qquad [\mathscr{O} = \mathscr{O}_{\operatorname{Spec}(B^{*})}]$$

$$0 \to i_{*}(\mathscr{I}^{*}|U^{*}) \to i_{*}(\mathscr{O}_{U^{*}}^{m}) \to i_{*}(\mathscr{O}_{U^{*}}^{n})$$

from which we conclude that the canonical map

$$\mathcal{I}^{*} \rightarrow i_{*}(\mathcal{I}^{*}|U^{*}) [\cong i_{*}(\mathcal{O}_{U^{*}})]$$

is an isomorphism. Thus \mathscr{I}^* is isomorphic to $\mathscr{O}_{\operatorname{Spec}(B^*)}$, and (ii) is proved.

The rest of the discussion applies to both Theorems (1 and 1'). We must now examine the map $Pic(X) \rightarrow Pic(X^*)$.

The kernel of the surjective map $Pic(X) \rightarrow Pic(U_A)$ consists of the linear equivalence classes of those divisors on X which are supported on X - U_A; hence (X being assumed to be normal) this kernel is isomorphic to a subgroup of the free abelian group generated by those irreducible components of X - U_A having codimension one in X; since $Pic(U_A) \subseteq C(A)$, and C(A) is finitely generated, therefore $\underline{Pic(X)}$ is finitely generated.

Let k (resp. k*) be the residue field of A (resp. B*). There is an obvious map $k \rightarrow k^*$. In §2 we will show that

(1.1) <u>There exists a k-group-scheme P and a commutative</u> <u>diagram</u>

$$\begin{array}{ccc} P(k) & \longrightarrow & P(k^{\star}) \\ & & & & \downarrow \mathfrak{U} \\ Pic(X) & \longrightarrow & Pic(X^{\star}) \end{array} .$$

Here $P(k) \rightarrow P(k^*)$ is the map from k-valued points of P to k^* -valued points corresponding to the map $k \rightarrow k^*$; and the vertical maps are isomorphisms.

Furthermore, in §3 it will be shown that

(1.2) There exists a closed irreducible k-subgroup P^0 of P, whose underlying subspace is the connected component of the zero point of P, and such that:

(i) $\underline{P^{0}}$ is the inverse limit of its algebraic (= finite type over k) <u>quotients;</u> moreover if \overline{P} is such a <u>quotient, then $P(k) \rightarrow \overline{P}(k)$ is surjective.</u>

(ii)
$$P/P^{0} = \lim_{n \to 0} Q_{n}$$
, where Q_{n} is a discrete (= reduced
and zero-dimensional) locally algebraic k-group;
moreover $P(K) \rightarrow (P/P^{0})(K)$ is surjective for any
algebraically closed field $K \supset k$.

To show that $Pic(X) \rightarrow Pic(X^*)$ is bijective, it will then suffice to show that $\underline{P^{\circ}}$ is infinitesimal [in other words, every algebraic quotient of P° is zero-dimensional, so that $P^{\circ}(k) = P^{\circ}(k^*) = 0$, whence $Pic(X) \rightarrow Pic(X^*)$ can be identified with the map

$$\underset{n}{\underset{n}{\underset{n}{\underset{n}{\overset{(Q_n(k) \rightarrow Q_n(k^*))}{\underbrace{}}}}}$$

which is obviously bijective].

But since $P^{O}(k) \subseteq P(k)$ is finitely generated, so is $\tilde{P}(k)$ for any algebraic quotient \tilde{P} of P^{O} . By the structure theorem for connected reduced commutative algebraic groups over an algebraically closed field, we know that \bar{P}_{red} has a composition series whose factors are multiplicative groups, additive groups, and abelian varieties. It follows easily that if $\bar{P}(k) = \bar{P}_{red}(k)$ is finitely generated, then $\bar{P}(k) = 0$, i.e. \bar{P} is zero-dimensional.

§2. The Picard Scheme of a Formal Scheme.

In this section we establish the existence of a <u>natural group</u>-<u>scheme structure on $Pic(\mathbf{x})$ </u> for certain formal schemes \mathbf{x} . (If $p \mathcal{O}_{\mathbf{X}} = (0)$ (cf. (2.2)) there will be nothing new here. For the case $p \mathcal{O}_{\mathbf{X}} \neq (0)$, most of the work is carried out in [L2], whose results will be quoted and used.) From this we will obtain (1.1). However, for completeness, we prove more general results than are required in the proof of Theorems 1 and 1'.

DEFINITION (2.1). A formal scheme $(\mathbf{x}, \mathcal{O}_{\mathbf{x}})$ is weakly noetherian if \mathbf{x} has a fundamental system of ideals of definition $f_0 \supseteq f_1 \supseteq f_2 \supseteq \dots$ such that for each $n \ge 0$ the scheme $(\mathbf{x}, \mathcal{O}_{\mathbf{x}}/f_n)$ is noetherian.

It amounts to the same thing to say: in the category of formal schemes,

$$\mathbf{x} = \underbrace{\lim_{n \ge 0} X_n}_{n \ge 0}$$

where $X_0 \rightarrow X_1 \rightarrow X_2 \rightarrow ...$ is a sequence of immersions of <u>noetherian</u> <u>schemes</u> X_n , the underlying topological maps being <u>homeomorphisms</u> (cf. [EGA 01, §10.6, pp. 411-413]).

Any <u>noetherian</u> formal scheme is weakly noetherian [<u>ibid</u>, middle of p. 414].

If $\mathbf{\tilde{x}}$ is weakly noetherian and $\mathbf{\tilde{f}}$ is any ideal of definition, then $(\mathbf{\tilde{x}}, \mathcal{O}_{\mathbf{\tilde{x}}}/\mathbf{\tilde{f}})$ is a noetherian scheme; indeed, $\mathbf{\tilde{f}} \supseteq \mathbf{\tilde{f}}_n$ for some n (since $\mathbf{\tilde{x}}$ is quasi-compact) so that $(\mathbf{\tilde{x}}, \mathcal{O}_{\mathbf{\tilde{x}}}/\mathbf{\tilde{f}})$ is a closed subscheme of the noetherian scheme $(\mathbf{\tilde{x}}, \mathcal{O}_{\mathbf{\tilde{x}}}/\mathbf{\tilde{f}}_n)$. In particular, taking $\mathbf{\tilde{f}}$ to be the <u>largest</u> ideal of definition of $\mathbf{\hat{x}}$, we see that we may - and, for convenience, we always will assume that the scheme $\mathbf{\hat{x}}_{red} = (\mathbf{\hat{x}}, \mathcal{O}_{\mathbf{\hat{x}}}/f_0)$ is reduced. (Cf. [EGA 01, p. 172 (7.1.6)].)

Next, let k be a perfect field of characteristic $p \ge 0$. For p > 0 let W(k) be the ring of (infinite) Witt vectors with coefficients in k; and for p = 0 let W(k) be the field k itself. W(k) is complete for the topology defined by the ideal pW(k); the corresponding formal scheme Spf(W(k)) will be denoted by \mathfrak{W}_k .

(2.2) In what follows we consider a triple $(\mathbf{X}, \mathbf{k}, \mathbf{f})$ with:

- (i) **X** a weakly noetherian formal scheme.
- (ii) k a perfect field of characteristic $p \ge 0$.
- (iii) $f: \mathfrak{X} \to \mathfrak{W}_k$ a morphism of formal schemes such that for every ideal of definition \mathscr{J} of \mathfrak{X} , the induced map of schemes

$$f_{f}:(\mathfrak{X}, \mathcal{O}_{\mathfrak{X}}/\mathfrak{F}) \rightarrow \operatorname{Spec}(W(k))$$

is proper⁽¹⁾.

<u>Remarks.</u> Morphisms $f: \mathfrak{X} \to \mathfrak{W}_k$ are in one-one correspondence with <u>continuous homomorphisms</u> $i: W(k) \to H^0(\mathfrak{X}, \mathcal{O}_{\mathfrak{X}})$ [EGA 01, p. 407, (10.4.6)]⁽²⁾. The above map $f_{\mathfrak{X}}$ corresponds to the composed

⁽¹⁾ For (iii) to hold it suffices that $f_{\mathcal{J}}$ be proper for <u>one</u> \mathcal{J} (cf. (2.6) below).

⁽²⁾ The existence of such an i implies that p is topologically nilpotent in $H^{0}(\mathfrak{X}, \mathfrak{O}_{\mathfrak{X}})$ (since the image of a topologically nilpotent element under a continuous homomorphism is again topologically nilpotent). On the other hand, if p is topologically nilpotent in $H^{0}(\mathfrak{X}, \mathfrak{O}_{\mathfrak{X}})$, then clearly every ring homomorphism $W(k) \rightarrow H^{0}(\mathfrak{X}, \mathfrak{O}_{\mathfrak{X}})$ is continuous.

homomorphism

$$\mathbb{W}(\mathbf{k}) \xrightarrow{\mathbf{i}} \mathbb{H}^{\mathsf{O}}(\boldsymbol{\mathfrak{X}}, \, \boldsymbol{\mathcal{O}}_{\boldsymbol{\mathfrak{X}}}) \xrightarrow{\text{canonical}} \mathbb{H}^{\mathsf{O}}(\boldsymbol{\mathfrak{X}}, \, \boldsymbol{\mathcal{O}}_{\boldsymbol{\mathfrak{X}}}/\boldsymbol{j}) \, .$$

It is practically immediate that $\underline{fg}(\underline{x})$ is supported in the closed point of $\operatorname{Spec}(W(k))$.

<u>Example.</u> Let R be a complete noetherian local ring with maximal ideal M and residue field k (perfect, of characteristic $p \ge 0$); let $g:X \rightarrow Spec(R)$ be a proper map; and let \mathfrak{X} be the formal completion of X along the closed fibre $g^{-1}(\{M\})$. The structure theory of complete local rings gives the existence of a (continuous) homomorphism $W(k) \rightarrow R$; composing with the map

$$R \rightarrow H^{o}(\mathfrak{X}, \mathscr{O}_{\mathfrak{Y}}) [= H^{o}(X, \mathscr{O}_{\mathfrak{Y}})]$$

determined by g, we obtain $i:W(k) \rightarrow H^{0}(\mathbf{x}, \mathcal{O}_{\mathbf{x}})$, whence a triple (\mathbf{x}, k, f) as above.

(2.3) For any k-algebra A let $W_n(A)$ (resp. W(A)) be the ring of Witt vectors of length n (resp. of infinite length) with coefficients in A. $(W_n(A) = W(A) = A$ if p = 0.) We consider $W_n(A)$ to be a discrete topological ring, and give W(A) the topology for which $K_1 \supseteq K_2 \supseteq K_3 \supseteq \cdots$ is a fundamental system of neighborhoods of 0, K_n being the kernel of the canonical map W(A) $\rightarrow W_n(A)$ (n \geq 1); then, in the category of topological rings,

$$W(A) = \lim_{\substack{\leftarrow n \\ n \ge 1}} W_n(A).$$

It is not hard to see that $K_1^2 = pK_1$, whence

$$\textbf{K}_{1}^{n+1}$$
 = $\textbf{p}^{n}\textbf{K}_{1}$ \subseteq \textbf{K}_{n} ;

so W(A) is an "admissible" ring, and we may let $\boldsymbol{\mathfrak{W}}_A$ be the affine formal scheme

$$\mathfrak{W}_{A} = \operatorname{Spf}(W(A)).$$

In particular, for A = k, we get the same \mathfrak{W}_k as in (2.1). If B is an A-algebra, then W(B) is in an obvious way a topological W(A)-algebra, so that \mathfrak{W}_A varies functorially with A.

With $f: \mathfrak{X} \to \mathfrak{W}_k$ as in (2.2), we set

$$\mathbf{x}_{A} = \mathbf{x} \times \mathbf{w}_{A} = \mathbf{x} \hat{\mathbf{w}}_{(k)} \mathbf{w}_{(A)}$$

(product in the category of formal schemes). We have then the covariant functor of k-algebras

$$A \rightarrow \text{Pic}(\mathbf{X}_A)$$
.

What we show below is that the fpqc sheaf P associated to this functor is a k-group scheme, and that furthermore the canonical map $Pic(\mathbf{x}_A) \rightarrow P(A)$ is bijective if A is an algebraically closed field.

<u>Example</u> (continued from (2.2)). Suppose that \mathbf{X} is obtained from a proper map $g: X \rightarrow \operatorname{Spec}(\mathbb{R})$ as in the example of (2.2). For any k-algebra A, setting $R_A = R \hat{\otimes}_{W(k)} W(A)$ (completed tensor product, R being topologized as usual by its maximal ideal M), we have

$$\mathbf{x}_{A} = \mathbf{x} \hat{\otimes}_{W(k)} W(A) = \mathbf{x} \hat{\otimes}_{R^{R}A}.$$

Now if A is a perfect field, then R_A has the following properties, which characterize R_A as an R-algebra (up to isomorphism): R_A is a complete local noetherian flat R-algebra such that $R_A/MR_A \cong A$ (cf. [EGA 01, p. 190, (7.7.10)] and [EGA 0_{IV}, (19.7.2)]). Furthermore, \mathbf{X}_A is then the completion of the scheme $X_A = X \otimes_R R_A$ along the closed fibre of the projection $g_A: X_A \rightarrow \text{Spec}(R_A)$. Hence Grothendieck's algebrization theorem [EGA III, (5.1.6)] gives that "completion" is an equivalence from the category of coherent \mathcal{O}_{X_A} -modules to the category of coherent $\mathcal{O}_{\mathbf{X}_A}$ -modules. Since an $\mathcal{O}_{\mathbf{X}}$ -module is invertible if and only if so is its completion⁽³⁾, we deduce a natural isomorphism

$$\operatorname{Pic}(X_{A}) \cong \operatorname{Pic}(\mathfrak{X}_{A}).$$

Hence, restricting our attention to those A which are <u>algebraically closed fields</u>, we will have an A-functorial isomorphism

$$Pic(X_A) \cong P(A)$$
.

 $[\]overline{(3)}$ This follows easily from the fact that the completion \hat{B}_{I} of a noetherian ring B w.r.t. an ideal I is faithfully flat over the ring of fractions B_{I+I} , so that if J is a B-ideal with $J\hat{B}_{I}$ a projective \hat{B}_{I} -module, then JB_{I+I} is a projective B_{I+I} -module.

This gives us the diagram (1.1) which is needed in the last step of the proof of Theorems 1 and 1'.

(2.4) We fix a fundamental system $f_0 \supseteq f_1 \supseteq f_2 \supseteq \cdots$ of defining ideals of \mathfrak{X} , and for $n \ge 0$ let X_n be the scheme $(\mathfrak{X}, \mathcal{O}_{\mathfrak{X}}/f_n)$. For any k-algebra A, let $X_{n,A}$ be the scheme

$$X_{n,A} = X_n \otimes_{W(k)} W_n(A)$$

The ringed spaces $X_{0,A}$, $X_{1,A}$,..., $X_{n,A}$,... and $\mathbf{\tilde{x}}_A$ all have the same underlying topological space, say X, and on this space X we have $\mathcal{O}_{\mathbf{\tilde{x}}_A} = \lim_{n \to \infty} \mathcal{O}_{\mathbf{X}_n,A}$. Hence there is a natural map

(*)
$$\operatorname{Pic}(\mathfrak{X}_{A}) \rightarrow \lim_{\stackrel{\longleftarrow}{\longleftarrow}} \operatorname{Pic}(X_{n,A}).$$

LEMMA. Let A be a k-algebra, and if p > 0 assume that $\underline{A^p} = \underline{A}$ (i.e. the Frobenius endomorphism $x \neq x^p$ of A is surjective). Then the above map (*) is bijective.

<u>Remark.</u> When p > 0 and $A^p = A$, or when p = 0, then $X_{n,A} = X \otimes_{W(k)} W(A)$.

<u>Proof of Lemma.</u> Say that an open subset U of X is <u>affine</u> if (U, $\mathcal{O}_{\mathbf{X}_A} | U$) is an affine formal scheme. The affine open sets form a base for the topology of X.

For each n, let \mathscr{F}_n be the sheaf of multiplicative units in the sheaf of rings $\mathscr{O}_{\chi_n,A}$ (on the topological space X) and let

$$\mathscr{F}$$
 = $\lim_{n \to \infty} \mathscr{P}_n$ = sheaf of units in $\mathscr{O}_{\mathbf{X}_A}$.

For $m \ge n$, the kernel of $\mathscr{O}_{X_{m,A}} \to \mathscr{O}_{X_{n,A}}$ is nilpotent; so a simple argument ([L2, Lemma (7.2)], with the Zariski topology in place of the étale topology) shows that for affine U the canonical maps

$$H^{i}(U, \mathcal{F}_{m}) \rightarrow H^{i}(U, \mathcal{F}_{n})$$

are <u>bijective</u> if i > 0, and <u>surjective</u> if i = 0. Applying [EGA 0_{III} , (13.3.1)], we deduce that for all i > 0, the maps

$$H^{i}(X, \mathscr{F}) \rightarrow \underset{n}{\underset{n}{\underset{n}{\underset{n}{\underset{n}{\atop}}}}} H^{i}(X, \mathscr{F}_{n})$$

are surjective. Furthermore, in order that

$$\begin{array}{c} H^{1}(X, \mathscr{G}) \rightarrow \lim_{n} H^{1}(X, \mathscr{G}_{n}) \\ \| & \| \\ Pic(\mathfrak{X}_{A}) & \lim_{n} Pic(X_{n,A}) \end{array}$$

be <u>bijective</u>, it is sufficient that the inverse system $H^{o}(X, \mathscr{F}_{n})_{n \geq 0}$ satisfies the Mittag-Leffler condition (ML); and for this it is enough that the inverse system $H^{o}(X, \mathscr{O}_{X_{n,A}})$ should satisfy (ML); that is, for each fixed n, if $I_{mn} \ (m \geq n)$ is the image of $H^{o}(X, \mathscr{O}_{X_{m,A}}) \rightarrow H^{o}(X, \mathscr{O}_{X_{n,A}})$, then the sequence

(**) $I_{n,n} \supseteq I_{n+1,n} \supseteq I_{n+2,n} \supseteq \cdots$

should stabilize (i.e. $I_{N,n} = I_{N+1,n} = I_{N+2,n} = \dots$ for some N).

For p > 0 it is shown in [L2, Corollary (0.2) and Theorem (2.4)] that the fpqc sheaf \underline{H}_n associated to the functor

$$A \rightarrow H^{o}(X, \mathcal{O}_{X_{n,A}})$$

(of k-algebras A) is an <u>affine algebraic k-group;</u> furthermore [<u>ibid</u>, Corollary (4.4)] the canonical map

$$\mathbb{H}^{o}(X, \mathcal{O}_{X_{n,A}}) \rightarrow \underline{\mathbb{H}}_{n}(A)$$

is <u>bijective</u> whenever $A^p = A$; and finally, for $m \ge n$, if \underline{I}_{mn} is the image (in the category of algebraic k-groups) of the natural map $\underline{H}_m \Rightarrow \underline{H}_n$, and if $A^p = A$, then the canonical map

$$\underline{\underline{H}}_{m}(A) \rightarrow \underline{\underline{I}}_{mn}(A)$$

is <u>surjective</u>, so that $I_{mn} = \underline{I}_{mn}(A)$ [cf. <u>ibid</u>, last part of proof of (6.3)]. Similar facts when p = 0 are well-known (and more elementary).

Now the sequence

$$\underline{I}_{n,n} \supseteq \underline{I}_{n+1,n} \supseteq \underline{I}_{n+2,n} \supseteq \cdots$$

of closed subgroups of \underline{H}_n must stabilize, whence so must the sequence (**). Q.E.D.

(2.5) Before stating the basic existence theorem we need some more notation. For any scheme Y, Br(Y) will be the cohomological Brauer group of Y:

$$Br(Y) = H^{2}_{\acute{e}tale}(Y, multiplicative group).$$

For any ring R we set:

For any defining ideal f of \mathfrak{X} and any k-algebra A:

$$\mathbf{X}_{f}$$
 = the scheme $(\mathbf{X}, \mathcal{O}_{\mathbf{Y}}/f)$
 $\mathbf{X}_{f,A} = \mathbf{X}_{f} \otimes_{W(k)} W(A)$.

Finally, we set

$$k_0 = H^{o}(\mathbf{x}_{red}, \mathcal{O}_{\mathbf{x}_{red}}).$$

Since \mathbf{x}_{red} is proper over k (cf (2.2)), therefore k_0 is a finite product of finite field extensions of k.

Now for any f, we have (cf (2.2)) a proper map

$$f_{f}: \mathbf{x}_{f} + Spec(W(k))$$

whose image is supported in the closed point of Spec(W(k)).

Hence, when p > 0, [L2, Theorem (7.5)] gives us a k-groupscheme P_f and, for all k-algebras A with $A^p = A$, an exact A-functorial sequence

$$0 \neq \operatorname{Pic}(k_0 \otimes_k^A \operatorname{red}) \neq \operatorname{Pic}(\mathfrak{x}_{f,A}) \neq \operatorname{P}_{f}(A)$$

$$\neq \operatorname{Br}(k_0 \otimes_k^A \operatorname{red}) \neq \operatorname{Br}(\mathfrak{x}_{f,A})$$

A similar result is well-known for p = 0, or more generally when $p \mathcal{O}_{\mathbf{X}_{\mathbf{J}}} = (0)$, with no condition on A, since then $\mathbf{X}_{\mathbf{J}}$ is proper over the field k (cf [GR, Cor. 5.3]).

Also, if
$$\oint \subseteq \oint'$$
 , then the canonical map

is <u>affine</u> ([SGA 6, Expose XII, Prop. (3.5)] when p = 0, and [L2, Prop. (2.5)] when p > 0). Thus $P = \lim_{f \to F} P_f = \frac{exists as a}{k-group-scheme}$ (cf. [EGA IV, §8.2]).

Now, in view of Lemma (2.4), a simple passage to inverse limits gives the desired result:

THEOREM. There exists a k-group scheme P, and for k-algebras <u>A</u> such that $A^p = A$ (the condition $A^p = A$ is vacuous when p = 0) <u>an exact sequence</u>, varying functorially with A,

$$0 \neq \operatorname{Pic}(k_0 \otimes_k A_{\operatorname{red}}) \neq \operatorname{Pic}(\mathfrak{X}_A) \neq \operatorname{P}(A) \neq$$
$$\Rightarrow \iint \operatorname{ker}[\operatorname{Br}(k_0 \otimes_k A_{\operatorname{red}}) \neq \operatorname{Br}(\mathfrak{X}_{f,A})].$$

COROLLARY. If A is an algebraically closed field, then the above map $Pic(\mathbf{x}_A) \rightarrow P(A)$ is bijective.

For, then $Pic(k_0 \otimes_k A_{red}) = Br(k_0 \otimes_k A_{red}) = (0).$ ⁽⁴⁾

<u>Remarks.</u> 1. The k-group-scheme P is <u>uniquely determined</u> by the requirements of the Theorem. Indeed, since for every k-algebra A there exists a faithfully flat A-algebra \overline{A} with $\overline{A}^{p} = \overline{A}$ [L2, Lemma (0.1)], and since every element in Pic($k_{o} \otimes_{k} A_{red}$) or in Br($k_{o} \otimes_{k} A_{red}$) is locally trivial for the étale topology on A, it follows easily that <u>P</u> is the fpqc sheaf associated to the functor $A \rightarrow Pic(\mathbf{x}_{A})$ of k-algebras A.

2. P^O, the connected component of zero in P, is described in (3.2) below. The remarks following (1.2) suggest that the following conjecture - or some variant - should hold:

<u>Conjecture:</u> P^O is infinitesimal if and only if the natural (split injective) map

 $Pic(\mathbf{x}) \rightarrow Pic(\mathbf{x} \otimes_{W} W[[T]]) \qquad (W = W(k))$

is bijective.

⁽⁴⁾ The Corollary, which is what we need for Theorems 1 and 1', could be proved more directly, using [L2, \$1, comments on part II]; then we could do without our Lemma (2.4), and without introducing "Br". In a similar vein it can be deduced from the Theorem - or shown more directly - that if K is a normal algebraic field extension of k such that every connected component of \mathbf{x}_{red} has a K-rational point, and if A is any perfect field containing K, then $Pic(\mathbf{x}_A) \neq P(A)$ is bijective.

(2.6) (Appendix to §2). The following proposition is meant to give a more complete picture of how our basic data (\mathbf{x} , k, f) can be defined. It will not be used elsewhere in this paper.

To begin with, observe that if $(\mathbf{x}, \mathbf{k}, \mathbf{f})$ is as in (2.2), then f induces a proper map

$$f_{\mathbf{f}_0}: (\mathbf{x}, \ \theta_{\mathbf{x}}/f_0) = \mathbf{x}_{red} \rightarrow Spec(k)$$

(cf. (2.2)). Hence $\operatorname{H}^{O}(\mathfrak{X}, \mathcal{O}_{\mathfrak{X}_{red}})$ is a finite k-module (equivalently: a finite W(k)-module) and - <u>a fortiori</u> - a finite $\operatorname{H}^{O}(\mathfrak{X}, \mathcal{O}_{\mathfrak{X}})$ module. Conversely:

PROPOSITION. Let $\mathbf{\tilde{x}}$ be a weakly noetherian formal scheme, and assume that the $H^{0}(\mathbf{\tilde{x}}, \mathcal{O}_{\mathbf{\tilde{x}}})$ -module $H^{0}(\mathbf{\tilde{x}}, \mathcal{O}_{\mathbf{\tilde{x}}_{red}})$ is finitely generated. Let k be a perfect field of characteristic $p \ge 0$, and let

$$f_0: \mathbf{X}_{red} \rightarrow Spec(k)$$

be a proper map of schemes. Then f_0 extends (uniquely, if p > 0) to a map of formal schemes $f: \mathfrak{X} \rightarrow \mathfrak{W}_k$. Furthermore, all the maps $f_{\mathfrak{Y}}$ (cf. (2.2)) are proper.

<u>Proof.</u> (Sketch) f_0 corresponds to a homomorphism $i_0: k \neq H^0(\mathfrak{X}, \mathcal{O}_{\mathfrak{X}_{red}});$ the problem is to lift i_0 to a continuous homomorphism

 $i:W(k) \rightarrow H^{O}(\mathfrak{X}, \mathcal{O}_{\mathfrak{X}}).$

Let $f_0 \supseteq f_1 \supseteq f_2 \supseteq \dots$ be a fundamental system of defining ideals of \mathfrak{X} (cf. (2.1)), and let $H_0 = H^0(\mathfrak{X}, \mathcal{O}_{\mathfrak{X}})/H^0(\mathfrak{X}, f_0)$. We will show below that:

(*) the canonical map
$$H_0 \xrightarrow{\pi} H^0(\mathfrak{X}, \mathcal{O}_{\mathfrak{X}_{red}})$$
 is bijective.

Then the existence of the lifting i follows (since W(k) is formally smooth over its subring \mathbf{Z}_{pZ}) from [EGA 0_{IV}, (19.3.10)] (with $\mathscr{I} = H^{0}(\mathfrak{X}, \mathfrak{f}_{0})$). For the uniqueness when p > 0, cf. [<u>loc. cit.</u> (20.7.5) or (21.5.3)(ii)]. {Or else note that $H^{0}(\mathfrak{X}, \mathfrak{O}_{\mathfrak{X}_{red}})$, being reduced and finite over k, is perfect, and argue as in [SR, p. 48, Prop. 10], using the following easily proved fact in place of [ibid., p. 44, Lemme 1]:

If a, b $\in \operatorname{H}^{O}(\mathfrak{X}, \mathscr{O}_{\mathfrak{X}})$ satisfy a \exists b (mod. $\operatorname{H}^{O}(\mathfrak{X}, \mathfrak{f}_{n})$), then for some N depending only on n we have

$$a^{p^{N}} \equiv b^{p^{N}} \pmod{H^{0}(\mathfrak{X}, f_{n+1})}$$

Now (*) simply says that $H^{0}(\mathfrak{X}, \mathfrak{O}_{\mathfrak{X}}) \to H^{0}(\mathfrak{X}, \mathfrak{O}_{\mathfrak{X}_{red}})$ is surjective, and to prove this we may assume that \mathfrak{X} is <u>connected</u>; then $H^{0}(\mathfrak{X}, \mathfrak{O}_{\mathfrak{X}_{red}})$, being finite over k, is a perfect field, as is its subring H_{0} (since $H^{0}(\mathfrak{X}, \mathfrak{O}_{\mathfrak{X}_{red}})$ is finite over H_{0} , by assumption), say $H_{0} = K$. As above, the identity map K + K lifts to a homomorphism $W(K) \to H^{0}(\mathfrak{X}, \mathfrak{O}_{\mathfrak{X}})$, and thereby, for every ideal of definition \mathfrak{f} , the scheme $(\mathfrak{X}, \mathfrak{O}_{\mathfrak{X}}/\mathfrak{f})$ is a W(K)-scheme. For $\mathfrak{f} = \mathfrak{f}_{0}$ the structural map $(\mathfrak{X}, \mathfrak{O}_{\mathfrak{X}}/\mathfrak{f}_{0}) \to \operatorname{Spec}(W(K))$ factors as

$$(\mathbf{x}, \mathcal{O}_{\mathbf{x}}/\mathcal{J}_{o}) = \mathbf{x}_{red} \rightarrow Spec(H^{O}(\mathbf{x}, \mathcal{O}_{\mathbf{x}_{red}})) \xrightarrow{\text{finite}} Spec(K) \hookrightarrow Spec(W(K)).$$

Note that \mathbf{x}_{red} , being proper over k, is proper over $H^{O}(\mathbf{x}, \mathcal{O}_{\mathbf{x}_{red}})$, and hence also over K. Arguing as below, we see that $(\mathbf{x}, \mathcal{O}_{\mathbf{x}}/f_{n})$ is proper over W(K), whence the kernel of $\pi_{n}: H^{O}(\mathbf{x}, \mathcal{O}_{\mathbf{x}}/f_{n}) \rightarrow H^{O}(\mathbf{x}, \mathcal{O}_{\mathbf{x}}/f_{O})$ is a W(K)-module of <u>finite length</u>. So by [EGA 0_{III}, (13.2.2)], $\pi = \lim_{t \to n} \pi_{n}$ will be surjective if π_{n} is surjective for all n. Let us show more generally for any scheme map $\phi: X \rightarrow Spec(W(K))$ that if ϕ induces a <u>proper</u> map

$$Y = X_{rod} \rightarrow Spec(K) \subset Spec(W(K))$$

then $H^{0}(X, \mathcal{O}_{X}) \rightarrow H^{0}(Y, \mathcal{O}_{Y})$ is surjective.

Let \tilde{K} be an algebraic closure of K. Then W(\tilde{K}) is a <u>faithfully flat</u> W(K)-algebra. In view of [EGA III, (1.4.15)]. (Künneth formula for flat base change) and the fact that

$$Y \otimes_{W(K)} W(\bar{K}) = Y \otimes_{K} \bar{K}$$

is reduced (K being perfect), we may replace X by $X \otimes_{W(K)} W(\bar{K})$, i.e. we may assume that K is algebraically closed. But then $H^{O}(Y, \theta_{Y})$ is a product of copies of K, one for each connected component of Y, so the assertion is obvious.

It remains to be shown that the maps $f_{\mathfrak{X}}$ are all proper. $(\mathfrak{X}, \mathcal{O}_{\mathfrak{X}}/\mathfrak{F})$ is noetherian, and $\mathfrak{X}_{red} = (\mathfrak{X}, \mathcal{O}_{\mathfrak{X}}/\mathfrak{F})_{red}$. By [EGA II (5.4.6) and EGA 01, p. 279, (5.3.1)(vi)] it suffices to show that f_f is locally of finite type; so what we need is that if A is a noetherian W(k)-algebra with a nilpotent ideal N such that A/N is finitely generated over W(k), then also A is finitely generated over W(k). But if a_1, a_2, \ldots, a_r in A are such that their images in A/N are W(k)-algebra generators of A/N, and if b_1, b_2, \ldots, b_s are A-module generators of N, then it is easily seen that

A = W(k)
$$[a_1, a_2, \dots, a_r, b_1, b_2, \dots, b_s]$$
.
Q.E.D.

\$3. Structure of inverse limits of locally algebraic k-groups.

In this section, we establish (1.2)- and a little more- for any group-scheme P of the form $\lim_{\leftarrow} P_n$, where (P_n, f_{mn}) $(n, m, non-negative integers, n \ge m)$ is an inverse system of locally algebraic k-groups (k a field), the maps $f_{mn}:P_n \rightarrow P_m$ $(n \ge m)$ being <u>affine</u> (cf. [EGA IV, §8.2]). (Note that the groupscheme P of §(2.5) is of this form.) This is more or less an exercise, and the results are presumably known, but I could not find them recorded anywhere.

(3.1) By [SGA 3, p. 315], $f_{mn}:P_n \rightarrow P_m$ (n \ge m) factors uniquely as

$$P_n \xrightarrow{u} P_{mn} \xrightarrow{v} P_n$$

where v is a closed immersion and u is affine, faithfully

flat, and finitely presented. $(P_{mn} \text{ is the image, or coimage,} of f_{mn}.)$ For $n_1 \ge n_2$, P_{mn_1} is a closed subgroup of P_{mn_2} , and we can set

$$\bar{P}_{m} = \bigcap_{n \ge m} P_{mn} = \lim_{\substack{\leftarrow \\ n \ge m}} P_{mn}.$$

 \bar{P}_{m} is a closed subgroup of P_{m} , its defining ideal in $\mathcal{O}_{P_{m}}$ being the union of the defining ideals of the P_{mn} . Clearly f_{mn} induces a map $\bar{f}_{mn}:\bar{P}_{n} \rightarrow \bar{P}_{m}$, so we have an inverse system $(\bar{P}_{n}, \bar{f}_{mn})$.

PROPOSITION. (i) <u>P (together with the natural maps</u> $\bar{f}_n: P \rightarrow \bar{P}_n$) <u>is equal to</u> $\lim_{t \to n} \bar{P}_n$.

(ii) <u>The maps</u> $\tilde{f}_{mn}: \tilde{P}_n \to \tilde{P}_m$ and $\tilde{f}_m: P \to \tilde{P}_m$ are affine, <u>faithfully flat</u>, and universally open.

(iii) If K is any algebraically closed field containing k, then

$$\tilde{f}_{m}(K): P(K) \rightarrow \tilde{P}_{m}(K)$$

is surjective.

(iv) $\frac{\text{ker}(\bar{f}_{mn})}{\text{is a closed subgroup of } \text{ker}(f_{mn})}$.

<u>Proof.</u> (i) and (iv) are left to the reader. It is clear that all the maps \bar{f}_{mn} and \bar{f}_{m} are affine. We show below that \bar{f}_{m} is faithfully flat for all m. Since $\bar{f}_{m} = \bar{f}_{mn} \circ \bar{f}_{n}$ for $n \ge m$, it will follow that \bar{f}_{mn} is faithfully flat [EGA IV, (2.2.13)]. This implies that \bar{f}_{mn} is universally open [EGA IV, (2.4.6)] and hence so is \tilde{f}_m [EGA IV, (8.3.8)], proving (ii). As for (iii), since \tilde{f}_{st} is locally of finite type and surjective, it follows that $\tilde{f}_{st}(K)$ is surjective for all $t \ge s$; in particular, $\tilde{f}_{n,n+1}(K)$ is surjective for all $n \ge m$, so any element of $\tilde{P}_m(K)$ can be lifted back to $P(K) = \lim_{n \ge m} \tilde{P}_n(K)$, i.e. $\tilde{f}_m(K)$ is surjective.

So let us show that \tilde{f}_m is faithfully flat. Let $y \in \tilde{P}_m$, and let U be an affine open neighborhood of y in P_m . Since U is noetherian, we see that for some n_o

$$\bar{P}_{m} \cap U = P_{mn} \cap U$$
 for all $n \ge n_{o}$.

But f_{mn} induces a faithfully flat map

$$P_{n} \times_{P_{m}} U \to P_{mn} \times_{P_{m}} U = \bar{P}_{m} \cap U \qquad (n \ge n_{o}).$$

Since $P_n \times_{P_m} U$ and $\bar{P}_m \cap U$ are affine, and since for any ring R an inductive limit of faithfully flat R-algebras is still a faithfully flat R-algebra, we conclude that

$$P \times_{\overline{P}_{m}}(\overline{P}_{m} \cap U) = P \times_{P_{m}} U = \underbrace{\lim}_{n \ge n} (P_{n} \times_{P_{m}} U)$$

is faithfully flat over $\bar{P}_m \cap U$. Thus \bar{f}_m is faithfully flat.

(3.2) Because of Proposition (3.1), we can assume from now on that $P_m = \bar{P}_m$ (so that all the maps $f_{mn} (= \bar{f}_{mn})$ are

faithfully flat etc. etc.). Furthermore, certain additional conditions which may be imposed on the original f_{mn} (for example the condition that ker(f_{mn}) be unipotent) will not be destroyed by this replacement of P_m by \bar{P}_m (because of (iv) in Prop. (3.1)).

We examine now the connected component of the zero-point of P. Let P_n^O be the open and closed subgroup of P_n supported by the connected component of zero in P_n (cf. [DG, ch. II, §5, no. 1]). Then $f_{mn}:P_n \rightarrow P_m$ ($n \ge m$) induces a map $f_{mn}^O:P_n^O \rightarrow P_m^O$, so we have an inverse system (P_n^O, f_{mn}^O) . Set $P^O = \lim_{\leftarrow} P_n^O$.

PROPOSITION. (i) The maps f_{mn}^{o} are affine, faithfully flat and finitely presented; and $ker(f_{mn}^{o})$ is a closed subgroup of $ker(f_{mn})$.

(ii) \underline{P}^{0} is a closed irreducible subgroup of P, and the underlying subspace of \underline{P}^{0} is the connected component of zero in P. Furthermore, if $x \in \underline{P}^{0}$, then the canonical map of local rings $\theta_{P,x} \neq \theta_{P^{0},x}$ is bijective.

<u>Proof.</u> (i) is immediate except perhaps for the surjectivity of f_{mn}^{0} , which follows from the fact that the (topological) image of f_{mn}^{0} is open [EGA IV, (2.4.6)] and closed [DG, p. 249, (5.1)].

As for (ii), it is clear that P^{O} is a closed subgroup of P; and if Q is any connected subspace of P containing zero, then $f_n(Q) \subseteq P_n^O$ for all n $(f_n: P \rightarrow P_n)$ being the natural map) whence $Q \subseteq P^O$ (since $P^O = \lim_{t \to T} P_n^O$ in the category of

<u>topological spaces</u> [EGA IV, 8.2.9]). So for the first assertion of (ii), it remains to be shown that P^{O} is irreducible (hence connected). For this it suffices to show that P^{O} is covered by open irreducible subsets, any two of which have a non-empty intersection. P_{O}^{O} , being irreducible, has such a covering by irreducible affine subsets, and we can cover P^{O} by their inverse images. Since all the maps f_{On}^{O} are affine and each P_{n}^{O} is irreducible, we need only check that <u>a direct limit of rings with</u> <u>irreducible spectrum has irreducible spectrum</u>. But this is easily seen, since "A has irreducible spectrum" means that "for a, b \in A, ab is nilpotent \Leftrightarrow either a or b is nilpotent".

Finally, for $x \in P^{O}$, we have

$$\mathcal{O}_{P,x} = \lim_{\rightarrow} \mathcal{O}_{P_n,f_n}(x) = \lim_{\rightarrow} \mathcal{O}_{P_n^0,f_n}(x) = \mathcal{O}_{P^0,x}$$
Q.E.D.

<u>Remark.</u> Though P^{O} is not algebraic over k in general, it may nevertheless have certain finite-dimensional structural features. For example, when k is perfect, if A_n is the abelian variety which is a quotient of $(P_n^{O})_{red}$ by its maximal linear subgroup L_n (structure theorem of Chevalley) then f_{mn} $(n \ge m)$ induces an <u>epimorphism</u> $A_n \rightarrow A_m$, with infinitesimal kernel. If furthermore the kernel of f_{mn} is unipotent (as would be the case, e.g. in (2.5) [L2; Cor. (2.11)]), then, writing

 $L_n = M_n \times U_n$ (M_n multiplicative, U_n unipotent) we find that f_{mn} induces an <u>isomorphism</u> $M_n \rightarrow M_m$. (3.3) For each n, let $\pi_0(P_n)$ be the étale k-group P_n/P_n^0 (cf. [DG, p. 237, Prop. (1.8)]). The natural map $q_n:P_n \neq \pi_0(P_n)$ is faithfully flat and finitely presented (<u>loc. cit</u>). f_{mn} induces a map $\pi_0(f_{mn}):\pi_0(P_n) \neq \pi_0(P_m)$, so we have an inverse system $(\pi_0(P_n), \pi_0(f_{mn}))$. We set $\pi_0(P) = \lim_{t \to 0} \pi_0(P_n)$.

PROPOSITION. (i) The maps $\pi_0(f_{mn})$ are finite, étale, surjective; and ker $(\pi_0(f_{mn}))$ is a quotient of ker (f_{mn}) .

(ii) The canonical map $q:P \rightarrow \pi_{o}(P)$ is faithfully flat and quasi-compact, with kernel P^{O} (so that the sequence

$$0 \rightarrow P^{0} \rightarrow P \rightarrow \pi_{0}(P) \rightarrow 0$$

is exact in the category of fpqc sheaves). The (topological) fibres of $P \neq \pi_0(P)$ are irreducible, and they are the connected components of P. For any $x \in P$, the canonical map of local rings $\partial_{P,x} \neq \partial_{q^{-1}q(x),x}$ is bijective. If K is an algebraically closed field containing k, then $P(K) \neq \pi_0(P)(K)$ is surjective.

<u>Proof.</u> (i) Consider the commutative diagram (with $n \ge m$):

$$0 \longrightarrow P_{n}^{0} \longrightarrow P_{n} \xrightarrow{q_{n}} \pi_{o}(P_{n}) \longrightarrow 0$$

$$\downarrow f_{mn}^{0} \qquad \downarrow f_{mn} \qquad \downarrow \pi_{o}(f_{mn})$$

$$0 \longrightarrow P_{m}^{0} \longrightarrow P_{m} \xrightarrow{q_{m}} \pi_{o}(P_{m}) \longrightarrow 0$$

The maps in the rows are the natural ones, and the rows are exact

in the category of fppf sheaves (when we identify k-groups with functors of k-algebras...). Since f_{mn}^{O} is an epimorphism of fppf sheaves (Prop. (3.2)), so therefore is the natural map $ker(f_{mn}) \rightarrow ker(\pi_{O}(f_{mn}))$, and we have the second assertion of (i).

 f_{mn} , q_m , and q_n are all faithfully flat - hence surjective and quasi-compact, and then so is $\pi_o(f_{mn})$. Since $\pi_o(P_n)$ and $\pi_o(P_m)$ are étale over k, therefore the map $\pi_o(f_{mn})$ is étale. Thus the kernel of $\pi_o(f_{mn})$ -being quasi-compact and étale over k is finite over k, and it follows that the map $\pi_o(f_{mn})$ is finite.

(ii) For the last assertion, note that we have an inverse system of exact sequences

$$0 \rightarrow P_n^{0}(K) \rightarrow P_n(K) \rightarrow \pi_0(P_n)(K) \rightarrow 0$$

and that $P_{n+1}^{0}(K) \rightarrow P_{n}^{0}(K)$ is <u>surjective</u> for all n (Prop. (3.2)); so on passing to the inverse limit we obtain an exact sequence

$$0 \rightarrow P^{O}(K) \rightarrow P(K) \rightarrow \pi_{O}(P)(K) \rightarrow 0$$

The exactness of $0 \rightarrow P^{0} \rightarrow P \xrightarrow{q} \pi_{0}(P)$ is straightforward. To show that q is flat let $x \in P, y = q(x)$, and let x_{n}, y_{n} be their images in $P_{n}, \pi_{0}(P_{n})$ respectively. Then $\mathcal{O}_{P_{n}, x_{n}}$ is flat over $\mathcal{O}_{\pi_{0}}(P_{n}), y_{n}$, and passing to inductive limits, we see that $\mathcal{O}_{P,x}$ is flat over $\mathcal{O}_{\pi_{0}}(P), y$. Next let $z \in \pi_{0}(P)$, let z_n be the image of z in $\pi_0(P_n)$, and let $Q = q^{-1}(z)$, $Q_n = q_n^{-1}(z)$. Note that Q_n is irreducible, and is a connected component of P_n . The Q_n form an inverse system of schemes, in which the transition maps are affine, and

$$Q = \lim_{t \to \infty} Q_n$$

We show next that $Q_n \rightarrow Q_m$ <u>is surjective;</u> then it follows that Q is non-empty (so that q is surjective - hence faithfully flat) and the proof of Prop. (3.2) (ii) can be imitated to give all the assertions about the fibres of q.

Let \bar{k} be the algebraic closure of k. By a simple translation argument, we deduce from the surjectivity of $P_n^0 \rightarrow P_m^0$ that every component of $Q_n \otimes_k \bar{k}$ maps surjectively onto a component of $Q_m \otimes_k \bar{k}$; since every component of $Q_m \otimes_k \bar{k}$ projects surjectively onto Q_m , we find that $Q_n \rightarrow Q_m$ is indeed surjective.

It remains to be seen that q is quasi-compact. The fibres of the maps $\pi_o(f_n):\pi_o(P) \rightarrow \pi_o(P_n)$ (n ≥ 0) form a basis of open sets on $\pi_o(P)$ (since $\pi_o(P_n)$ is discrete as a topological space); furthermore these fibres are quasi-compact (since $\pi_o(f_n)$ is an affine map), and their inverse images in P are quasi-compact (the affine map $P \rightarrow P_n$ and the finitely presented map $P_n \rightarrow \pi_o(P_n)$ are both quasi-compact, so the composed map $P \rightarrow \pi_o(P_n)$ is quasi-compact); it follows that q is quasicompact. Q.E.D. Remarks.

1. Say that a k-group Q is <u>pro-étale</u> if it is of the form $\lim_{+} Q_n$, where (Q_n, g_{mn}) is an inverse system of the type we have been considering, with all the Q_n <u>étale</u> over k. For example $\pi_0(P)$ is pro-étale. It is immediate that if Q is pro-étale and f:G \rightarrow Q is a map of k-groups, with G <u>connected</u>, then f is the zero-map. From this we see that, with P as above, <u>every map of P into a pro-étale k-group factors uniquely</u> <u>through</u> $P \rightarrow \pi_0(P)$.

2. Let (P_n, f_{mn}) be as above, and assume that the kernel of f_{mn} is <u>unipotent</u> for all m,n. Set $Q_n = \pi_0(P_n)$, $g_{mn} = \pi_0(f_{mn})$; by (i) of Proposition (3.3), the kernel of g_{mn} is étale and also unipotent (i.e. annihilated by p^t for some t, with p = char. of k). Assume also that the abelian group $Q_n(\tilde{k})$ ($\tilde{k} =$ algebraic closure of k) is <u>finitely generated</u> (for each n). (These assumptions hold in the situation described in (2.5), cf. [L2; Prop. (2.7), Cor. (2.11)].)

Let Q_n^t be the kernel of multiplication by p^t in Q_n . Then $Q_n^o \subseteq Q_n^1 \subseteq Q_n^2 \subseteq \ldots$, and since $Q_n(\bar{k})$ is finitely generated, we have, for large t, $Q_n^t = Q_n^{t+1} = \ldots$; so we can set

 $Q_n^{(p)} = \bigcup_t Q_n^t = Q_n^t$ for large t.

Clearly $Q_n^{(p)}$ is finite étale over k, and unipotent; and the quotient $R_n = Q_n/Q_n^{(p)}$ is étale over k. Consider the commutative diagram $(n \ge m)$:

128

$$0 \rightarrow Q_n^{(p)} \rightarrow Q_n \rightarrow R_n \rightarrow 0$$

$$\downarrow \qquad \downarrow \qquad \downarrow$$

$$0 \rightarrow Q_m^{(p)} \rightarrow Q_m \rightarrow R_m \rightarrow 0$$

Straightforward arguments give that:

- (i) Multiplication by p in R_n is a monomorphism.
- (ii) $R_n \rightarrow R_m$ is an isomorphism.
- (iii) $Q_n^{(p)} \rightarrow Q_m^{(p)}$ is an epimorphism.

Then, passing to the inverse limit, we obtain:

There exists an exact sequence

$$0 \rightarrow Q^{(p)} \rightarrow \pi_{0}^{(p)} \rightarrow R \rightarrow 0$$

 $Q^{(p)}$ = inverse limit of unipotent finite étale k-groups.

R = étale k-group such that the abelian group $R(\bar{k})$ (\bar{k} = algebraic closure of k) is finitely generated and without p-torsion.

Here R is already determined by P_1 .

REFERENCES

EGA	A. GROTHENDIECK, J. DIEUDONNÉ, <u>Éléments de Géométrie</u> <u>Algébrique</u> :
01	Springer-Verlag, Heidelberg, 1971.
I, I	I, III(0 _{III}), IV(0 _{IV}), <u>Publ. Math. I.H.E.S.</u> 4,8,
SGA	A. GROTHENDIECK et. al., <u>Séminaire de Géométrie</u> <u>Algébrique:</u>
2	<u>Cohomologie locale des faisceaux cohérents</u> , North-Holland, Amsterdam, 1968.
3	<u>Schémas en groupes I,</u> Lecture Notes in Mathematics no. 151, Springer-Verlag, Heidelberg, 1970.
6	<u>Théorie des intersections et théorème de Riemann-</u> <u>Roch</u> , Lecture Notes in Mathematics no. 225, Springer-Verlag, Heidelberg, 1971.
[AC]	N. BOURBAKI, Algèbre Commutative, Hermann, Paris. (English Translation, 1972).
[B]	JF. BOUTOT, Schéma de Picard local, <u>C. R. Acad. Sc.</u> <u>Paris, 277 (Série A)</u> (1973), 691-694.
[D1]	V. I. DANILOV, On a conjecture of Samuel, <u>Math. USSR</u> <u>Sb. 10</u> (1970), 127-137. (<u>Mat. Sb. 81</u> (123) (1970), 132-144.)
[D2]	, Rings with a discrete group of divisor classes, <u>Math. USSR Sb. 12</u> (1970), 368-386. (<u>Mat. Sb. 83 (125)</u> (1970), 372-389.)
[]]]3]	, On rings with a discrete divisor class group, <u>Math. USSR Sb. 17</u> (1972), 228-236. (<u>Mat. Sb.</u> <u>88 (130)</u> (1972), 229-237.)

- [DG] M. DEMAZURE, P. GABRIEL, <u>Groupes Algébriques</u> (Tome I), North- Holland, Amsterdam, 1970.
- [F] R. M. FOSSUM, <u>The divisor class group of a Krull domain</u>, (Ergebnisse der Math., vol. 74), Springer-Verlag, Heidelberg, 1973.
- [GR] A. GROTHENDIECK, Groupe de Brauer III, in <u>Dix exposés</u> <u>sur la cohomologie des schémas</u>, North-Holland, Amsterdam, 1968.
- [K] W. KRULL, Beiträge zur Arithmetik kommutativer Integritätsbereiche V, Math. Z. 43 (1938), 768-782.
- [L1] J. LIPMAN, Rational Singularities ..., <u>Publ. Math.</u> I.H.E.S. no. 36 (1969), 195-279.
- [L2] , <u>The Picard group of a scheme over an Artin</u> ring, to appear (preprint available).
- [P] D. PRILL, The divisor class groups of some rings of holomorphic functions, Math. <u>Z. 121</u> (1971), 58-80.
- [S1] P. SAMUEL, On unique factorization domains, <u>Illinois</u> J. <u>Math. 5</u> (1961), 1-17.
- [S2] _____, Sur les anneaux factoriels, <u>Bull. Soc.</u> Math. France <u>89</u> (1961), 155-173.
- [SMN] P. SALMON, Su un problema posto da P. Samuel, <u>Atti.</u> <u>Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat.</u> <u>Natur. (8) 40</u> (1966), 801-803.
- [SH] G. SCHEJA, Einige Beispiele faktorieller lokaler Ringe, Math. Ann. 172 (1967), 124-134.
- [SR] J.-P. SERRE, Corps locaux, Hermann, Paris, 1968.

- [ST1] U. STORCH, Über die Divisorenklassengruppen normaler komplexanalytischer Algebren, <u>Math. Ann. 183</u> (1969), 93-104.
- [ST2] _____, Über das Verhalten der Divisorenklassengruppen normaler Algebren bei nicht-ausgearteten Erweiterungen, Habilitationsschrift, Univ. Bochum, (1971).