
PICARD SCHEMES OF FORMAL SCHEMES; APPLICATION TO 

RINGS WITH DISCRETE DIVISOR CLASS GROUP 

Joseph Lipman (I) 

Introduction. 

We are going to apply scheme-theoretic methods - originating 

in the classification theory for codimension one subvarieties of 

a given variety - to questions which have grown out of the 

problem of unique factorization in power series rings. 

Say, with Danilov [D2], that a normal noetherian ring A 

has discrete divisor class group (abbreviated DCG) if the canon- 

ical map of divisor class groups i:C(A) ÷ C(A[[T]]) is 

bijective (2) In §i, a proof (due partially to J.-F. Boutot) of 

the following theorem is outlined: 

THEOREM i. Let A be a complete normal noetherian local 

ring with algebraically closed residue field. If the divisor 

class group C(A) is finitely generated (as an abelian group), 

then A has DCG. 

r ~l~supported by National Science Foundation grant GP-29216 at 
Purdue University. 

(2)For the standard definition of ~, cf. [AC, ch. 7, §I.I0]. 
(Note that the formal power series ring A[[T]] is noetherian 
[AC, ch. 3, ~2.10, Cor. 6], integrally closed [AC, ch. 5, §1.4], 
and flat over A [AC, ch. 3, §3.4, Cor. 

The terminology DCG is explained by the fact that in certain 
cases (cf. [B];~GA 2, pp. 189-191]) with A complete and local, 
C(A) can be made into a locally algebraic group over the residue 
field of A, and this locally algeb[aic group is discrete (i.e. 
zero-dimensional) if and only if i is bijective. 

A survey of results about rings with DCG is given in 
[F, ch. V]. 
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Recall that A is factorial if and only if C(A) = (0) 

[AC, ch. 7, §3]. Also, A local ~ A[[T]] local, with the same 

residue field as A; and A complete ~ A[[T]] complete 

[AC, ch. 3, §2.6]. Hence (by induction): 

COROLLARY i. If A (as in Theorem i) is factorial, then 

so is any formal power series ring A[[TI, T2~...~Tn] ]. 

When the singularities of A are resolvable, more can be 

said: 

THEOREM i' Let A be as in Theorem i, with C(A) finitely 

generated, and suppose that there exists a proper birational map 

X ÷ Spec(A) with X a regular scheme (i.e. all the local rings 

of points on X are regular). Let B be a noetherian local 

ring and let f:A + B be a local bomomorphism making B into 

a formally smooth A-algebra (for the usual maximal ideal topologies 

on A and B). (3) Then B is normal, and the canonical map 

C(A) ÷ C(B) is bijective. 

Some brief historical remarks are in order here. Corollary 1 

was conjectured by Samuel [$2, p. 171]; (4) however Samuel did not 

(3)"Formal smoothness" means that the completion B is A-isomorphic 
to a formal power series ring A[[TI,T2,...,Tn]], where A is 

a complete local noetherian flat A-algebra with maximal ideal 
generated by that of A (cf. [EGA 0IV , 5§19.3, 19.6, 19.7]). In 

particular, B is flat over A. 

(4)For some earlier work on unique factorization in power series 
rings cf. [SI] and [K]. 
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assume that the residue field of A was algebraically closed, 

and without this assumption, the conjecture was found by Salmon 

to be false [SMN]. Later, a whole series of counterexamples was 

constructed by Danilov [DI] and Grothendieck [unpublished]. (5) 

Danilov's work led him to the following modification of Samuel's 

conjecture [DI, p. 131]: 

If A is a local ring which is "geometrically factorial" 

(i.e. the strict henselization of A is factorial) then also 

A[[T]] is geometrically factorial. 

In this general form, the conjecture remains open, though 

some progress has been made by Boutot [unpublished]. 

The study of Samuel's conjecture evolved into the study of 

rings with DCG. A complete normal noetherian local ring A has 

been shown to have DCG in the following cases (6)" 

(~) (Scheja [SH]). A is factorial and depth A ~ 3. 

(i~_) (Storch [ST2]) A contains a field, and the residue 

field of A is algebraically closed and uncountable, with 

cardinality greater than that of C(A). 

[Actually, for such A, Storch essentially proves Theorem i' 

without needing any desingularization X ÷ Spec(A). Storch's 

proof uses a theorem of Ramanujam-Samuel (cf. proof of Theorem i' 

in §I) and an elementary counting argument.] 

(5)In these counterexamples the locally algebraic group of footnote (2) 
above has dimension > 0, but has just one point - namely zero - 
rational over the residue field of A. 

(6)For some investigations in the context of analytic geometry, 
cf. [STI] and [P]. 
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(iii) (Danilov [D3]) If 

either (a) A contains a field of characteristic zero 

or (b) A contains a field, the residue field of A 

is separably closed, and there exists a projective 

map g:X + Spec(A) with X a regular scheme, 

such that g induces an isomorphism 

X - g-l({~}) ~ > Spec(A) {~} 

(m = maximal ideal of A) 

then C(A) finitely generated = A has DCG. 

[Danilov uses a number of results from algebraic geometry, 

among them the theory of the Picard scheme of schemes proper over 

a field, and the resolution of singularities (by Hironaka in 

case (a), and by assumption in case (b)).] 

Significant simplifications have been brought about by 

Boutot. His lemma (§i) enabled him to eliminate all assumptions 

about resolution of singularities in the above-quoted result of 

Danilov, and also to modify the proof of Theorem i' to obtain the 

proof of Theorem 1 which appears in §i below. 

Our proof of Theorem i' is basically a combination of ideas 

of Danilov and Storch, except that in order to treat the case 

when A does not contain a field, we need a theory of Picard 

schemes for schemes proper over a complete local ring of mixed 

characteristic. This theory - which is the main underlying 

novelty in the paper - is given in 5§2-3. 
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gl. Proofs of Theorems 1 and i'. 

The two theorems have much in common, and we will prove them 

together. Let A, B be as in Theorem I'; for Theorem i we will 

simply take B = A[[T]]. Since A is local and B is faithfully 

flat over A, the canonical map C(A) ÷ C(B) is injective 

IF, Prop. 6.10]; so we need only show that C(A) ÷ C(B) is 

surjective. 

Both B and its completion B are normal: when B = A[[T]] 

this is clear; and under the assumption of Theorem i', since B 

and B are formally smooth over A, it follows from the existence 

of the "desingularization" X + Spec(A) ILl, Lemma 16.1]. As 

above, since B is faithfully flat over B, C(B) ÷ C(B) is 

injective, and consequently we may assume that B = 

(= A[[T I, r 2 .... ,Tn]], cf. footnote (3) in the Introduction). 

[Note here that if R C S C T are normal noetherian rings with 

S flat over R and T flat over S (and hence over R), then 

the composition of the canonical maps 

C(R) ÷ C(S) + C(T) 

i ss t h e  c a n o n i c a l  map C(S) + C ( T ) . ]  

Let M be the maximal ideal of A. Then MA is the maximal 

ideal of A, and by the theorem of Ramanujam-Samuel [F, Prop. 19.14], 

c(B)  + C(BMB) 

i s  b i j e c t i v e .  F u r t h e r m o r e  [EGA 01,  p .  170,  Cor .  ( 6 . 8 . 3 ) ] ,  t h e r e  
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exists a complete local noetherian flat BMB-algebra B* such 

that B*/MB* is an algebraically closed field. B* is formally 

smooth over A (footnote (3) above) so under the hypotheses of 

Theorem i', B* is normal; furthermore B* 

over BMB , so that, as before 

is inj ective. 

C(A) + C(B*) 

is faithfully flat 

C(BMB ) + C(B*) 

Thus for Theorem i' it suffices to show that 

is surjective. 

To continue the proof of Theorem I', let U A be the domain 

of definition of the rational map inverse to X ÷ Spec(A). Then 

U A is isomorphic to an open subscheme of X, so we have a 

surjective map Pic(X) ÷ PiC(UA) [EGA IV, (21.6.11)]; further- 

more the codimension of Spec(A) U A in Spec(A) is m 2, so 

there is a natural isomorphism PiC(UA)~+ C(A) [ibid, (21.6.12)]. 

Similar considerations hold with B* in place of A, and 

X* = X ®A B* in place of X. (The projection X* ÷ Spec(B) is 

proper and birational, and X* is a regular scheme [LI, Lemma 16.1].) 

There results a commutative diagram 

Pic (X)  -.~ PiC(UA) > C(A) 

P i c ( X * )  > PIC(UB, ) > C(B ~) 

Since Pic(X*) ÷ PiC(UB,) 

enough to show that Pic(X) ÷ Pic(X*) 

is surjective, it will be more than 

is bijective. 
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The corresponding step in the proof of Theorem 1 is more 

involved, and goes as follows. Let B = A[[T]], let B* be as 

above, and let I be a divisorial ideal in B. We will show 

below that there exists an open subset U A of Spec(A) whose 

complement has codimension m 2, and such that, with 

U B = (UA)®AB (C S p e c ( B ) ) ,  U* = (UA)®AB* (C_ Spec(B*)) 

we have that 

( i )  IB is a principal ideal in B ---q q 

q e UB, and 

for all prime ideals 

(ii) the canonical map v:PiC(UB) + Pic(U*) 

Now there is a natural commutative diagram 

PiC(UA) ~ > PiC(UB) 

C(A) > C(B) 

is injective. 

cf. [EGA IV, (21.6.10)]. Since B is flat over A, it is 

immediate (from the corresponding property for UA) that the 

complement of U B in Spec(B) has codimension ~ 2; hence 

(i) signifies that the element of C(B) determined by I is of 

the form ~B(~) for some ~ e PiC(UB~_~. So if we could show that 

lies in the image of X, then we would have the desired 

surjectivity of C(A) ÷ C(B). 

At this point we need: 
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LEMMA (J.-F. Boutot) (I) 

birational map ~:X + Spec(A) such that 

morphism ~-I(UA)-~ UA, and such that 

the canonical map Pic(X ®A B) ~ PiC(UB~. 

(Here X may be taken to be normal, but not necessarily regular.) 

Setting X* = X®AB* , we have a natural commutative diagram 

There exists a projective 

induces an iso- 

lies in the image of 

Let 

U A = {p e Spec(A) IA p is a regular local ring}. 

By a theorem of Nagata [EGA IV (6.12.7)], U A is open in 

Spec(A); and certainly, A being normal, the codimension of 

Spec(A) - U A in Spec(A) is a 2. Since the fibres of 

Spec(B) ÷ Spec(A) are regular [EGA IV, (7.5.1)], therefore Bq 

is regular for all q e U B [EGA 0IV , (17.3.3)], and (i) follows. 

(1)The proof, which will appear in Boutot's th~se, was presented 
at a seminar at Harvard University in January, 1972. 

with v injective (cf. (ii) above). A simple diagram chase 

shows then that for ~ to lie in the image of ~, it more than 

suffices that Pic(X) + Pic(X*) be bijective. 

Let us finish off this part of the argument by constructing 

U A satisfying (i) and (ii). lit will then remain - for proving 

both Theorems 1 and i' to examine the map Pic(X) ÷ Pic(X*).] 

Pic(X) > Pic(X ®A B) > Pic(X ~) 

PiC(UA ) 1 > PiC(UB ) ~ > Pic(U*) 
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A) 

As for (ii), setting U' = UA®ABMB (M = maximal ideal of 

we have the commutative diagram 

Pic (UB) > Pic(U') 

; $ 
c(B) > C(BMB) 

in which the vertical arrows are isomorphisms [EGA IV, (21.6.12)], 

and also C(B) ÷ C(BMB ) is an isomorphism (cf. above); so we 

have to show that Pic(U') ÷ Pic(U ±) is injective. Since 

Pic(U') is isomorphic to C(BMB), this injectivity amounts to 

the following statement: 

(#) Let I be a divisorial ideal of B~B ~ and let p* be the 

coherent ideal sheaf on Spec(B*) determined by the ideal IB*. 

If ~*IU* ~ OU, , then I is a principal ideal. 

Since BMB is local, and B* is faithfully flat over BMB, 

we have 

I principal ~ I invertible ~ IB* invertible. 

Now I is a reflexive BMB-mOdule [CA, p. 519, Ex. (2)], and 

therefore IB* is a reflexive B*-module [ibid, p. 520, Prop. 8]. 

Since B* is flat over BMB, it follows (from the corresponding 

property of U') that for every prime ideal P in B* such that 

P ~ U*, the local ring B~ has depth ~ 2. This being so, if 

i:U* ÷ Spec(B*) is the inclusion map, then the natural map 

~Spec (B*) ÷ i*(~U*) 
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is an isomorphism [EGA IV, (5.10.5)]. Since IB* is reflexive, 

application of HOmB,(. , B*) to a'~inite presentation" 

(B*) n + (B*) m ÷ HomB,(IB* , B*) ÷ O, 

gives an exact sequence 

0 ÷ I B *  ÷ ( B * )  m ÷ ( B * )  n ,  

w h e n c e  a c o m m u t a t i v e  d i a g r a m ,  w i t h  e x a c t  r o w s ,  

0 ÷ i , ( # * I u * )  + i , ( ~  m n u,) ÷ i,(@u,) 

from which we conclude that the canonical map 

[@= ~Spec(B,)] 

y *  + i , (# * Iu  ~)[~ i , (  @u,)] 

i s  an i somorph ism.  Thus .~* i s  i s o m o r p h i c  to  

(ii) is proved. 

~Spec (B*) ' and 

The rest of the discussion applies to both Theorems (i and i'). 

We must now examine the map Pic(X) ÷ Pic(X*). 

The kernel of the surjective map Pic(X) ÷ Pic(U A) consists 

of the linear equivalence classes of those divisors on X which 

are supported on X - UA; hence (X being assumed to be normal) 

this kernel is isomorphic to a subgroup of the free 
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abelian group generated by those irreducible components of 

X - U A having codimension one in X; since PiC(UA) C C(A), 

and C(A) is finitely generated, therefore Pic(X) is finitely 

g e n e r a t e d .  

L e t  k ( r e s p .  k*) be t h e  r e s i d u e  f i e l d  o f  A ( r e s p .  B*) .  

T h e r e  i s  an o b v i o u s  map k ÷ k* .  In  ~2 we w i l l  show t h a t  

(I.i) There exists a k-group-scheme P and a commutative 

diagram 

P (k) ; P (k*) 

Pic (X) > Pic (X*) 

Here P(k) ÷ P(k*) is the map from k-valued points of P to 

k*-valued points corresponding to the map k ÷ k*; and the 

vertical maps are isomorphisms. 

Furthermore, in §3 it will be shown that 

(1.2) There exists a closed irreducible k-subgroup pO of 

P~ whose underlying subspace is the connected component of the 

zero point of P, and such that: 

(i) pO is the inverse limit of its algebraic (= finite 

type over k) ~uotients; moreover if P is such a 

quotient, then P(k) ÷ P(k) is surjective. 
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(ii) p/pO = lim Qn where Qn is a discrete (= reduced J 

n>O 

and zero-dimensional) locally algebraic k-group; 

moreover P(K) ÷ (P/P°)(K) is surjective for an X 

algebraically closed field K ~ k. 

To show that Pic(X) ÷ Pic(X*) is bijective, it will then 

suffice to show that pO is infinitesimal [in other words, every 

algebraic quotient of pO is zero-dimensional, so that 

P°(k) = P°(k*) = 0, whence Pic(X) ÷ Pic(X*) can be identified 

with the map 

lim (Qn(k) ÷ Qn(k*)) 

n 

which is obviously bijective]. 

But since P°(k) C P(k) is finitely generated, so is P(k) 

for any algebraic quotient P of po. By the structure theorem 

for connected reduced commutative algebraic groups over an 

algebraically closed field, we know that >red has a composition 

series whose factors are multiplicative groups, additive groups, 

and abelian varieties. It follows easily that if >(k) = >red(k) 

is finitely generated, then >(k) = O, i.e. > is zero-dimensional. 

~2. The Picard Scheme of a Formal Scheme. 

In this section we establish the existence of a natural group- 

scheme structure on Pic(1) for certain formal schemes I . (If 
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P~I = (0) (of. (2.2)) there will be nothing new here. For the case 

P~I ~ (0), most of the work is carried out in [L2], whose results 

will be quoted and used.) From this we will obtain (I.i). However, 

for completeness, we prove more general results than are required 

in the proof of Theorems 1 and i' 

DEFINITION (2.1). A formal scheme (I, ~i) is weakly 

noetherian if I has a fundamental system of ideals of definition 

J0 ~jl ~J2 ~ "'" such that for each n a 0 the scheme 

(I, ~X~/n ) is noetherian. 

It amounts to the same thing to say: in the category of 

formal schemes, 

I = lim X n 
n~0 

where X 0 ÷ X 1 ~ X 2 + ... is a sequence of immersions of noetherian 

schemes Xn, the underlying topological maps being homeomorphisms 

(cf. [EGA 01, ~i0.6, pp. 411-413]). 

Any noetherian formal scheme is weakly noetherian [ibid, 

middle of p. 414]. 

If I is weakly noetherian and J is any ideal of definition, 

then (I, ~/J) is a noetherian scheme; indeed, J~jn for 

some n (since I is quasi-compact) so that (I, ~X/J) is a 

closed subscheme of the noetherian scheme (I, ~i/Jn). In 

particular, taking J to be the largest ideal of definition of 
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~, we see that we may - and, for convenience, we always will - 

assume that the scheme Ire d (I, ~/jO ) is reduced. (Cf. 

[EGA 01, p. 172 (7.1.6)].) 

Next, let k be a perfect field of characteristic p a 0. 

For p > 0 let W(k) be the ring of (infinite) Witt vectors 

with coefficients in k; and for p = 0 let W(k) be the field 

k itself. W(k) is complete for the topology defined by the 

ideal pW(k); the corresponding formal scheme Spf(W(k)) will be 

denoted by ~k" 

(2.2) 

(i) 

(ii) 

(iii) 

In what follows we consider a triple 

I a weakly noetherian formal scheme. 

(I, k, f) with: 

k a perfect field of characteristic p a 0. 

f:~ ÷~B k a morphism of formal schemes such that for 

every ideal of definition J of I, the induced map of 

schemes 

fj: el, ~/J) + SpecCWCk)) 

is proper (1) 

Remarks. Morphisms f:I ÷~k are in one-one correspondence 

with continuous homomorphisms i:W(k) ÷ H°(I, ~) [EGA 01, p. 407, 

(10.4.6)] [2j" - The above map f) corresponds to the composed 

(i) For (iii) to hold it suffices that fJ be proper for one J 
(cf. (2.6) below). 

(2) The existence of such an i implies that p is topologically 
nilpotent in H°(I, ~) (since the image of a topologically nilpotent 
element under a contfnuous homomorphism is again topologically nil- 
potent). On the other hand, if p is topologically nilpotent in 

homomorphism H°(I,~i), then clearly every ring W(k) ÷ H°(I, ~i) is 
continuous. 
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homomorphism 

W(k) i > Ho(I, ~X ) canon ica l  > HocI, ~i/]). 

It is practically immediate that f/(1) 

closed point of Spec(W(k)). 

is supported in the 

Example. Let R be a complete noetherian local ring with 

maximal ideal M and residue field k (perfect, of characteristic 

p m 0); let g:X ÷ Spec(R) be a proper map; and let I be the 

formal completion of X along the closed fibre g-l({M}). The 

structure theory of complete local rings gives the existence of 

a (continuous) homomorphism W(k) ÷ R; composing with the map 

R ÷ H°(~[, ~][) [:  H°(X, (~X) ] 

determined by g, we obtain i:W(k) ÷ H°(I, ~i), whence a triple 

(I, k, f) as above. 

(2.3) For any k-algebra A let Wn(A) (resp. W(A)) be 

the ring of Witt vectors of length n (resp. of infinite length) 

with coefficients in A. (Wn(A) = W(A) = A if p = 0.) We 

consider Wn(A) to be a discrete topological ring, and give W(A) 

the topology for which K 1 D K 2 D K 3 D ... is a fundamental system 

of neighborhoods of 0, K n being the kernel of the canonical map 

W(A) ÷ Wn(A ) (n a i); then, in the category of topological rings, 

W(A) = lira Wn(A). 
( 

n21 
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2 
It is not hard to see that K 1 = PKl, whence 

Kn+l 
1 = pnKI ~ Kn ; 

so W(A) is an "admissible" ring, and we may let H A be the 

affine formal scheme 

~A = Spf(W(A)). 

In particular, for A = k, we get the same ~k as in (2.1). If 

B is an A-algebra, then W(B) is in an obvious way a topological 

W(A)-algebra, so that ~A varies functorially with A. 

With f:I ÷~k as in [2.2), we set 

IA = I X~k~ A = I~W(k)W(A ) 

(product in the category of formal schemes). We have then the 

covariant functor of k-algebras 

A ÷ Pic(IA). 

What we show below is that the fpqc sheaf P associated to this 

functor is a k-group scheme~ and that furthermore the canonical 

map Pic(IA) ÷ P(A) is bijective if A is an algebraically 

closed field. 

Example (continued from (2.2)). Suppose that I is obtained 

from a proper map g:X + Spec(R) as in the example of (2.2). For 
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A 

any k-algebra A, setting R A = R ®W(k)W(A) (completed tensor 

product, R being topologized as usual by its maximal ideal M), 

we have 

I A = I S W ( k ) W ( A  ) = 35 RRA . 

Now if A is a perfect field, then R A has the following properties, 

which characterize R A as an R-algebra (up to isomorphism): R A 

is a complete local noetherian flat R-algebra such that 

RA/MR A m A (cf. [EGA 01, p. 190, (7.7.10)] and [EGA 0IV, (19.7.2)]). 

Furthermore, I A is then the completion of the scheme X A = X®RR A 

along the closed fibre of the projection gA:XA ÷ Spec(RA). Hence 

Grothendieck's algebrization theorem [EGA III, (5.1.6)] gives 

that "completion" is an equivalence from the category of coherent 

~A-mOdules to the category of coherent ~IA-m°dules" Since an 

B -module is invertible if and only if so is its completion (3) we 

deduce a natural isomorphism 

Pic(X A) ~ PiC(~A). 

Hence, restricting our attention to those A which are 

algebraically closed fields, we will have an A-functorial iso- 

morphism 

Pic(X A) a P(A). 

(3)This follows easily from the fact that the completion BI of a 
noetherian ring B w.r.t, an ideal I is faithfully flat ove~ 
the ring of fractions BI+I, so that if J is a B-ideal with JB I 
a projective Bi-module , then JBI+ I is a projective Bl+i-module. 
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This gives us the diagram (I.I) which is needed in the last 

step of the proof of Theorems 1 and 1'. 

(2.4) We fix a fundamental system j0 ~ ~i ~ ~2 ~ "'" of 

defining ideals of ~, and for n a 0 let X n be the scheme 

(I, ~i/Jn). For any k-algebra A, let Xn, A be the scheme 

Xn, A = X n ®W(k)Wn(A) • 

The ringed spaces X0,A, XI,A,...,Xn,A,... and I A all have the 

same underlying topological space, say X, and on this space X 

we have ~IA = ~im ~X . Hence there is a natural map 
n n,A 

(*) PiC(IA) ÷ lim~ Pic(X n,A ). 

n 

LEMMA. Let A be a k-algebra~ and if p > 0 assume that 

A p = A (i.e. the Frobenius endomorphism x + x p of A is 

surjective). Then the above map (*) is bijective. 

Remark. When p > 0 and A p = A, or when p = 0, then 

Xn, A = X ® W ( k ) W ( A ) .  

P r o o f  o f  Lemma. Say  t h a t  an o p e n  s u b s e t  U o f  X i s  a f f i n e  

The a f f i n e  o p e n  if (U, ~IAIU) is an affine formal scheme. 
d ~  

sets form a base for the topology of X. 

For each n, let ~n be the sheaf of multiplicative units 

in the sheaf of rings ~Xn,A (on the topological space X) and 

let 
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~= lim 9 n+-- = sheaf of units in ~I A. 

n 

- is nilpotent; so a For m > n, the kernel of @Xm, A ÷ ~Xn, A 

simple argument ([L2, Lemma (7.2)], with the Zariski topology in 

place of the ~tale topology) shows that for affine U the 

canonical maps 

Hi(u, ~m ) ÷ Hi(u, ~n ) 

are bijective if i > 0, and surjective if i = 0. Applying 

[EGA 0IiI, (13.3.1)], we deduce that for all i > 0, the maps 

Hi(x ~) + lim Hi(x ~n) 
n 

are surjective. Furthermore, in order that 

Hl(x, g) ÷ li._m HI(x, 9n ) 
n fl fl 

Pic(IA) lim~ Pic(X n,A ) 
n 

be bijective, it is sufficient that the inverse system H°(X, 9;n)n~ 0 

satisfies the Mittag-Leffler condition (ML); and for this it is 

enough that the inverse system H°(X' ~X ) should satisfy (ML); 
n,A 

that is, for each fixed n, if I (m t n) is the image of mn 

H°(X, ~Xm ' ) ÷ H°(X, ~Xn ), then the sequence 
A ,A 

(**) I D In+l, n D D ... n,n - - In+2,n - 
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should stabilize (i.e. IN, n = IN+I, n = IN+2, n = ... for some N). 

For p > 0 it is shown in [L2, Corollary (0.2) and 

Theorem (2.4)]that the fpqc sheaf H associated to the functor 

A "+ H ° (X, ~X ) 
n , A  

(of k-algebras A) is an affine algebraic k-group; 

[ibid, Corollary (4.4)] the canonical map 

furthermore 

H°(X, ~Xn,A) -~ ~(A) 

is bijective whenever A p = A; and finally, for m m n, if 

I is the image  ( i n  t h e  c a t e g o r y  o f  a l g e b r a i c  k - g r o u p s )  o f  
=mn 

the natural map H ÷ Hn, and i f  A p = A, t h e n  t h e  c a n o n i c a l  
= m  

map 

~m(A) + I=m n (A) 

is surjective, so that Imn = ~mn(A) [cf. ibid, last part of 

proof of (6.3)]. Similar facts when p = 0 are well-known (and 

more elementary). 

Now the sequence 

I D I=n+l,n _ _ =n,n - D ~n+2,n D ... 

of closed subgroups of H must stabilize, whence so must the 
=n 

sequence (**). Q.E.D. 
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(2.5) Before stating the basic existence theorem we need 

some more notation. For any scheme Y, Br(Y) will be the 

cohomological Brauer group of Y: 

Br(Y) = H~ etale(Y, multiplicative group). 

For any ring R we set: 

Br(R) = Br(Spec(R)) 

Pic(R) = Pic(Spec(R)) 

Rre d = R/nilradical of R. 

For any defining ideal J of I and any k-algebra A: 

Finally, we set 

t J =  the scheme (X, @t/J) 

tJ,A= tJ  ®W (k) W (A) • 

k 0 = H °(fred, ~Ired )" 

Since Ire d is proper over k (cf (2.2)), therefore k 0 is a 

finite product of finite field extensions of k. 

Now for any J, we have (cf (2.2)) a proper map 

fj: •J÷ Spec(W(k)) 

whose image is supported in the closed point of Spec(W(k)). 
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Hence, when p > 0, [L2, Theorem (7.5)] gives us a k-group- 

scheme PJ and, for all k-algebras A with A p = A, an exact 

A- functorial sequence 

0 ÷ P i c ( k  0 ® k A r e d  ) ÷ P i c ( t j ,  A) ÷ P ] ( A )  

+ B r ( k  0 ® k A r e d  ) + B r ( t j ,  A) 

A s i m i l a r  r e s u l t  i s  w e l l - k n o w n  f o r  p = 0,  o r  more  g e n e r a l l y  

when P 0 ~  = ( 0 ) ,  w i t h  no c o n d i t i o n  on A, s i n c e  t h e n  5 ]  i s  

p r o p e r  o v e r  t h e  f i e l d  k ( c f  [GR, Cor .  5 . 3 ] ) .  

A l s o ,  i f  j C ~ '  , t h e n  t h e  c a n o n i c a l  map 

mJ÷ PJ' 

i s  a f f i n e  ([SGA 6, Expose  X I I ,  P r o p .  ( 3 . 5 ) ]  when p = 0, and  

[L2, P r o p .  ( 2 . 5 ) ]  when p > 0 ) .  Thus P = l i m  Pg e x i s t s  as  a 

k-group-scheme (cf. [EGA IV, 58.2]). ] 

Now, in view of Lemma (2.4), a simple passage to inverse 

limits gives the desired result: 

THEOREM. There exists a k-group scheme P, and for k-algebras 

A such that A p = A (the condition A p = A is vacuous when p = 0) 

an exact sequence, varying functorially with A, 

0 + Pic(k 0 (gkAred) ÷ Pic(I A) ÷ P(A) ÷ 

÷ 9 ker[Br(k0 ®kAred ) ÷ Br(~},A) ] • 
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COROLLARY. If A is an algebraically closed field, then 

the above map Pic(I A) ÷ P(A~ is bijective. 

For, then Pic(k 0 ®kAred ) = Br(k 0 ®kAred ) = (0). (4) 

Remarks, i. The k-group-scheme P is uniquely determined 

by the requirements of the Theorem. Indeed, since for every 

k-algebra A there exists a faithfully flat A-algebra A with 

AP = A [L2, Lemma (0.i)], and since every element in Pic(k o ®kAred ) 

or in Br(k o ®kAred ) is locally trivial for the 6tale topology 

on A, it follows easily that P is the fpqc sheaf associated 

to the functor A ÷ PiC(IA) of k-algebras A. 

2. pO, the connected component of zero in P, is described 

in (3.2) below. The remarks following (1.2) suggest that the 

following conjecture - or some variant - should hold: 

Conjecture: pO is infinitesimal if and only if the natural 

(split in~ective~ map 

Pic(1) ÷ Pic(I SW W[[T]]) (w = W(k)) 

is bijective. 

(4)The Corollary, which is what we need for Theorems 1 and i', could 
be proved more directly, using [L2, §i, comments on part II]; then 
we could do without our Lemma (2.4), and without introducing "Br". 
In a similar vein it can be deduced from the Theorem - or shown more 
directly - that if K is a normal algebraic field extension of k such 
that every connected component of Ire d has a K-rational point, and 
if A is any perfect field containing K, then PiC(IA) + P(A) is 
bijective. 
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(2.6) (Appendix to §2). The following proposition is 

meant to give a more complete pictureof how our basic data 

(I, k, f) can be defined. It will not be used elsewhere in this 

paper. 

To begin with, observe that if (I, k, f) is as in (2.2), 

then f induces a proper map 

f}0:(I' ~i/JO) = Ire d ÷ Spec(k) 

(cf. (2.2)). Hence H°(I, ~ired ) is a finite k-module (equivalently: 

a finite W(k)-module) and - afortiori - a finite H°(I, ~i) 

module. Conversely: 

PROPOSITION. Let I be a weakly noetherian formal scheme~ 

and assume that the H°(I, ~i)-module H°(I, ~ired) is finitely 

generated. Let k be a perfect field of characteristic p m 0, 

and let 

f0:Ired ÷ Spec(k) 

be a proper map of schemes. Then fo extends (uniquely, if 

p > 0) to a map of formal schemes f:I +~k" Furthermore, all 

the maps f~ (cf. (2.2)) are proper. 

Proof. (Sketch) 

io:k ÷ H°(I' @I ); 
red 

homomorphism 

f corresponds to a homomorphism 
o 

the problem is to lift i o to a continuous 

i:W(k) ÷ H°(~, @i). 
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Let /o ~ Jl ~j2 ~ "'" be a fundamental system of defining 

ideals of I (cf. (2.i)), and let H o = H°(I, ~i)/H°(I, Jo ). 

We will show below that: 

(*) the canonical map Ho-~H°(I, @fred ) is bijective. 

Then the existence of the lifting i follows (since W(k) is 

formally smooth over its subring 2pZ ) from [EGA 0IV, (19.3.10)] 

(with -J~= H°(I, Jo)). For the uniqueness when p > 0, cf. 

[loc. cir. (20.7.5) or (21.5.3)(ii)]. {Or else note that 

H°(I, @~red), being reduced and finite over k, is perfect, and 

argue as in [SR, p. 48, Prop. i0], using the following easily 

proved fact in place of [ibid., p. 44, Lemme I]: 

If a, b e H°(I, @i) satisfy a ~ b (modo H°(I, ~n)), then 

for some N depending only on n we have 

N N 
a p = b p 

Now (*) simply says that 

(mod. H°(t, ~n+l)).) 

H°(t, ~t) + H°(t, ~ red  ) is 

surjective, and to prove this we may assume that I is connected; 

then H°(I, ~red ), being finite over k, is a perfect field, as 

is its subring H o (since H°(~, ~ired ) is finite over Ho, by 

assumption), say H ° = K. As above, the identity map K ÷ K lifts 

to a homomorphism W(K) + H°(I, ~i), and thereby, for every ideal 

of definition J, the scheme (I, ~/J) is a W(K)-scheme. For 

= Jo the structural map (I, ~i/Jo) ÷ Spec(W(K)) factors as 
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finite 
(I, ~i/jo) = ~red + Spec(H°(X, ~Ired) ) > Spec(K)~-~ Spec(W(K)). 

Note that fred, being proper over k, is proper over H°(I, ~Ired ), 

and hence also over K. Arguing as below, we see that 

(I, ~/J~) is proper over W(K), whence the kernel of 

~n:H°(I' ~/Jn ) ÷ H°(I' ~I/Jo ) is a W(K)-module of finite length 

So by [EGA 0iii, (13.2.2)], ~= lim ~n will be surjective if ~n 

is surjective for all n. Let us show more generally for any 

scheme map ¢:X + Spec(W(K)) that if @ induces a proper map 

Y = Xre d ÷ Spec(K) C Spec(W(K)) 

then H°(X, ~X) ÷ H°(Y, ~y) is surjective. 

Let K be an algebraic closure of K. Then W(K) is a 

faithfully flat W(K)-algebra. In view of [EGA III, (1.4.15)]. 

(KUnneth formula for flat base change) and the fact that 

Y®WCK)WCK) = Y ®KS 

is reduced (K being perfect), we may replace X by X ®W(K)W(K), 

i.e. we may assume that K is algebraically closed. But then 

H°(Y, ~y) is a product of copies of K, one for each connected 

component of Y, so the assertion is obvious. 

It remains to be shown that the maps f$ are all proper. 
u 

(I, ~i/~) is noetherian, and ~red = (I, ~i/J)red. By [EGA 

II (5.4.6) and EGA 01, p. 279, (S.3.1)(vi)] it suffices to show 
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that fj is locally of finite type; so what we need is that if 

A is a noetherian W(k)-algebra with a nilpotent ideal N such 

that A/N is finitely generated over W(k), then also A is 

finitely generated over W(k). But if al, a2,...,a r in A are 

such that their images in A/N are W(k)-algebra generators of 

A/N, and if b I, b2,...,b s are A-module generators of N, then 

it is easily seen that 

A = W(k)[al, a2,...,ar, bl, b 2 ..... bs]. 

Q.E.D. 

§3. Structure of inverse limits of locally algebraic k-groups. 

In this section, we establish (1.2)- and a little more- for 

any group-scheme P of the form lim P where n' (Pn' flnn ) 

(n, m, non-negative integers, n > m) is an inverse system of 

÷ P locally algebraic k-groups (k a field), the maps fmn:Pn m 

(n > m) being affine (cf. [EGA IV, §8.2]). (Note that the group- 

scheme P of §(2.5) is of this form.) This is more or less an 

exercise, and the results are presumably known, but I could not 

find them recorded anywhere. 

+ P (n > m) factors (3.1) By [SGA 3, p. 315], fmn:Pn m 

uniquely as 

p u > p ¢ v > p 

n mn n 

where v is a closed immersion and u is affine, faithfully 



121 

flat, and finitely presented. 

of fmn.) For n I m n2, P 
mn 1 

and we can set 

(Pmn is the image, or coimage, 

is a closed subgroup of P 
mn 2 ' 

Pm = N Pmn = lim P . + mn 
n~m nkm 

Pm is a closed subgroup of Pm' its defining ideal in Op 
m 

being the union of the defining ideals of the Pmn" Clearly fmn 

induces a map fmn:Pn ÷ Pm' so we have an inverse system (Pn' fmn )" 

PROPOSITION. (i) P (together with the natural maps 

fn:P ÷ Pn) is equal to lim Pn" 

(ii) The maps fmn:Pn ÷ Pm and fm :p ÷ Pm 

faithfully flat, and universally open. 

are affine~ 

(iii) If K is any algebraically closed field containing 

k, then 

fm(K):P(K) + Pm(K) 

is surjective. 

(iv) ker(fmn ) is a closed subgroup of ker(fmn)__ t. 

Proof. (i) and (iv) are left to the reader. It is clear 

that all the maps fmn and fm are affine. We show below that 

o fm is faithfully flat for all m. Since fm = fmn fn for 

n m m, it will follow that fmn is faithfully flat [EGA IV, 

(2.2.13)]. This implies that fmn is universally open [EGA IV, 



122 

(2.4.6)] and hence so is fm [EGA IV, (8.3.8)], proving (ii). 

As for (iii), since fst is locally of finite type and surjective, 

it follows that fst(K) is surjective for all t ~ s; in 

particular, fn,n+l(K) is surjective for all n ~ m, so any 

element of Pm(K) can be lifted back to P(K) = lim Pn(K), i.e. 

n~m 

fm(K) is surjective. 

So let us show that fm is faithfully flat. Let y e Pm' 

and let U be an affine open neighborhood of y in Pm" Since 

U is noetherian, we see that for some n 
O 

PmnU = PmnnU for all n a n o . 

But fmn induces a faithfully flat map 

Pn mn P m Xp U ÷ P x U = P n u (n ~ no). 
m m 

Since Pn m Xp U and P nu are affine, and since for any ring 
m 

an inductive limit of faithfully flat R-algebras is still a 

faithfully flat R-algebra, we conclude that 

P X~m(P mnU) = P XPmU = ~ (Pn XPmU) 

O 

is faithfully flat over a mNU. Thus fm is faithfully flat. 

(3.2) Because of Proposition (3.1), we can assume from now 

on that Pm = Pm (so that all the maps fmn (= fmn ) are 



123 

faithfully flat etc. etc.). Furthermore, certain additional 

conditions which may be imposed on the original fmn (for 

example the condition that ker(fmn ) be unipotent) will not be 

destroyed by this replacement of Pm by Pm (because of (iv) 

in Prop. (3.1)). 

We examine now the connected component of the zero-point of 

P. Let pO be the open and closed subgroup of P supported by 
n n 

the connected component of zero in Pn (cf. [DG, ch. If, §5, no. i]). 

÷ P (n ~ m) induces a map fo :pO ÷ pO Then fmn:Pn m mn n m' so we have 

an inverse system (P~ o pO pO. , fmn ) . Set = lim+ n 

PROPOSITION. (i) The maps fo are affine~ faithfully flat 
mn 

and finitely presented; and ker(f~n ) is a closed subgroup of 

ker (finn). 

(ii) pO is a closed irreducible subgroup of P, and the 

underlying subspace of po is the connected component of zero 

in P. Furthermore, if x e pO, then the canonical map of local 

rings ~P,x ÷@°,x ~s bijective. 

Proof. (i) is immediate except perhaps for the surjectivity 

of fo which follows from the fact that the (topological) image mn' 

of fo is open [EGA IV (2.4 6)] and closed [DG p. 249, (5.1)]. mn ' " ' 

As for (ii), it is clear that po is a closed subgroup of 

P; and if Q is any connected subspace of P containing zero, 

then fn(Q) C_ POn for all n (fn:P ~ Pn being the natural map) 

whence Q C pO (since pO = limpO in the category of 
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topolosical spaces [EGA IV, 8.2.9]). So for the first assertion 

of (ii), it remains to be shown that pO is irreducible (hence 

connected). For this it suffices to show that pO is covered 

by open irreducible subsets, any two of which have a non-empty 

intersection, pO o' being irreducible, has such a covering by 

irreducible affine subsets, and we can cover pO by their inverse 

images. Since all the maps fo are affine and each pO is 
on n 

irreducible, we need only check that a direct limit of rings with 

irreducible spectrum has irreducible spectrum. But this is easily 

seen, since "A has irreducible spectrum" means that "for a, b e A, 

ab is nilpotent ~ either a or b is nilpotent". 

Finally, for x e pO, we have 

~P,x = lim ~p fn(X ) 
÷ n' 

= lim %0 = % 
÷ ,fn(X) °,x 

Q.E.D. 

Remark. Though po is not algebraic over k in general, 

it may nevertheless have certain finite-dimensional structural 

features. For example, when k is perfect, if A n is the 

o 
abelian variety which is a quotient of (Pn)re d by its maximal 

linear subgroup L n (structure theorem of Chevalley) then fmn 

(n ~ m) induces an epimorphism A n ÷ Am, with infinitesimal 

kernel. If furthermore the kernel of fmn is unipotent (as 

would be the case, e.g. in (2.5) [L2; Cor. (2.11)]), then, writing 

L n = M n × U n (M n multiplicative, U n unipotent) 

÷M we find that fmn induces an isomorphism M n m" 
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(3.3) For each n, let ~o(Pn) be the 6tale k-group Pn/P: 

(cf. [DG, p. 237, Prop. (1.8)]). The natural map qn:Pn ÷ ~o(Pn) 

is faithfully flat and finitely presented (loc. cit). fmn induces 

a map To(fmn):~o(Pn) ÷ To(Pm), so we have an inverse system 

(~o(Pn), ~o(fmn)). We set To(P) = lim ~o(Pn). 

PROPOSITION. (i) The maps ~o(fmn) are finite, 6tale, 

surjective; and ker(~o(fmn)) is a quotient of ker(fmn). 

(ii) The canonical map q:P ÷ no(P ) is faithfully flat and 

quasi-compact, with kernel pO (so that the sequence 

0 + po + p + To(p ) + 0 

is exact in the category of fpqc sheaves). The (topological) 

fibres of P + To(P ) are irreducible~ and they are the connected 

components of P. For any x e P, the canonical map of local 

+ ~q is bijective. If K is an algebraically rings ~P,x -lq(x),x 

closed field containing k, then P(K) + To(P)(K ) is surjective. 

Proof. (i) Consider the commutative diagram (with n m m): 

qn O > pO > p > > 0 
n n ~ o (Pn) 

If°n Ifmn l~o(fmn ) 

qm 0 > pO > p > > 0 m m ~o(Pm ) 

The maps in the rows are the natural ones, and the rows are exact 
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in the category of fppf sheaves (when we identify k-groups with 

functors of k-algebras.. ) Since fo is an epimorphism of 
• " mn 

fppf sheaves (Prop• (3.2)), so therefore is the natural map 

ker(fmn) ÷ ker(~o(fmn)), and we have the second assertion of 

( i ) .  

fmn' qm' and qn are all faithfully flat - hence surjective 

and quasi-compact, and then so is ~o(fmn). Since ~o(Pn) and 

~o(Pm) are 6tale over k, therefore the map ~o(fmn) is ~tale. 

Thus the kernel of ~o(fmn)-being quasi-compact and 6tale over k - 

is finite over k, and it follows that the map ~o(fmn) is 

finite. 

(ii) For the last assertion, note that we have an inverse 

system of exact sequences 

o ÷ P~(~) + Sn(K) ÷ ~o(Pn)(K) ÷ o 

and that pO n+l(K) + P (K) is surjective for all n (Prop. (3.2)); 

so on passing to the inverse limit we obtain an exact sequence 

o ÷ P ° ( K )  + P ( K )  + ~ ( P ) ( K )  ÷ o 
0 

The exactness of 0 ÷ pO ÷ p ~ To(P ) is straightforward. 

To show that q is flat let x e P, y = q(x), and let Xn' Yn 

be their images in Pn' ~o(Pn ) respectively. Then ~Pn,X n is 

J flat over ~o(Pn),y n and passing to inductive limits, we see 

that ~P,x is flat over ~o(p),y• Next let z e ~o(P), let 
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-i 
z n be the image of z in ~o(Pn), and let Q = q (z), 

qnl(z). Note that Qn is irreducible, and is a connected Qn 
component of Pn" The Qn form an inverse system of schemes, 

in which the transition maps are affine, and 

Q = lim Qn" 

We show next that Qn + Qm is surjective; then it follows that 

Q is non-empty (so that q is surjective - hence faithfully 

flat) and the proof of Prop. (3.2) (ii) can be imitated to give 

all the assertions about the fibres of q. 

Let k be the algebraic closure of k. By a simple 

translation argument, we deduce from the surjectivity of pO ÷ pO n m 

that every component of Qn ®k ~ maps surjectively onto a 

component of Qm®k ~; since every component of Qm®k ~ projects 

surjectively onto Qm' we find that Qn ÷ Qm is indeed surjective. 

It remains to be seen that q is quasi-compact. The fibres 

of the maps ~o(fn):~o(P) + ~o(Pn) (n ~ 0) form a basis of open 

sets on ~o(P) (since~o(P n) is discrete as a topological space); 

furthermore these fibres are quasi-compact (since ~o(fn) is an 

affine map), and their inverse images in P are quasi-compact 

(the affine map P ÷ Pn and the finitely presented map 

Pn ~o(Pn ) are both quasi-compact, so the composed map 

P ÷ ~o(Pn) is quasi-compact); it follows that q is quasi- 

compact. Q.E.D. 
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Remarks. 

I. Say that a k-group Q is pro-~tale if it is of the 

form lim Qn' where (Qn' gmn ) is an inverse system of the type 

we have been considering, with all the Qn ~tale over k. For 

example ~o(P) is pro-~tale. It is immediate that if Q is 

pro-~tale and f:G ÷ Q is a map of k-groups, with G connected, 

then f is the zero-map. From this we see that, with P as 

above, every map of P into a pro-~tale k-group factors uniquely 

through P ÷ To(P ) . 

2. Let (Pn' fmn ) be as above, and assume that the kernel 

of fmn is unipotent for all m,n. Set Qn = ~o(Pn )' gmn = ~o(fmn ); 

by (i) of Proposition (3.3), the kernel of gmn is ~tale and also 

unipotent (i.e. annihilated by pt for some t, with p = char. of k). 

Assume also that the abelian group Qn(k) (k = algebraic closure 

of k) is finitely generated (for each n). (These assumptions 

hold in the situation described in (2.5), of. [L2; Prop. (2.7), 

CoT. (2.11)].) 

t Let Qn be the kernel of multiplication by pt in Qn" 

o 1 2 
Then Qn ~ Qn ~ Qn ~ .... and since Qn(k) is finitely generated, 

t t+l 
we have, for large t, Qn = Qn ...; so we can set 

t t 
Q~P) = U Qn = Qn for large t. 

t 

Q~P) is finite ~tale over k, and unipotent; and the Clearly 

quotient R n = Qn/Q~ p) is ~tale over k. Consider the 

commutative diagram (n ~ m): 
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0 + Qn (p) + Qn n +R + 0 

0 ÷ Q(P) ÷ Qm ÷ Rm + 0 

Straightforward arguments give that: 

(i) Multiplication by p in R n is a monomorphism. 

+ R is an isomorphism. (ii) R n m 

(iii) Q~P) ~ Q~P) is an epimorphism. 

Then, passing to the inverse limit, we obtain: 

There exists an exact sequence 

0 ÷ Q(P) ÷ To(P) ÷ R + 0 

Q(P) = inverse limit of unipotent finite 6tale k-groups. 

R = @tale k-group such that the abelian group R(k) (k = 

algebraic closure of k) is finitely generated and 

without p-torsion. 

Here R is already determined by PI" 
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