PICARD SCHEMES OF FORMAL SCHEMES; APPLICATION TO
RINGS WITH DISCRETE DIVISOR CLASS GROUP
Joseph Lipman ${ }^{(1)}$

Introduction.

We are going to apply scheme-theoretic methods - originating in the classification theory for codimension one subvarieties of a given variety - to questions which have grown out of the problem of unique factorization in power series rings.

Say, with Danilov [D2], that a normal noetherian ring A has discrete divisor class group (abbreviated DCG) if the canonical map of divisor class groups $\bar{i}: C(A) \rightarrow C(A[[T]])$ is bijective $^{(2)}$. In §1, a proof (due partially to J.-F. Boutot) of the following theorem is outlined:

THEOREM 1. Let A be a complete normal noetherian local ring with algebraically closed residue field. If the divisor class group $C(A)$ is finitely generated (as an abelian group), then A has DCG.
${ }^{(1)}$ Supported by National Science Foundation grant GP-29216 at Purdue University.
${ }^{(2)}$ For the standard definition of \bar{i}, cf. [AC, ch. 7, §1.10]. (Note that the formal power series ring $A[[T]]$ is noetherian [AC, ch. 3, §2.10, Cor. 6], integrally closed [AC, ch. 5, §1.4], and flat over A [AC, ch. $3, \frac{83.4, \text { Cor. 3].) }}{}$

The terminology DCG is explained by the fact that in certain cases (cf. [B];[SGA 2, pp. 189-191]) with A complete and local, $\mathrm{C}(\mathrm{A})$ can be made into a locally algebraic group over the residue field of A, and this locally algebraic group is discrete (i.e. zero-dimensional) if and only if \bar{i} is bijective.

A survey of results about rings with DCG is given in [F, ch. V].

Recall that A is factorial if and only if $C(A)=(0)$ [AC, ch. 7, §3]. Also, A local $\Rightarrow A[[T]]$ local, with the same residue field as A; and A complete $\Rightarrow A[[T]]$ complete [AC, ch. 3, §2.6]. Hence (by induction):

COROLLARY 1. If A (as in Theorem 1) is factorial, then so is any formal power series ring $A\left[\left[T_{1}, T_{2}, \ldots, T_{n}\right]\right]$.

When the singularities of A are resolvable, more can be said:

THEOREM 1^{\prime}. Let A be as in Theorem 1, with C(A) finitely generated, and suppose that there exists a proper birational map $X \rightarrow \operatorname{Spec}(A)$ with X a regular scheme (i.e. all the local rings of points on X are regular). Let B be a noetherian local ring and let $f: A \rightarrow B$ be a local homomorphism making B into a formally smooth A-algebra (for the usual maximal ideal topologies on A and B). (3) Then B is normal, and the canonical map $C(A) \rightarrow C(B)$ is bijective.

Some brief historical remarks are in order here. Corollary 1 was conjectured by Samuel [S2, p. 171]; (4) however Samuel did not
(3) "Formal smoothness" means that the completion \hat{B} is A-isomorphic to a formal power series ring $\bar{A}\left[\left[T_{1}, T_{2}, \ldots, T_{n}\right]\right]$, where \bar{A} is a complete local noetherian flat A-algebra with maximal ideal generated by that of $A\left(c f .\left[E G A{ }_{\mathrm{IV}}, 5 \S 19.3,19.6,19.7\right]\right)$. In particular, B is flat over A.
(4) For some earlier work on unique factorization in power series rings cf. [S1] and [K].
assume that the residue field of A was algebraically closed, and without this assumption, the conjecture was found by Salmon to be false [SMN]. Later, a whole series of counterexamples was constructed by Danilov [D1] and Grothendieck [unpublished]. (5) Danilov's work led him to the following modification of Samuel's conjecture [D1, p. 131]:

If A is a local ring which is "geometrically factorial" (i.e. the strict henselization of A is factorial) then also $A[[T]]$ is geometrically factorial.

In this general form, the conjecture remains open, though some progress has been made by Boutot [unpublished].

The study of Samuel's conjecture evolved into the study of rings with DCG. A complete normal noetherian local ring A has been shown to have DCG in the following cases ${ }^{(6)}$:
(i) (Scheja [SH]). A is factorial and depth $A \geq 3$.
(iii) (Storch [ST2]) A contains a field, and the residue field of A is algebraically closed and uncountable, with cardinality greater than that of $C(A)$.
[Actually, for such A, Storch essentially proves Theorem 1^{\prime} without needing any desingularization $X \rightarrow \operatorname{Spec}(A)$. Storch's proof uses a theorem of Ramanujam-Samuel (cf. proof of Theorem 1^{\prime} in $\S 1$) and an elementary counting argument.]
(5) In these counterexamples the locally algebraic group of footnote (2) above has dimension >0, but has just one point - namely zero rational over the residue field of \bar{A}.
${ }^{(6)}$ For some investigations in the context of analytic geometry, cf. [ST1] and [P].
(iii) (Danilov [D3]) If
either (a) A contains a field of characteristic zero
or
(b) A contains a field, the residue field of A
is separably closed, and there exists a projective map $g: X \rightarrow S p e c(A)$ with X a regular scheme, such that g induces an isomorphism

$$
x-g^{-1}(\{\underline{m}\}) \xrightarrow{x} \operatorname{Spec}(A)-\{\underline{m}\}
$$

$(\underline{m}=\operatorname{maximal}$ ideal of A$)$
then $C(A)$ finitely generated $\Rightarrow A$ has DCG.
[Danilov uses a number of results from algebraic geometry, among them the theory of the Picard scheme of schemes proper over a field, and the resolution of singularities (by Hironaka in case (a), and by assumption in case (b)).]

Significant simplifications have been brought about by Boutot. His lemma (§1) enabled him to eliminate all assumptions about resolution of singularities in the above-quoted result of Danilov, and also to modify the proof of Theorem 1' to obtain the proof of Theorem 1 which appears in $\S 1$ below.

Our proof of Theorem 1' is basically a combination of ideas of Danilov and Storch, except that in order to treat the case when A does not contain a field, we need a theory of Picard schemes for schemes proper over a complete local ring of mixed characteristic. This theory - which is the main underlying novelty in the paper - is given in §§2-3.

§1. Proofs of Theorems 1 and 1^{\prime}.

The two theorems have much in common, and we will prove them together. Let A, B be as in Theorem 1'; for Theorem 1 we will simply take $B=A[[T]]$. Since A is local and B is faithfully flat over A, the canonical map $C(A) \rightarrow C(B)$ is injective [F, Prop. 6.10]; so we need only show that $C(A) \rightarrow C(B)$ is surjective.

Both B and its completion \hat{B} are normal: when $B=A[[T]]$ this is clear; and under the assumption of Theorem 1 ', since B and \hat{B} are formally smooth over A, it follows from the existence of the "desingularization" $\mathrm{X} \rightarrow \operatorname{Spec}(\mathrm{A}) \quad$ [L1, Lemma 16.1]. As above, since \hat{B} is faithfully flat over $B, C(B) \rightarrow C(\hat{B})$ is injective, and consequently we may assume that $B=\hat{B}$ ($=\bar{A}\left[\left[T_{1}, T_{2}, \ldots, T_{n}\right]\right]$, cf. footnote (3) in the Introduction). [Note here that if $R \subseteq S \subseteq T$ are normal noetherian rings with S flat over R and T flat over S (and hence over R), then the composition of the canonical maps

$$
C(R) \rightarrow C(S) \rightarrow C(T)
$$

is the canonical map $\mathrm{C}(\mathrm{S}) \rightarrow \mathrm{C}(\mathrm{T})$.
Let M be the maximal ideal of A. Then $M \bar{A}$ is the maximal ideal of \bar{A}, and by the theorem of Ramanujan-Samuel [F, Prop. 19.14],

$$
C(B) \rightarrow C\left(B_{M B}\right)
$$

is bijective. Furthermore [EGA 01, p. 170, Cor. (6.8.3)], there
exists a complete local noetherian flat B_{MB}-algebra B^{*} such that B^{*} / MB^{*} is an algebraically closed field. B^{*} is formally smooth over A (footnote (3) above) so under the hypotheses of Theorem 1', B^{*} is normal; furthermore B^{*} is faithfully flat over $B_{M B}$, so that, as before

$$
C\left(B_{M B}\right) \rightarrow C\left(B^{*}\right)
$$

is injective. Thus for Theorem 1^{\prime} it suffices to show that $C(A) \rightarrow C\left(B^{*}\right)$ is surjective.

To continue the proof of Theorem l^{\prime}, let U_{A} be the domain of definition of the rational map inverse to $X \rightarrow \operatorname{Spec}(A)$. Then U_{A} is isomorphic to an open subscheme of X, so we have a surjective map $\operatorname{Pic}(X) \rightarrow \operatorname{Pic}\left(U_{A}\right) \quad[E G A \quad I V,(21.6 .11)] ;$ furthermore the codimension of $\operatorname{spec}(A)-U_{A}$ in $\operatorname{Spec}(A)$ is 22 , so there is a natural isomorphism $\operatorname{Pic}\left(U_{A}\right) \xrightarrow{\sim} C(A) \quad$ ibid, (21.6.12)]. Similar considerations hold with B^{*} in place of A, and $X^{*}=X \otimes_{A} B^{*}$ in place of X. (The projection $X * \rightarrow \operatorname{Spec}(B)$ is proper and birational, and X^{*} is a regular scheme [L1, Lemma 16.1].) There results a commutative diagram

Since $\operatorname{Pic}\left(X^{*}\right) \rightarrow \operatorname{Pic}\left(U_{B *}\right)$ is surjective, it will be more than enough to show that $\underline{P i c(X) \rightarrow P i c\left(X^{*}\right)}$ is bijective.

The corresponding step in the proof of Theorem 1 is more involved, and goes as follows. Let $B=A[[T]]$, let B^{*} be as above, and let I be a divisorial ideal in B. We will show below that there exists an open subset U_{A} of $\operatorname{Spec}(A)$ whose complement has codimension ≥ 2, and such that, with

$$
U_{B}=\left(U_{A}\right) \otimes_{A} B \quad(C \operatorname{spec}(B)), \quad U^{*}=\left(U_{A}\right) \otimes_{A} B^{*}\left(\subseteq \operatorname{Spec}\left(B^{*}\right)\right)
$$

we have that
(i) IB ${ }_{q}$ is a principal ideal in B_{q} for all prime ideals
$q \in U_{B}$, and
(ii) the canonical map $\quad v: \operatorname{Pic}\left(U_{B}\right) \rightarrow P i c\left(U^{*}\right) \quad$ is injective.

Now there is a natural commutative diagram

cf. [EGA IV, (21.6.10)]. Since B is flat over A, it is immediate (from the corresponding property for U_{A}) that the complement of U_{B} in $\operatorname{Spec}(B)$ has codimension $z 2$; hence (i) signifies that the element of $C(B)$ determined by I is of the form $\mu_{B}(\xi)$ for some $\xi_{\mathrm{E}} \in \operatorname{Pic}\left(U_{B}\right)$. So if we could show that ξ lies in the image of λ, then we would have the desired surjectivity of $C(A) \rightarrow C(B)$.

At this point we need:

LEMMA (J.-F. Boutot) ${ }^{(1)}$. There exists a projective
birationa1 map $\phi: X \rightarrow \operatorname{Spec}(A)$ such that ϕ induces an iso-
morphism $\phi^{-1}\left(U_{A}\right) \xrightarrow{\sim} U_{A}$, and such that ξ lies in the image of the canonical map $\operatorname{Pic}\left(X \otimes_{A} B\right) \rightarrow \operatorname{Pic}\left(U_{B}\right)$.
(Here X may be taken to be normal, but not necessarily regular.) Setting $X^{*}=X \otimes_{A} B^{*}$, we have a natural commutative diagram

with v injective (cf. (ii) above). A simple diagram chase shows then that for ξ to lie in the image of λ, it more than suffices that $\underline{\text { Pic }(X) \rightarrow P i c(X *) ~ b e ~ b i j e c t i v e . ~}$

Let us finish off this part of the argument by constructing U_{A} satisfying (i) and (ii). [It will then remain - for proving both Theorems 1 and 1^{\prime} - to examine the map $\left.\operatorname{Pic}(X) \rightarrow \operatorname{Pic}\left(X^{*}\right).\right]$

Let

$$
U_{A}=\left\{p \in \operatorname{Spec}(A) \mid A_{p} \text { is a regular local ring }\right\} .
$$

By a theorem of Nagata [EGA IV (6.12.7)], U_{A} is open in Spec(A); and certainly, A being normal, the codimension of $\operatorname{Spec}(A)-U_{A}$ in $\operatorname{Spec}(A)$ is ≥ 2. Since the fibres of $\operatorname{Spec}(B) \rightarrow \operatorname{Spec}(A)$ are regular $\left[E G A\right.$ IV, (7.5.1)], therefore B_{q} is regular for all $q \in U_{B}\left[E G A{ }^{0}{ }_{I V}\right.$, (17.3.3)], and (i) follows.
(1) The proof, which will appear in Boutot's thèse, was presented at a seminar at Harvard University in January, 1972.

As for (ii), setting $U^{\prime}=U_{A} \otimes_{A} B_{M B}(M=\operatorname{maximal}$ ideal of A) we have the commutative diagram

in which the vertical arrows are isomorphisms [EGA IV, (21.6.12)], and also $C(B) \rightarrow C\left(B_{M B}\right)$ is an isomorphism (cf. above); so we have to show that $\underline{\text { Pic }\left(U^{\prime}\right) \rightarrow P i c\left(U^{*}\right)}$ is injective. Since Pic($\left.U^{\prime}\right)$ is isomorphic to $C\left(B_{M B}\right)$, this injectivity amounts to the following statement:
(\#) Let I be a divisorial ideal of $B_{M B}$, and let P * be the coherent ideal sheaf on $\operatorname{Spec}\left(B^{*}\right)$ determined by the ideal IB*. If $\mathcal{J}^{*} \mid U^{*} \cong \mathscr{O}_{U}{ }^{*}$, then I is a principal ideal.

Since $B_{M B}$ is local, and B^{*} is faithfully flat over ${ }^{B}{ }_{M B}$, we have

$$
\text { I principal } \Leftrightarrow \text { I invertible } \Leftrightarrow I B^{*} \text { invertible. }
$$

Now I is a reflexive $B_{M B}$-module [CA, p. 519, Ex. (2)], and therefore $I B^{*}$ is a reflexive B^{*}-module [ibid, p. 520, Prop. 8]. Since B^{*} is flat over $B_{M B}$, it follows (from the corresponding property of U^{\prime}) that for every prime ideal P in B^{*} such that $\mathrm{P} \notin \mathrm{U}^{*}$, the local ring $\mathrm{B}_{\mathrm{P}}^{*}$ has depth ≥ 2. This being so, if i:U* \rightarrow Spec(B^{*}) is the inclusion map, then the natural map

$$
\hat{O}_{\text {Spec }\left(B^{*}\right)} \rightarrow i_{*}\left(\mathscr{O}_{\mathrm{U}^{*}}\right)
$$

is an isomorphism [EGA IV, (5.10.5)]. Since IB* is reflexive, application of $\operatorname{Hom}_{B^{*}}\left(\cdot, B^{*}\right)$ to a'finite presentation"

$$
\left(\mathrm{B}^{*}\right)^{\mathrm{n}} \rightarrow\left(\mathrm{~B}^{*}\right)^{\mathrm{ml}} \rightarrow \operatorname{Hom}_{\mathrm{B}^{*}}\left(\mathrm{I} \mathrm{~B}^{*}, \mathrm{~B}^{*}\right) \rightarrow 0,
$$

gives an exact sequence

$$
0 \rightarrow I B^{*} \rightarrow\left(B^{*}\right)^{m} \rightarrow\left(B^{*}\right)^{n},
$$

whence a commutative diagram, with exact rows,

from which we conclude that the canonical map

$$
\not \mathscr{y}^{*} \rightarrow i_{*}\left(\not \mathscr{F}^{*} \mid U^{*}\right)\left[\cong i_{*}\left(\theta_{U^{*}}\right)\right]
$$

is an isomorphism. Thus \mathscr{F}^{*} is isomorphic to $\mathscr{O}_{\left.\text {Spec (} B^{*}\right)^{\prime}}$, and (ii) is proved.

The rest of the discussion applies to both Theorems (1 and 1^{\prime}). We must now examine the map $\operatorname{Pic}(X) \rightarrow \operatorname{Pic}\left(X^{*}\right)$.

The kernel of the surjective map $\operatorname{Pic}(X) \rightarrow \operatorname{Pic}\left(U_{A}\right)$ consists of the linear equivalence classes of those divisors on X which are supported on $X-U_{A}$; hence (X being assumed to be normal) this kernel is isomorphic to a subgroup of the free
abelian group generated by those irreducible components of $X-U_{A}$ having codimension one in X; since $P i c\left(U_{A}\right) \subseteq C(A)$, and $C(A)$ is finitely generated, therefore $\underline{\text { Pic (X) is finitely }}$ generated.

Let k (resp. k^{*}) be the residue field of A (resp. B^{*}). There is an obvious map $k \rightarrow k *$. In $\varsigma 2$ we will show that
(1.1) There exists a k-group-scheme P and a commutative diagram

Here $P(k) \rightarrow P\left(k^{*}\right)$ is the map from k-valued points of P to k^{*}-valued points corresponding to the map $k \rightarrow k^{*}$; and the vertical maps are isomorphisms.

Furthermore, in $\S 3$ it will be shown that
(1.2) There exists a closed irreducible k-subgroup P^{0} of P, whose underlying subspace is the connected component of the zero point of P, and such that:
(i) p^{0} is the inverse limit of its algebraic (= finite type over k) quotients; moreover if $\overline{\mathrm{P}}$ is such a quotient, then $P(k) \rightarrow \bar{P}(k)$ is surjective.
(ii) $P / P^{\circ}=\underset{n>0}{\lim } Q_{n}$, where Q_{n} is a discrete (= reduced and zero-dimensional) locally algebraic k-group; moreover $\mathrm{P}(\mathrm{K}) \rightarrow\left(\mathrm{P} / \mathrm{P}^{\circ}\right)(\mathrm{K})$ is surjective for any algebraically closed field $K \supseteq k$.

To show that $\operatorname{Pic}(X) \rightarrow \operatorname{Pic}\left(X^{*}\right)$ is bijective, it will then suffice to show that \underline{p}^{0} is infinitesimal [in other words, every algebraic quotient of P^{O} is zero-dimensional, so that $P^{O}(k)=P^{\circ}\left(k^{*}\right)=0$, whence $\operatorname{Pic}(X) \rightarrow \operatorname{Pic}\left(X^{*}\right)$ can be identified with the map

$$
{\underset{\mathrm{L}}{\mathrm{n}}}_{\operatorname{im}}\left(\mathrm{Q}_{\mathrm{n}}(\mathrm{k}) \rightarrow \mathrm{Q}_{\mathrm{n}}\left(\mathrm{k}^{*}\right)\right)
$$

which is obviously bijective].
But since $P^{\circ}(k) \subseteq P(k)$ is finitely generated, so is $\bar{P}(k)$ for any algebraic quotient $\overline{\mathrm{P}}$ of P°. By the structure theorem for connected reduced commutative algebraic groups over an algebraically closed field, we know that $\bar{P}_{r e d}$ has a composition series whose factors are multiplicative groups, additive groups, and abelian varieties. It follows easily that if $\overline{\mathrm{P}}(\mathrm{k})=\overrightarrow{\mathrm{P}}_{\mathrm{red}}(\mathrm{k})$ is finitely generated, then $\bar{P}(k)=0$, i.e. \bar{P} is zero-dimensional.

§2. The Picard Scheme of a Formal Scheme.

In this section we establish the existence of a natural groupscheme structure on $\operatorname{Pic}(\boldsymbol{X})$ for certain formal schemes \boldsymbol{X}. (If
$\mathrm{p} \boldsymbol{O}_{x}=(0)(\mathrm{cf} .(2.2)$) there will be nothing new here. For the case $\mathrm{p} \boldsymbol{O}_{x} \neq(0)$, most of the work is carried out in [L2], whose results will be quoted and used.) From this we will obtain (1.1). However, for completeness, we prove more general results than are required in the proof of Theorems 1 and 1^{\prime}.

DEFINITION (2.1). A formal scheme $\left(\boldsymbol{X}, \mathcal{O}_{\mathfrak{X}}\right)$ is weakly noetherian if \boldsymbol{x} has a fundamental system of ideals of definition $\mathscr{f}_{0} \supseteq g_{1} \supseteq f_{2} \supseteq \cdots$ such that for each $n \geq 0$ the scheme $\left(x, \mathscr{O}_{x} I_{n}\right)$ is noetherian.

It amounts to the same thing to say: in the category of formal schemes,

$$
\mathfrak{X}=\underset{\mathrm{n} \geq 0}{\lim } X_{\mathrm{n}}
$$

where $X_{0} \rightarrow X_{1} \rightarrow X_{2} \rightarrow \ldots$ is a sequence of immersions of noetherian schemes X_{n}, the underlying topological maps being homeomorphisms (cf. [EGA 01, §10.6, pp. 411-413]).

Any noetherian formal scheme is weakly noetherian [ibid, middle of $p .414]$.

If \boldsymbol{x} is weakly noetherian and \mathcal{G} is any ideal of definition, then $\left(x, \mathscr{O}_{\boldsymbol{x}} / f\right)$ is a noetherian scheme; indeed, $\mathscr{f} \supseteq g_{n}$ for some n (since \mathfrak{X} is quasi-compact) so that $\left(\boldsymbol{X}, \boldsymbol{O}_{\mathfrak{X}} / \mathcal{F}\right)$ is a closed subscheme of the noetherian scheme $\left(\boldsymbol{X}, \hat{O}_{\mathfrak{X}} / f_{\mathrm{n}}\right)$. In particular, taking \mathcal{F} to be the largest ideal of definition of

天, we see that we may - and, for convenience, we always will assume that the scheme $\boldsymbol{X}_{\text {red }}=\left(\boldsymbol{x}, \mathscr{O}_{\boldsymbol{X}} / \mathscr{\xi}_{0}\right.$) is reduced. (Cf. [EGA 01, p. 172 (7.1.6)].)

Next, let k be a perfect field of characteristic $p \geq 0$. For $p>0$ let $W(k)$ be the ring of (infinite) Witt vectors with coefficients in k; and for $p=0$ let $W(k)$ be the field k itself. $W(k)$ is complete for the topology defined by the ideal $\mathrm{pW}(\mathrm{k})$; the corresponding formal scheme $\operatorname{Spf}(W(k))$ will be denoted by \mathfrak{B}_{k}.
(2.2) In what follows we consider a triple ($\boldsymbol{x}, \mathrm{k}$, f) with:
(i) X a weakly noetherian formal scheme.
(ii) k a perfect field of characteristic $p \geq 0$.
(iii) $f: \mathfrak{X} \rightarrow \mathbb{B}_{k}$ a morphism of formal schemes such that for every ideal of definition \mathscr{F} of \mathscr{x}, the induced map of schemes

$$
\mathrm{f} g:\left(x, O_{x} / \mathscr{y}\right) \rightarrow \operatorname{Spec}(W(k))
$$

is proper ${ }^{(1)}$.
Remarks. Morphisms $f: \mathbf{X} \rightarrow \mathbb{B}_{k}$ are in one-one correspondence with continuous homomorphisms i:W(k) $\rightarrow H^{\circ}\left(\boldsymbol{x}, \mathcal{O}_{\boldsymbol{x}}\right)$ [EGA 01, p. 407, (10.4.6)] (2). The above map $f f$ corresponds to the composed
(1) For (iii) to hold it suffices that $f g$ be proper for one \mathscr{y} (cf. (2.6) below).
(2) The existence of such an i implies that p is topologically nilpotent in $H^{0}\left(\boldsymbol{X}, \mathcal{O}_{\boldsymbol{x}}\right)$ (since the image of a topologically nilpotent element under a continuous homomorphism is again topologically nilpotent). On the other hand, if p is topologically nilpotent in $H^{\circ}\left(\dot{X}, \mathcal{O}_{x}\right)$, then clearly every ring homomorphism $W(k) \rightarrow H^{0}\left(\boldsymbol{x}, \hat{O}_{x}\right)$ is continuous.
homomorphism

$$
W(\mathrm{k}) \xrightarrow{i} H^{\circ}\left(\boldsymbol{X}, \mathscr{O}_{\mathfrak{X}}\right) \xrightarrow{\text { canonical }} H^{\circ}\left(\boldsymbol{x}, \boldsymbol{O}_{\mathfrak{X}} / \mathcal{Y}\right) .
$$

It is practically immediate that $f(\underline{X})$ is supported in the closed point of $\operatorname{Spec}(W(k))$.

Example. Let R be a complete noetherian local ring with maximal ideal M and residue field k (perfect, of characteristic $\mathrm{p} \geq 0)$; let $\mathrm{g}: \mathrm{X} \rightarrow \operatorname{Spec}(\mathrm{R})$ be a proper map; and let \boldsymbol{x} be the formal completion of X along the closed fibre $g^{-1}(\{M\})$. The structure theory of complete local rings gives the existence of a (continuous) homomorphism $W(k) \rightarrow R$; composing with the map

$$
\mathrm{R} \rightarrow \mathrm{H}^{\mathrm{O}}\left(\boldsymbol{X}, \boldsymbol{O}_{\mathfrak{X}}\right) \quad\left[=H^{\mathrm{o}}\left(\mathrm{X}, \boldsymbol{O}_{X}\right)\right]
$$

determined by g, we obtain $i: W(k)+H^{0}\left(\boldsymbol{X}, \mathcal{O}_{\mathfrak{X}}\right)$, whence a triple ($\mathfrak{X}, \mathrm{k}, \mathrm{f}$) as above.
(2.3) For any k-algebra A let $W_{n}(A)$ (resp. W(A)) be the ring of Witt vectors of length n (resp. of infinite length) with coefficients in A. $\left(W_{n}(A)=W(A)=A\right.$ if $\left.p=0.\right)$ We consider $W_{n}(A)$ to be a discrete topological ring, and give $W(A)$ the topology for which $K_{1} \supseteq K_{2} \supseteq K_{3} \supseteq \ldots$ is a fundamental system of neighborhoods of $0, K_{n}$ being the kernel of the canonical map $W(A) \rightarrow W_{n}(A)(n \geq 1) ;$ then, in the category of topological rings,

$$
W(A)=\underset{n \geq 1}{\underset{n i m}{~}} W_{n}(A)
$$

It is not hard to see that $K_{1}^{2}=\mathrm{pK}_{1}$, whence

$$
\mathrm{K}_{1}^{\mathrm{n}+1}=\mathrm{p}^{\mathrm{n}_{\mathrm{K}_{1}} \subseteq \mathrm{~K}_{\mathrm{n}} ; ~}
$$

so $W(A)$ is an "admissible" ring, and we may let \mathfrak{W}_{A} be the affine formal scheme

$$
\mathfrak{W}_{A}=\operatorname{Sp} £(W(A)) .
$$

In particular, for $A=k$, we get the same \mathfrak{B}_{k} as in (2.1). If B is an A-algebra, then $W(B)$ is in an obvious way a topological $W(A)$-algebra, so that \mathscr{B}_{A} varies functorially with A. With $f: \mathfrak{X} \rightarrow \mathfrak{B}_{k}$ as in (2.2), we set

$$
\mathfrak{x}_{\mathrm{A}}=x_{\mathfrak{W}_{k}}^{\mathfrak{B}_{A}}=x_{\hat{Q}_{W(k)}} W(\mathrm{~A})
$$

(product in the category of formal schemes). We have then the covariant functor of k-algebras

$$
\mathrm{A} \rightarrow \operatorname{Pic}\left(\boldsymbol{x}_{\mathrm{A}}\right)
$$

What we show below is that the fpqc sheaf p associated to this functor is a k-group scheme, and that furthermore the canonical map $\operatorname{Pic}\left(x_{A}\right) \rightarrow P(A)$ is bijective if A is an algebraically closed field.

Example (continued from (2.2)). Suppose that \mathfrak{x} is obtained from a proper map $g: X \rightarrow \operatorname{Spec}(R)$ as in the example of (2.2). For
any k-algebra A, setting $\quad R_{A}=R \hat{\otimes}_{W(k)} W(A)$ (completed tensor product, R being topologized as usual by its maximal ideal M), we have

$$
x_{A}=x \hat{\theta}_{W(k)} W(A)=x \hat{\theta}_{R} R_{A}
$$

Now if A is a perfect field, then R_{A} has the following properties, which characterize R_{A} as an R-algebra (up to isomorphism): R_{A} is a complete local noetherian flat R-algebra such that $\mathrm{R}_{\mathrm{A}} / \mathrm{MR}_{\mathrm{A}} \cong \mathrm{A}$ (cf. [EGA 01, p. 190, (7.7.10)] and [EGA 0 IV , (19.7.2)]). Furthermore, \boldsymbol{x}_{A} is then the completion of the scheme $X_{A}=X \otimes_{R} R_{A}$ along the closed fibre of the projection $g_{A}: X_{A} \rightarrow \operatorname{Spec}\left(R_{A}\right)$. Fince Grothendieck's algebrization theorem [EGA III, (5.1.6)] gives that "completion" is an equivalence from the category of coherent $0_{X_{A}}$-modules to the category of coherent ${O_{X}}_{A}$-modules. Since an \mathcal{O}_{X}-module is invertible if and only if so is its completion ${ }^{(3)}$, we deduce a natural isomorphism

$$
\operatorname{Pic}\left(X_{A}\right) \cong \operatorname{Pic}\left(x_{A}\right)
$$

Hence, restricting our attention to those A which are algebraically closed fields, we will have an A-functorial isomorphism

$$
\operatorname{Pic}\left(X_{A}\right) \cong P(A)
$$

(3) This follows easily from the fact that the completion \hat{B}_{I} of a noetherian ring B w.r.t. an ideal I is faithfully flat over the ring of fractions B_{1+I}, so that if J is a B-ideal with $J \hat{B}_{I}$ a projective \widehat{B}_{I}-module, then $J B_{1+I}$ is a projective B_{I+I}-module.

This gives us the diagram (1.1) which is needed in the last step of the proof of Theorems 1 and 1^{\prime}.
(2.4) We fix a fundamental system $g_{0} \supseteq f_{1} \supseteq q_{2} \supseteq \ldots$ of defining ideals of \boldsymbol{x}, and for $n \geq 0$ let X_{n} be the scheme $\left(x, \mathscr{O}_{\mathfrak{X}} / \mathscr{Y}_{\mathrm{n}}\right)$. For any $k-a 1$ gebra A, let $X_{n, A}$ be the scheme

$$
X_{n, A}=x_{n} \otimes_{W(k)} W_{n}(A)
$$

The ringed spaces $X_{0, A}, X_{1, A}, \ldots, X_{n, A}, \ldots$ and x_{A} all have the same underlying topological space, say X, and on this space X we have $\quad \mathscr{O}_{x_{A}}=\underset{\sim}{\lim } \mathcal{B}_{X_{n, A}}$. Hence there is a natural map
(*)

$$
\operatorname{Pic}\left(\boldsymbol{x}_{A}\right) \rightarrow \underset{\underset{n}{1 i m}}{ } \operatorname{Pic}\left(X_{n, A}\right) \text {. }
$$

LEMMA. Let A be a k-algebra, and if $p>0$ assume that $A^{\mathrm{P}}=\mathrm{A}$ (i.e. the Frobenius endomorphism $\mathrm{x} \rightarrow \mathrm{x}^{\mathrm{P}}$ of A is surjective). Then the above map (*) is bijective.

Remark. When $p>0$ and $A^{P}=A$, or when $p=0$, then $X_{n, A}=X \otimes_{W(k)} W(A)$.

Proof of Lemma. Say that an open subset U of X is affine if $\left(U, \mathcal{O}_{X_{A}} \mid U\right)$ is an affine formal scheme. The affine open sets form a base for the topology of X.

For each n, let \mathscr{F}_{n} be the sheaf of multiplicative units in the sheaf of rings $O_{X_{n}}, A$ (on the topological space X) and 1et

$$
\mathscr{F}=\underset{n}{\lim } \mathscr{F}_{\mathrm{n}}=\text { sheaf of units in } \theta_{x_{A}}
$$

For $m \geq n$, the kernel of $\theta_{X_{m, A}}+\sigma_{X_{n, A}}$ is nilpotent; so a simple argument ([L2, Lemma (7.2)], with the Zariski topology in place of the étale topology) shows that for affine U the canonical maps

$$
H^{i}\left(U, \mathscr{F}_{\mathrm{m}}\right)+\mathrm{H}^{\mathrm{i}}\left(\mathrm{U}, \mathscr{F}_{\mathrm{n}}\right)
$$

are bijective if $i>0$, and surjective if $i=0$. Applying [EGA $\left.{ }^{\text {III }},(13.3 .1)\right]$, we deduce that for all $i>0$, the maps

$$
H^{i}(X, \mathscr{F})+\underset{n}{\frac{1 i m}{2}} H^{i}\left(X, \mathscr{F}_{n}\right)
$$

are surjective. Furthermore, in order that

be bijective, it is sufficient that the inverse system $H^{0}\left(X, \mathscr{F}_{n}\right){ }_{n \geq 0}$ satisfies the Mittag-Leffler condition (ML) ; and for this it is enough that the inverse system $H^{0}\left(X, \mathcal{O}_{X_{n, A}}\right)$ should satisfy (ML); that is, for each fixed n, if $I_{m n}(m \geq n)$ is the image of $H^{\circ}\left(X, \mathscr{O}_{X_{m, A}}\right) \rightarrow H^{\circ}\left(X, \mathscr{O}_{X}, A\right)$, then the sequence

$$
I_{n, n} \supseteq I_{n+1, n} \supseteq I_{n+2, n} \supseteq \cdots
$$

should stabilize (i.e. $I_{N, n}=I_{N+1, n}=I_{N+2, n}=\ldots$ for some N).

$$
\text { For } p>0 \text { it is shown in }[L 2 \text {, Corollary }(0.2) \text { and }
$$

Theorem (2.4)] that the fpqc sheaf $\underline{H}_{\mathrm{n}}$ associated to the functor

$$
A \rightarrow H^{o}\left(X, \mathscr{O}_{X_{n, A}}\right)
$$

(of k-algebras A) is an affine algebraic k-group; furthermore [ibid, Corollary (4.4)] the canonical map

$$
H^{\circ}\left(X, O_{X}{ }_{n, A}\right) \rightarrow \underline{H}_{n}(A)
$$

is bijective whenever $A^{p}=A$; and finally, for $m \geq n$, if $\underline{I}_{m n}$ is the image (in the category of algebraic k-groups) of the natural map $\underline{\underline{H}}_{\mathrm{m}} \rightarrow \underline{\underline{H}}_{\mathrm{n}}$, and if $A^{\mathrm{p}}=\mathrm{A}$, then the canonical map

$$
\underline{\underline{H}}_{\mathrm{m}}(\mathrm{~A}) \rightarrow \underline{\underline{I}}_{\mathrm{mn}}(\mathrm{~A})
$$

is surjective, so that $I_{m n}=\underline{\underline{I}}_{m n}(A)$ [cf. ibid, last part of proof of (6.3)]. Similar facts when $p=0$ are well-known (and more elementary).

Now the sequence

$$
\underline{I}_{n, n} \supseteq I_{n+1, n} \supseteq I_{n+2, n} \supseteq \cdots
$$

of closed subgroups of $\underline{H}_{\mathrm{n}}$ must stabilize, whence so must the sequence (**). Q.E.D.
(2.5) Before stating the basic existence theorem we need some more notation. For any scheme $Y, \operatorname{Br}(Y)$ will be the cohomological Brauer group of Y :

$$
\operatorname{Br}(Y)=H_{e ́ t a l e}^{2}(Y, \text { multiplicative group }) .
$$

For any ring R we set:

$$
\begin{aligned}
& \operatorname{Br}(R)=\operatorname{Br}(\operatorname{Spec}(R)) \\
& \operatorname{Pic}(R)=\operatorname{Pic}(\operatorname{Spec}(R)) \\
& R_{\text {red }}=R / \text { nilradical of } R .
\end{aligned}
$$

For any defining ideal \mathcal{F} of \mathfrak{X} and any k-algebra A :

$$
\begin{aligned}
& \mathfrak{X} \mathscr{y}=\text { the scheme }\left(\boldsymbol{x}, \mathcal{O}_{\boldsymbol{x}} / \mathcal{y}\right) \\
& \mathfrak{X} \mathcal{G}, \mathrm{A}=\mathfrak{X} \mathcal{G} \otimes_{W(k)} W(\mathrm{~A}) .
\end{aligned}
$$

Finally, we set

$$
\mathrm{k}_{0}=\mathrm{H}^{\mathrm{o}}\left(\boldsymbol{x}_{\text {red }}, \mathscr{O}_{\mathfrak{X}_{\text {red }}}\right)
$$

Since $X_{\text {red }}$ is proper over $k(c f(2.2))$, therefore k_{0} is a finite product of finite field extensions of k.

Now for any \mathscr{f}, we have (cf(2.2)) a proper map

$$
\mathrm{f}_{g}: x_{g}+\operatorname{spec}(\mathrm{w}(\mathrm{k}))
$$

whose image is supported in the closed point of $\operatorname{Spec}(W(k))$.

Hence, when $p>0,[L 2$, Theorem (7.5)] gives us a k-groupscheme P and, for all k-algebras A with $A^{P}=A$, an exact A-functorial sequence

$$
\begin{aligned}
0 & \rightarrow \operatorname{Pic}\left(k_{0} \otimes_{k} A_{\text {red }}\right) \rightarrow \operatorname{Pic}\left(\boldsymbol{x}_{\mathscr{G}, \mathrm{A}}\right) \rightarrow \operatorname{Pg}(\mathrm{A}) \\
& \rightarrow \operatorname{Br}\left(k_{0} \otimes_{k} A_{\text {red }}\right) \rightarrow \operatorname{Br}\left(\boldsymbol{x}_{\mathscr{y}, \mathrm{A}}\right)
\end{aligned}
$$

A similar result is well-known for $p=0$, or more generally when $p O_{X_{\mathcal{G}}}=(0)$, with no condition on A, since then $\boldsymbol{x}_{\boldsymbol{f}}$ is proper over the field k (cf [GR, Cor. 5.3]).

Also, if $\mathscr{G} \subseteq \mathcal{G}^{\prime}$, then the canonical map

$$
P g \rightarrow P g
$$

is affine ([SGA 6, Expose XII, Prop. (3.5)] when $p=0$, and [L2, Prop. (2.5)] when $p>0$). Thus $P=\frac{1 i m}{f} P g$ exists as a k-group-scheme (cf. [EGA IV, §8.2]).

Now, in view of Lemma (2.4), a simple passage to inverse limits gives the desired result:

THEOREM. There exists a k-group scheme P, and for $k-a l g e b r a s$ A such that $A^{p}=A$ (the condition $A^{p}=A$ is vacuous when $p=0$) an exact sequence, varying functorially with A,

$$
\begin{aligned}
0 & \rightarrow \operatorname{Pic}\left(k_{0} \otimes_{k} A_{\text {red }}\right) \rightarrow \operatorname{Pic}\left(\boldsymbol{X}_{\mathrm{A}}\right) \rightarrow \mathrm{P}(\mathrm{~A}) \rightarrow \\
& \rightarrow \cap_{\mathcal{K}} \operatorname{ker}\left[\operatorname{Br}\left(\mathrm{k}_{0} \otimes_{\mathrm{k}}^{\mathrm{A}} \mathrm{red}\right) \rightarrow \operatorname{Br}\left(\boldsymbol{X}_{\mathcal{G}, \mathrm{A}}\right)\right]
\end{aligned}
$$

COROLLARY. If A is an algebraically closed field, then
the above map $\operatorname{Pic}\left(\boldsymbol{x}_{A}\right) \rightarrow P(A)$ is bijective.
For, then $\operatorname{Pic}\left(k_{0} \otimes_{k} A_{r e d}\right)=\operatorname{Br}\left(k_{0} \otimes_{k} A_{r e d}\right)=(0)$.
Remarks, 1. The k-group-scheme P is uniquely determined by the requirements of the Theorem. Indeed, since for every k-algebra A there exists a faithfully flat A-algebra \bar{A} with $\overline{\mathrm{A}}^{\mathrm{P}}=\overline{\mathrm{A}}[\mathrm{L} 2, \operatorname{Lemma}(0.1)]$, and since every element in Pic $\left(\mathrm{k}_{\mathrm{o}} \otimes_{\mathrm{k}} \mathrm{A}_{\mathrm{red}}\right)$ or in $\operatorname{Br}\left(k_{o} \otimes_{k} A_{\text {red }}\right)$ is locally trivial for the étale topology on A, it follows easily that \underline{p} is the fpgc sheaf associated to the functor $A \rightarrow \operatorname{Pic}\left(x_{A}\right)$ of k-algebras A.
2. P^{0}, the connected component of zero in P, is described in (3.2) below. The remarks following (1.2) suggest that the following conjecture - or some variant - should hold:

Conjecture: P^{0} is infinitesimal if and on1y if the natural (split injective) map

$$
\operatorname{Pic}(\boldsymbol{x}) \rightarrow \operatorname{Pic}\left(\boldsymbol{x} \hat{\otimes}_{W} W[[T]]\right) \quad(W=W(k))
$$

is bijective.

[^0](2.6) (Appendix to §2). The following proposition is meant to give a more complete picture of how our basic data ($\mathfrak{X}, \mathrm{k}, \mathrm{f}$) can be defined. It will not be used elsewhere in this paper.

To begin with, observe that if ($\mathfrak{x}, \mathrm{k}, \mathrm{f}$) is as in (2.2), then f induces a proper map

$$
\mathrm{f}_{g_{0}}:\left(\boldsymbol{x}, \quad \mathcal{O}_{\mathfrak{x}} / \mathcal{g}_{0}\right)=\mathfrak{x}_{\text {red }} \rightarrow \operatorname{Spec}(\mathrm{k})
$$

(cf. (2.2)). Hence $H^{\circ}\left(\mathbb{X}, \mathcal{O}_{\mathfrak{X}_{\text {red }}}\right)$ is a finite k-module (equivalently: a finite $W(k)$-module $)$ and - afortiori - a finite $H^{0}\left(\boldsymbol{x}, \boldsymbol{O}_{\boldsymbol{X}}\right)$ module. Conversely:

PROPOSITION. Let x be a weakly noetherian formal scheme, and assume that the $H^{\mathrm{O}}\left(\boldsymbol{x}, \mathcal{O}_{\boldsymbol{X}}\right)$-moduie $\mathrm{H}^{\mathrm{O}}\left(\boldsymbol{x}, \mathcal{O}_{\boldsymbol{x}_{\text {red }}}\right.$) is finitely generated. Let k be a perfect field of characteristic $p \geq 0$, and let

$$
f_{0}: \boldsymbol{x}_{\text {red }} \rightarrow \operatorname{Spec}(\mathrm{k})
$$

be a proper map of schemes. Then f extends (uniquely, if $\underline{p}>0$) to a map of formal schemes $f: \mathfrak{X} \rightarrow \mathfrak{B}_{k}$. Furthermore, all the maps $f f$ (cf. (2.2)) are proper.

Proof. (Sketch) f_{o} corresponds to a homomorphism $i_{o}: k \rightarrow H^{0}\left(X, \mathcal{O}_{\boldsymbol{X}_{\text {red }}}\right)$; the problem is to lift i_{o} to a continuous homomorphism

$$
i: W(k) \rightarrow H^{\circ}\left(x, O_{X}\right)
$$

Let $g_{0} \supseteq g_{1} \supseteq g_{2} \supseteq \ldots$ be a fundamental system of defining ideals of $\mathfrak{x}(c f .(2,1))$, and let $H_{o}=H^{0}\left(x, \mathcal{O}_{x}\right) / H^{0}\left(x, g_{0}\right)$. We will show below that:
(*) the canonical map $H_{0} \xrightarrow{\pi} H^{0}\left(x, \mathcal{O}_{x_{\text {red }}}\right)$ is bijective.

Then the existence of the lifting i follows (since $W(k)$ is formally smooth over its subring $\mathbf{Z}_{\mathrm{p} Z}$) from [EGA ${ }^{0}$ IV, (19.3.10)] (with $\mathscr{I}=H^{0}\left(\boldsymbol{x}, f_{0}\right)$). For the uniqueness when $p>0$, cf. [1oc. cit. (20.7.5) or (21.5.3)(ii)]. \{Or else note that $H^{\circ}\left(\boldsymbol{X}, \mathcal{O}_{\boldsymbol{X}_{\text {red }}}\right)$, being reduced and finite over k, is perfect, and argue as in [SR, p. 48, Prop. 10], using the following easily proved fact in place of [ibid., p. 44, Lemme 1]:

If $a, b \in H^{0}\left(x, \mathcal{O}_{\mathfrak{X}}\right)$ satisfy $a \equiv b\left(\bmod , H^{0}\left(x, \mathcal{f}_{n}\right)\right)$, then for some N depending only on n we have

$$
\left.{ }_{a} \mathrm{p}^{\mathrm{N}} \equiv \mathrm{~b}^{\mathrm{N}} \quad\left(\bmod \cdot \mathrm{H}^{\mathrm{O}}\left(x, g_{\mathrm{n}+1}\right)\right) \cdot\right\}
$$

Now (*) simply says that $H^{\circ}\left(\boldsymbol{x}, \mathcal{O}_{\boldsymbol{X}}\right) \rightarrow \mathrm{H}^{\circ}\left(\boldsymbol{X}, \mathcal{O}_{\boldsymbol{X}_{\text {red }}}\right)$ is surjective, and to prove this we may assume that \mathfrak{X} is connected; then $H^{0}\left(\boldsymbol{x}, \mathcal{O}_{\boldsymbol{x}_{\text {red }}}\right)$, being finite over k, is a perfect field, as is its subring H_{o} (since $H^{\circ}\left(\boldsymbol{X}, \mathcal{O}_{x_{r e d}}\right)$ is finite over H_{o}, by assumption), say $H_{0}=K$. As above, the identity map $K \rightarrow K$ lifts to a homomorphism $W(K) \rightarrow H^{0}\left(\mathfrak{X}, \mathcal{O}_{\mathfrak{X}}\right)$, and thereby, for every ideal of definition \mathcal{E}, the scheme $\left(\boldsymbol{x}, \mathfrak{O}_{\mathfrak{X}} / \mathcal{F}\right)$ is a $W(K)$-scheme. For $\mathcal{f}=\mathscr{g}_{0}$ the structural map $\left(\boldsymbol{X}, \mathcal{O}_{X} / \mathcal{F}_{0}\right) \rightarrow \operatorname{Spec}(W(K))$ factors as

Note that $\boldsymbol{x}_{\text {red }}$, being proper over k , is proper over $H^{\circ}\left(\boldsymbol{x}, \boldsymbol{O}_{\boldsymbol{x}_{\text {red }}}\right)$, and hence also over K. Arguing as below, we see that ($\mathcal{X}, \mathcal{O}_{\mathfrak{X}} / \mathscr{F}_{\mathrm{n}}$) is proper over $W(K)$, whence the kernel of
 So by [EGA $\left.0_{\text {III }},(13.2 .2)\right], \pi=\lim _{\leftarrow} \pi_{n}$ will be surjective if π_{n} is surjective for all n. Let us show more generally for any scheme map $\phi: X \rightarrow \operatorname{Spec}(W(K))$ that if ϕ induces a proper map

$$
Y=X_{r e d} \rightarrow \operatorname{Spec}(K) \subseteq \operatorname{Spec}(W(K))
$$

then $H^{\circ}\left(X, \mathscr{O}_{X}\right) \rightarrow H^{\circ}\left(Y, \mathcal{O}_{Y}\right)$ is surjective.
Let \bar{K} be an algebraic closure of K. Then $W(\bar{K})$ is a faithfully flat $W(K)$-algebra. In view of [EGA III, (1.4.15)]. (Künneth formula for flat base change) and the fact that

$$
Y \otimes_{W(K)} W(\bar{K})=Y \otimes_{K} \bar{K}
$$

is reduced (K being perfect), we may replace X by $X \otimes_{W(K)} W(\bar{K})$, i.e. we may assume that K is algebraically closed. But then $H^{\circ}\left(Y, O_{Y}\right)$ is a product of copies of K, one for each connected component of Y, so the assertion is obvious.

It remains to be shown that the maps f_{g} are all proper.
$\left(\mathfrak{X}, \mathscr{O}_{\mathfrak{X}} / \mathcal{g}\right)$ is noetherian, and $\boldsymbol{x}_{\text {red }}=\left(\boldsymbol{X}, \mathscr{O}_{\mathfrak{X}} / \mathcal{g}\right)_{\text {red }}$. By [EGA II (5.4.6) and EGA 01, p. 279, (5.3.1)(vi)] it suffices to show
that $f y$ is locally of finite type; so what we need is that if A is a noetherian $W(k)$-algebra with a nilpotent ideal N such that A / N is finitely generated over $W(k)$, then also A is finitely generated over $W(k)$. But if $a_{1}, a_{2}, \ldots, a_{r}$ in A are such that their images in A / N are $W(k)$-algebra generators of A / N, and if $b_{1}, b_{2}, \ldots, b_{s}$ are A-module generators of N, then it is easily seen that

$$
A=W(k)\left[a_{1}, a_{2}, \ldots, a_{r}, b_{1}, b_{2}, \ldots, b_{s}\right]
$$

Q.E.D.
§3. Structure of inverse limits of locally algebraic k-groups.
In this section, we establish (1.2)- and a little more- for any group-scheme P of the form $\underset{\leftarrow}{\text { lim }} P_{n}$, where $\left(P_{n}, f_{m n}\right)$ (n, m, non-negative integers, $n \geq m$) is an inverse system of locally algebraic k-groups (k a field), the maps $f_{m n}: P_{n} \rightarrow P_{m}$ ($n \geq m$) being affine (cf. [EGA IV, §8.2]). (Note that the groupscheme P of $£(2.5)$ is of this form.) This is more or less an exercise, and the results are presumably known, but I could not find them recorded anywhere.
(3.1) By [SGA 3, p. 315], $f_{m n}: P_{n} \rightarrow P_{m}(n \geq m)$ factors uniquely as

$$
P_{n} \xrightarrow{u} P_{m n} \xrightarrow{v} P_{n}
$$

where v is a closed immersion and u is affine, faithfully
flat, and finitely presented. (P_{mn} is the image, or coimage, of $f_{m n}$.) For $n_{1} \geq n_{2}, \quad P_{m n_{1}}$ is a closed subgroup of $P_{m n_{2}}$, and we can set

$$
\bar{P}_{\mathrm{m}}=\bigcap_{\mathrm{n} \geq \mathrm{m}} \mathrm{P}_{\mathrm{mn}}=\underset{\substack{\mathrm{n} \geq \mathrm{m}}}{\lim } \mathrm{P}_{\mathrm{mn}} .
$$

\bar{P}_{m} is a closed subgroup of P_{m}, its defining ideal in $\mathcal{O}_{P_{m}}$ being the union of the defining ideals of the $P_{m n}$. Clearly $f_{m n}$ induces a map $\bar{f}_{m n}: \bar{P}_{n} \rightarrow \bar{P}_{m}$, so we have an inverse system ($\bar{P}_{n}, \bar{f}_{m n}$).

PROPOSITION. (i) P (together with the natural maps $\bar{f}_{n}: P \rightarrow \bar{P}_{n}$) is equal to $\underset{\leftarrow}{\lim } \bar{P}_{n}$.
(ii) The maps $\overline{\mathrm{f}}_{\mathrm{mn}}: \overline{\mathrm{F}}_{\mathrm{n}} \rightarrow \overline{\mathrm{P}}_{\mathrm{m}}$ and $\overline{\mathrm{f}}_{\mathrm{m}}: \mathrm{P} \rightarrow \overline{\mathrm{P}}_{\mathrm{m}}$ are affine, faithfully flat, and universally open.
(iii) If K is any algebraically closed field containing k, then

$$
\overline{\mathrm{f}}_{\mathrm{m}}(\mathrm{~K}): \mathrm{P}(\mathrm{~K}) \rightarrow \overline{\mathrm{P}}_{\mathrm{m}}(\mathrm{~K})
$$

is surjective.
(iv) $\operatorname{ker}\left(\bar{f}_{\mathrm{mn}}\right)$ is a closed subgroup of $\operatorname{ker}\left(f_{m n}\right)$.

Proof. (i) and (iv) are left to the reader. It is clear that all the maps $\bar{f}_{m n}$ and \bar{f}_{m} are affine. We show below that \bar{f}_{m} is faithfully flat for all m. Since $\bar{f}_{m}=\bar{f}_{m n} \circ \overline{\mathrm{f}}_{\mathrm{n}}$ for $n \geq m$, it will follow that $\bar{f}_{m n}$ is faithfully flat [EGA IV, (2.2.13)]. This implies that $\bar{f}_{m n}$ is universally open [EGA IV,
(2.4.6)] and hence so is $\overline{\mathrm{f}}_{\mathrm{m}}[E G A$ IV, (8.3.8)], proving (ii). As for (iii), since $\bar{f}_{s t}$ is locally of finite type and surjective, it follows that $\bar{f}_{s t}(K)$ is surjective for all $t \geq s$; in particular, $\bar{f}_{n, n+1}(K)$ is surjective for all $n \geq m$, so any
 $\bar{f}_{m}(K)$ is surjective.

So let us show that \bar{f}_{m} is faithfully flat. Let $y \in \bar{P}_{m}$, and let U be an affine open neighborhood of y in P_{m}. Since U is noetherian, we see that for some n_{0}

$$
\bar{P}_{\mathrm{m}} \cap \mathrm{U}=\mathrm{P}_{\mathrm{mn}} \cap \mathrm{U} \quad \text { for all } \mathrm{n} \geq \mathrm{n}_{\mathrm{o}}
$$

But $f_{m n}$ induces a faithfully flat map

$$
P_{n} \times P_{m} U \rightarrow P_{m n} \times_{P_{m}} U=\bar{P}_{m} \cap U \quad\left(n \geq n_{o}\right)
$$

Since $P_{n} \times_{P_{m}} U$ and $\bar{P}_{m} \cap U$ are affine, and since for any ring R an inductive limit of faithfully flat R-algebras is still a faithfully flat R-algebra, we conclude that

$$
\mathrm{P} \times_{\bar{P}_{\mathrm{m}}}\left(\bar{P}_{\mathrm{m}} \cap U\right)=\mathrm{P} \times_{\mathrm{P}}^{\mathrm{m}} \mathrm{U}=\underset{\mathrm{n} \geq \mathrm{n}_{\mathrm{o}}}{\underset{\mathrm{i}}{\mathrm{im}}}\left(\mathrm{P}_{\mathrm{n}} \times \times_{\mathrm{P}}^{\mathrm{m}} \mathrm{U}\right)
$$

is faithfully flat over $\bar{P}_{\mathrm{m}} \cap \mathrm{U}$. Thus $\overline{\mathrm{f}}_{\mathrm{m}}$ is faithfully flat.
(3.2) Because of Proposition (3.1), we can assume from now
on that $P_{m}=\bar{P}_{m}$ (so that all the maps $f_{m n}\left(=\bar{f}_{m n}\right)$ are
faithfully flat etc. etc.). Furthermore, certain additional conditions which may be imposed on the original $f_{m n}$ (for example the condition that $\operatorname{ker}\left(\mathrm{f}_{\mathrm{mn}}\right)$ be unipotent) will not be destroyed by this replacement of P_{m} by \bar{P}_{m} (because of (iv) in Prop. (3.1)).

We examine now the connected component of the zero-point of P. Let P_{n}^{O} be the open and closed subgroup of P_{n} supported by the connected component of zero in P_{n} (cf. [DG, ch. II, §5, no. 1]). Then $f_{m n}: P_{n} \rightarrow P_{m}(n \geq m)$ induces a map $f_{m n}^{0}: P_{n}^{0} \rightarrow P_{m}^{o}$, so we have an inverse system $\left(P_{n}^{0}, f_{m n}^{0}\right)$. Set $P^{0}=1 i m P_{n}^{0}$.

PROPOSITION. (i) The maps $f_{m n}^{0}$ are affine, faithfully flat and finitely presented; and $\operatorname{ker}\left(f_{m n}^{\circ}\right)$ is a closed subgroup of $\underline{\operatorname{ker}\left(\mathrm{f}_{\mathrm{mn}}\right) \text {. }}$
(ii) P^{0} is a closed irreducible subgroup of P, and the underlying subspace of p^{0} is the connected component of zero in P. Furthermore, if $x \in P^{0}$, then the canonical map of local rings $\mathcal{O}_{\mathrm{P}, \mathrm{x}} \rightarrow \operatorname{O}_{\mathrm{p}} \mathrm{o}, \mathrm{x}$ is bijective.

Proof. (i) is immediate except perhaps for the surjectivity of $f_{m n}^{0}$, which follows from the fact that the (topological) image of $f_{m n}^{\circ}$ is open [EGA IV, (2.4.6)] and closed [DG, p. 249, (5.1)].

As for (ii), it is clear that P^{0} is a closed subgroup of P; and if Q is any connected subspace of P containing zero, then $f_{n}(Q) \subseteq P_{n}^{o}$ for all $n \quad\left(f_{n}: P \rightarrow p_{n}\right.$ being the natural map) whence $Q \subseteq P^{0}$ (since $P^{0}=\lim _{\leftarrow} P_{n}^{0}$ in the category of
topological spaces [EGA IV, 8.2.9]). So for the first assertion of (ii), it remains to be shown that P^{0} is irreducible (hence connected). For this it suffices to show that P^{0} is covered by open irreducible subsets, any two of which have a non-empty intersection. P_{o}^{0}, being irreducible, has such a covering by irreducible affine subsets, and we can cover P^{0} by their inverse images. Since all the maps $f_{o n}^{0}$ are affine and each P_{n}^{0} is irreducible, we need only check that a direct limit of rings with irreducible spectrum has irreducible spectrum. But this is easily seen, since "A has irreducible spectrum" means that "for $a, b \in A$, $a b$ is nilpotent \Leftrightarrow either a or b is nilpotent".

Finally, for $x \in P^{0}$, we have

$$
\mathscr{O}_{\mathrm{P}, \mathrm{x}}=\lim _{\rightarrow} \mathscr{O}_{\mathrm{P}_{\mathrm{n}}, f_{\mathrm{n}}(x)}=\lim _{\rightarrow} \mathscr{O}_{P_{n}^{0}, f_{n}(x)}=\mathscr{O}_{P^{o}, x}
$$

Remark. Though P^{0} is not algebraic over k in general, it may nevertheless have certain finite-dimensional structural features. For example, when k is perfect, if A_{n} is the abelian variety which is a quotient of ($\mathrm{P}_{\mathrm{n}}^{\mathrm{O}}$) red by its maximal linear subgroup L_{n} (structure theorem of Chevalley) then $f_{m n}$ $(n \geq m)$ induces an epimorphism $A_{n} \rightarrow A_{m}$, with infinitesimal kernel. If furthermore the kernel of $f_{m n}$ is unipotent (as would be the case, e.g. in (2.5) [L2; Cor. (2.11)]), then, writing

$$
L_{n}=M_{n} \times U_{n} \quad\left(M_{n} \text { multiplicative, } U_{n} \text { unipotent }\right)
$$

we find that $f_{m n}$ induces an isomorphism $M_{n} \rightarrow M_{m}$.
(3.3) For each n, let $\pi_{o}\left(P_{n}\right)$ be the étale $k-g r o u p ~ P_{n} / P_{n}^{o}$ (cf. [DG, p. 237, Prop. (1.8)]). The natural map $q_{n}: P_{n} \rightarrow \pi_{o}\left(P_{n}\right)$ is faithfully flat and finitely presented (loc. cit). $f_{m n}$ induces a map $\pi_{0}\left(f_{m n}\right): \pi_{0}\left(P_{n}\right) \rightarrow \pi_{0}\left(P_{m}\right)$, so we have an inverse system $\left(\pi_{o}\left(P_{n}\right), \pi_{o}\left(f_{m n}\right)\right)$. We set $\pi_{o}(P)=\underset{\leftarrow}{\lim } \pi_{o}\left(P_{n}\right)$.

PROPOSITION. (i) The maps $\pi \sim\left(f_{m n}\right)$ are finite, étale, surjective; and ker $\left(\pi_{0}\left(f_{m n}\right)\right)$ is a quotient of $\operatorname{ker}\left(f_{m n}\right)$.
(ii) The canonical map $q: P \rightarrow \pi_{0}(P)$ is faithfully flat and quasi-compact, with kernel P^{0} (so that the sequence

$$
0 \rightarrow P^{O} \rightarrow P \rightarrow \pi_{0}(P) \rightarrow 0
$$

is exact in the category of fpqc sheaves). The (topological) fibres of $P \rightarrow \pi_{o}(P)$ are irreducible, and they are the connected components of P. For any $x \in P$, the canonical map of local rings $O_{P, x} \rightarrow \mathcal{O}_{\mathrm{Q}}-1_{\mathrm{q}}(\mathrm{x}), \mathrm{x}$ is bijective. $\underline{\mathrm{If} \quad \mathrm{K} \text { is an algebraically }}$ closed field containing k, then $P(K) \rightarrow \pi_{o}(P)(K)$ is surjective.

Proof. (i) Consider the commutative diagram (with $n \geq m$): $0 \longrightarrow P_{n}^{0} \longrightarrow P_{n} \xrightarrow{q_{n}} \pi_{o}\left(p_{n}\right) \longrightarrow 0$
$\downarrow f_{m n}^{o} \quad \downarrow f_{m n} \quad \pi_{o}\left(f_{m n}\right)$

$$
0 \longrightarrow P_{m}^{0} \longrightarrow P_{m} \xrightarrow{q_{m}} \pi_{0}\left(P_{m}\right) \longrightarrow 0
$$

The maps in the rows are the natural ones, and the rows are exact
in the category of fppf sheaves (when we identify k-groups with functors of k-algebras...). Since $f_{m n}^{O}$ is an epimorphism of fppf sheaves (Prop. (3.2)), so therefore is the natural map $\operatorname{ker}\left(f_{m n}\right) \rightarrow \operatorname{ker}\left(\pi_{0}\left(f_{m n}\right)\right)$, and we have the second assertion of (i).
$f_{m n}, q_{m}$, and q_{n} are all faithfully flat - hence surjective and quasi-compact, and then so is $\pi_{o}\left(f_{m n}\right)$. Since $\pi_{o}\left(P_{n}\right)$ and $\pi_{0}\left(P_{m}\right)$ are étale over k, therefore the map $\pi_{0}\left(f_{m n}\right)$ is étale. Thus the kernel of $\pi_{0}\left(f_{m n}\right)$-being quasi-compact and étale over k is finite over k, and it follows that the map $\pi_{0}\left(f_{m n}\right)$ is finite.
(ii) For the last assertion, note that we have an inverse system of exact sequences

$$
0 \rightarrow P_{n}^{o}(K) \rightarrow P_{n}(K) \rightarrow \pi_{o}\left(P_{n}\right)(K) \rightarrow 0
$$

and that $P_{n^{+}}^{\circ}(K) \rightarrow P_{n}^{\circ}(K)$ is surjective for all n (Prop. (3.2)); so on passing to the inverse limit we obtain an exact sequence

$$
0 \rightarrow \mathrm{P}^{0}(\mathrm{~K}) \rightarrow \mathrm{P}(\mathrm{~K}) \rightarrow \pi_{0}(\mathrm{P})(\mathrm{K}) \rightarrow 0
$$

The exactness of $0 \rightarrow P^{0} \rightarrow P \xrightarrow{q} \pi_{0}(P)$ is straightforward. To show that q is flat let $x \in P, y=q(x)$, and let x_{n}, y_{n} be their images in $P_{n}, \pi_{o}\left(P_{n}\right)$ respectively. Then $\theta_{P_{n}}, x_{n}$ is flat over $\partial_{\pi_{0}}\left(P_{n}\right), y_{n}$, and passing to inductive limits, we see that $\mathcal{O}_{\mathrm{P}, \mathrm{x}}$ is flat over $\mathcal{O}_{\pi_{0}}(P), y$. Next let $z \in \pi_{o}(P)$, let
z_{n} be the image of z in $\pi_{0}\left(P_{n}\right)$, and let $Q=q^{-1}(z)$, $Q_{n}=q_{n}^{-1}(z)$. Note that Q_{n} is irreducible, and is a connected component of P_{n}. The Q_{n} form an inverse system of schemes, in which the transition maps are affine, and

$$
\mathrm{Q}=\lim _{\leftarrow} Q_{\mathrm{n}} .
$$

We show next that $Q_{n} \rightarrow Q_{m}$ is surjective; then it follows that Q is non-empty (so that q is surjective - hence faithfully flat) and the proof of Prop. (3.2) (ii) can be imitated to give all the assertions about the fibres of q.

Let \bar{k} be the algebraic closure of k. By a simple translation argument, we deduce from the surjectivity of $P_{n}^{0} \rightarrow P_{m}^{0}$ that every component of $Q_{n} \otimes_{k} \bar{k}$ maps surjectively onto a component of $Q_{m} \otimes_{k} \bar{k} ;$ since every component of $Q_{m} \otimes_{k} \bar{k}$ projects surjectively onto Q_{m}, we find that $Q_{n} \rightarrow Q_{m}$ is indeed surjective.

It remains to be seen that q is quasi-compact. The fibres of the maps $\pi_{0}\left(f_{n}\right): \pi_{0}(P) \rightarrow \pi_{0}\left(P_{n}\right)(n \geq 0)$ form a basis of open sets on $\pi_{0}(P)$ (since $\pi_{0}\left(P_{n}\right)$ is discrete as a topological space); furthermore these fibres are quasi-compact (since $\pi_{o}\left(f_{n}\right)$ is an affine map), and their inverse images in p are quasi-compact (the affine map $P \rightarrow P_{n}$ and the finitely presented map $P_{n} \rightarrow \pi_{0}\left(P_{n}\right)$ are both quasi-compact, so the composed map $\mathrm{P} \rightarrow \pi_{0}\left(\mathrm{P}_{\mathrm{n}}\right)$ is quasi-compact); it follows that q is quasicompact. Q.E.D.

Remarks.

1. Say that a k-group Q is pro-étale if it is of the form $\lim _{\leftarrow} Q_{n}$, where $\left(Q_{n}, g_{m n}\right)$ is an inverse system of the type we have been considering, with all the Q_{n} étale over k. For example $\pi_{0}(P)$ is pro-étale. It is immediate that if Q is pro-étale and $f: G \rightarrow Q$ is a map of k-groups, with G connected, then f is the zero-map. From this we see that, with P as above, every map of P into a pro-étale k-group factors uniquely through $P \rightarrow \pi_{0}(P)$.
2. Let $\left(P_{n}, f_{m n}\right)$ be as above, and assume that the kernel of $f_{m n}$ is unipotent for all m, n. Set $Q_{n}=\pi_{o}\left(P_{n}\right), g_{m n}=\pi_{o}\left(f_{m n}\right)$; by (i) of Proposition (3.3), the kernel of $g_{m n}$ is étale and also unipotent (i.e. annihilated by p^{t} for some t, with $p=$ char. of k). Assume also that the abelian group $Q_{n}(\bar{k})(\widetilde{k}=$ algebraic closure of k) is finitely generated (for each n). (These assumptions hold in the situation described in (2.5), cf. [L2; Prop. (2.7), Cor. (2.11)].)

Let Q_{n}^{t} be the kernel of multiplication by p^{t} in Q_{n}. Then $Q_{n}^{o} \subseteq Q_{n}^{1} \subseteq Q_{n}^{2} \subseteq \ldots$, and since $Q_{n}(\bar{k})$ is finitely generated, we have, for large $t, Q_{n}^{t}=Q_{n}^{t+1}=\ldots$; so we can set

$$
Q_{n}^{(p)}=\bigcup_{t} Q_{n}^{t}=Q_{n}^{t} \text { for large } t
$$

Clearly $Q_{n}^{(p)}$ is finite étale over k, and unipotent; and the quotient $R_{n}=Q_{n} / Q_{n}^{(p)}$ is étale over k. Consider the commutative diagram $(n \geq m)$:

$$
\begin{aligned}
& 0 \rightarrow Q_{\mathrm{n}}^{(\mathrm{p})} \rightarrow \mathrm{Q}_{\mathrm{n}} \rightarrow \mathrm{R}_{\mathrm{n}} \rightarrow 0 \\
& \underset{\mathrm{~m}}{\downarrow} \underset{\mathrm{Q}}{(\mathrm{p})} \rightarrow \underset{\mathrm{Q}}{\downarrow} \rightarrow \stackrel{\downarrow}{\mathrm{R}_{\mathrm{m}}} \rightarrow 0
\end{aligned}
$$

Straightforward arguments give that:
(i) Multiplication by p in R_{n} is a monomorphism.
(ii) $R_{n} \rightarrow R_{m}$ is an isomorphism.
(iii) $Q_{n}^{(p)} \rightarrow Q_{m}^{(p)}$ is an epimorphism.

Then, passing to the inverse limit, we obtain:
There exists an exact sequence

$$
0 \rightarrow Q^{(p)} \rightarrow \pi_{0}(P) \rightarrow R \rightarrow 0
$$

$Q^{(p)}=$ inverse limit of unipotent finite étale k-groups.
$R=$ étale k-group such that the abelian group $R(\bar{k})(\bar{k}=$ algebraic closure of k) is finitely generated and without p-torsion.

Here R is already determined by P_{1}.

REFERENCES

EGA
A. GROTHENDIECK, J. DIEUDONNÉ, É1éments de Géométrie Algébrique:
— 01 Springer-Verlag, Heidelberg, 1971.
\ldots I, II, III (0 $\left.{ }_{\text {III }}\right), \operatorname{IV}\left(0_{\text {IV }}\right)$, Pub1. Math. I.H.E.S. $4,8, \ldots$
SGA A. GROTHENDIECK et. al., Séminaire de Géométrie Algébrique:

- 2 Cohomologie locale des faisceaux cohérents..., North-Holland, Amsterdam, 1968.

Schémas en groupes I, Lecture Notes in Mathematics no. 151, Springer-Verlag, Heidelberg, 1970.

Théorie des intersections et théorème de RiemannRoch, Lecture Notes in Mathematics no. 225, Springer-Verlag, Heidelberg, 1971.
[AC] N. BOURBAKI, Algèbre Commutative, Hermann, Paris. (Eng1ish Translation, 1972).
[B] J.-F. BOUTOT, Schêma de Picard local, C. R. Acad. Sc. Paris, 277 (Série A) (1973), 691-694.
[D1] V. I. DANILOV, On a conjecture of Samuel, Math. USSR Sb. 10 (1970), 127-137. (Mat. Sb. 81 (123) (1970), 132-144.)
\qquad , Rings with a discrete group of divisor classes, Math. USSR Sb. 12 (1970), 368-386. (Mat. Sb. 83 (125) (1970), 372-389.)
\qquad , On rings with a discrete divisor class group, Math. USSR Sb. 17 (1972), 228-236. (Mat. Sb. 88(130)(1972), 229-237.)
[DG] M. DEMAZURE, P. GABRIEL, Groupes Algébriques (Tome I), North- Holland, Amsterdam, 1970.
[F] R. M. FOSSUM, The divisor class group of a Krull domain, (Ergebnisse der Math., vol. 74), Springer-Verlag, Heidelberg, 1973.
[GR] A. GROTHENDIECK, Groupe de Brauer III, in Dix exposés sur la cohomologie des schémas, North-Holland, Amsterdam, 1968.
[K] W. KRULL, Beiträge zur Arithmetik kommutativer Integritätsbereiche V, Math. Z. 43 (1938), 768-782.
[L1] J. LIPMAN, Rational Singularities ..., Pub1. Math. I.H.E.S. no. 36 (1969), 195-279.
\qquad , The Picard group of a scheme over an Artin ring, to appear (preprint available).
D. PRILL, The divisor class groups of some rings of holomorphic functions, Math. Z. 121 (1971), 58-80.
[S1] P. SAMUEL, On unique factorization domains, Illinois J. Math. 5 (1961), 1-17.
[SH] G. SCHEJA, Einige Beispiele faktorieller lokaler Ringe, Math. Ann. 172 (1967), 124-134.
[SR] J.-P. SERRE, Corps locaux, Hermann, Paris, 1968.
[ST1] U. STORCH, Über die Divisorenklassengruppen normaler komplexanalytischer Algebren, Math. Ann. 183 (1969), 93-104.
[ST2] , Über das Verhalten der Divisorenklassengruppen normaler Algebren bei nicht-ausgearteten Erweiterungen, Habilitationsschrift, Univ. Bochum, (1971).

[^0]: (4) The Corollary, which is what we need for Theorems 1 and 1', could be proved more directly, using [L2, §1, comments on part II]; then we could do without our Lemma (2.4), and without introducing "Br". In a similar vein it can be deduced from the Theorem - or shown more directly - that if K is a normal algebraic field extension of k such that every connected component of $\mathfrak{X}_{\text {red }}$ has a K-rational point, and if A is any perfect field containing K_{K}, then $\operatorname{Pic}\left(\boldsymbol{X}_{\mathrm{A}}\right) \rightarrow \mathrm{P}(\mathrm{A})$ is bijective.

