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50. Introduction: U.F.D.'s and algebraic geometry.

In this lecture I will report on a number of themes which can be traced
back to a large extent to the work of Samuel in the early 1960's on the
topic of unique factorization domains. Through his work, and especially
through some fertile conjectures, Samuel stimulated a great deal of research-
in an area which was more or less dormant. As will become evident , a
remarkable feature of the subsequent research was the extent to which methods
of algebraic geometry were employed to give deep insight into what were
apparently purely algebraic questions. (Major credit for this profitable
synthesis belongs to Grothendieck.)

Recall that a unique factorization domain (U.F.D), or factorial ring,
is a commutative integral domain in which every non-zeroc element can be
factored into irreducible ones in an essentially unique way. Every U.R.D.
is normal (integrally closed in its field of fractions}. We will deal only
with noetherian U.F.D,'s. A noetherian normal domain is a U.F.D.if and only .
if every height one prime ideal is principal.

We can reformulate this. criterion for noetherian U.F.D.'s in the following
useful way. To each noetherian normal domain R we associate the group of
divisors Div(R), which is defined to be the free abelian group generated by
the height one prime ideals in R. Among the divisors we have the principal
divisers, which are those of the form

£ =1 v (£) (p - a height one prime
p P ideal of R)
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where f 1is a non-zero element of the fraction field of R, and for each
height one prime p, Yp is the associated discrete valuation (with valuation
ring Rp). We have

(£/g) = (£) - (g),
so the principél divisors form a subgroeup of Div{R). The quotient

CL(R) = Div(R)/(principal divisors)

is called the divisor class group of R. To say that every height one prime
is principal is to say that zll divisors are Principal; thus:

R is a U.F.D. <« CL(R)} = {0)

(For details, cf. {2, §3]).

The concept of U.F.D. arose in connection with number theory (Euler,
Gauss, Kummer,...)}, and has played an important rele in that subject up to
the present day. We have to pass by this line of development, in favor of
the geometric aspects of the study of U.F.D.'s. Here is one:

Let V be a projectively normal closed subvariety of some Projective
space over a field % (so that the corresponding homogenecus coordinate ring
k[V] is a normal domain}. Let R be the local ring at the vertex of the
projecting cone over V (R is obtained from k[V] by localizing at the
maximal ideal generated by all homogeneous elements of positive degree).
Samuel showed [30, $2} that

C2(R) = c&(V)/(hyperplane section).

{CL(V) is the group of linear equivalence classes of codimension one cycles
on V; and we are factoring out the subgroup "generated" by a hyperplane
section, i.e, the least subgroup containing the equivalence classes of those
cycles which are (scheme-theoretically) the complete intersection of V with
a hypersurface of the ambient projective space,] Consequently:

R is a U.F.D.

== (#) every irreducible codimension one subvariety of
V is cut out (scheme-theoretically) by a hyper-
surface of the ambient projective space,

In case Vv is non-singular (or even locally factorial) the condition
(#) means that every invertible @V-module is isomorphic to 6h(n) for
some integer n. Some examples of non-singular projectively normal V's
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having this property are:

-(i} Grassmamvarieties.

(These were treated by Severi and, over fields of positive characteristic,
by Igusa. Cf. also [20, p. 124].)

-(ii) Non-singular complete intersections of dimension 2> 3.

(This is the theorem of Lefschetz, mentioned in §3 of Hartshorne's talk
on equivalence of cycles {these Proceedings); c¢f. also §5 below,)}

-(iii) "Most'" non-singular two-dimensional complete dntersections.

(Lefschetz' generalization of Noether's theorem; cf. Hartshorne's
talk and also [}11, exposé XIX].)

Assuming that V is projectively normal, non-singular, and satisfies
{#), one can show that for the completion B to be'a U.F.D. a sufficient
condition (which is also pecessary if char.k = 0, or if dim.V = 1) is that

(+1) #lv, fy(m) = 0 for all n > 0

(cf. (7, §41)%. (#4#) is satisfied e.g. if V is a complete intersection
and dim.V 2 2. ' '

So we see that questions about local U.F.D.'s can have non-trivial
global geometric significance.

8l1. Unigue factorxization in formal power series rings.

It is elementary (going back to Gauss) that if R is a U.F.D, then so
is any polynomial ring R[xl,xz,...,xn].

In this section, we survey some highlights in the history of the
corresponding question for formal power series rings:

For which noetherian U.F.D,'s R is it true that:
{(*) any power series ring R[[xl,xz,...,xn]] is a U.F.D.?

The story begins in 1905 with Lasker's proof that (*) is true if R is
an infinite field. In 1938, Krull [21] showed the same thing with R any

*When k = complex numbers and dim.V 2 2, we have Hl{V,GV(-n)) =9 for
n> 0 (Kodaira's vanishing theorem), and (#) implies that Hl(V,@V) = 0 {since
V has discrete Picard scheme). So (##) says that HL(V,fy(n)) = ¢ for
all n e Z, which means precisely that depth(R} (= depth(ﬁ)) 2 3.




o - W Shdd bA A A S U

discrete valuation ring having infinite residue field, but he could not
settle the finite residue field case®. This was done by Cohen in 1946
[6, p. 94, Theorem 18]. Another proof of Cohen's result, making more explicit
use of the Weierstrass preparation theorem - and thus quite close to the
proofs of Lasker and Krull - is given by Bourbaki in [2, §3.9, Proposition 8].
(What Krull missed was a simple lemma on automorphisms of power series rings
(2, 83.7, Lemma 31)}. Krull also expressed doubt that (*) would hold for R
an arbitrary principal ideal domain {21, p. 770]; but in this he was
mistaken [2Z, §3, exercise 9]. In fact in 1961 Samuel {29, pp. 3-4] and
Buchsbaum [5, p. 753] showed more generally that (*) is true for any locally
regular U.F.D, R. (The main ingredient of their proofs is the Auslander-
Buchsbaum theorem that every regular local ring is a U.F,D.)

At the same time, Samuel gave the following result [29, p. 5):

(I) If R is a U.F.D. whose localizations at maximal ideals
are all Cohen-Macaulay, and if the power series ring in
one variable Rp[[X]} is a U.F.D. for all height two

- primg ideals p in R, then R{[X]] is a U.F.D.

- (Samuel's proof of (I) is complicated, and is said by Danilov [9, p. 368)]

to be incomplete. However, Danilov [log. cit] gives a more general result,
which we will describe in §3.)

(I) brings the study of power series rings R[{X]] over two-dimensional
local U.F,D.'s R to the foreground. Samuel found examples of such R for
which R[[X]] is not a U.F.D [29], [30). These examples were, however,
suspect:, in that their completions were not U,.F.D.'s: to a geometer,
properties of local rings which are not preserved under completion somehow
lack authenticity. Anyway, Samuel conjectured [30, p. 171]:

(I1) If R is a complete local U.F.D., then se is R[[X]] (7)

The first progress on (I1I) was due to Scheja, who showed [32, p. 128,
Satz 2] that (II) holds whenever R has depth > 3, A nice consequence of
this is that if R[[X]J] is a U.F.D., (R as in (II)} then so is
R[[xl,xz,...,xn]] for any n. (For, if depth R[[X}] < 3, them R is
either a field or a discrete valuation Ting.)

0f course Scheja's result says nothing about (I1I) in case R is two-
dimensional. One difficulty in attacking this case was that when (II) was
formulated, there was only one example known of a ggg;Iggglgg_g%g;g;%gggigggl
henselian local U.F.D., namely the analytic ring Cllx,y,2}}/(x° + y° + 25),

®Krull's idea, to deduce the finite case from the infinite one [21,
p. 778], works well once one has available - which Krull didn't - some basic
facts on faithfully flat ring extensions. (Cf. [12, p. 35, Cor. 6.11].)




which Mumford had investigated with transcendental methods [25, 5IV].“
Such was the state of knowledge (or rather ignorance) ten years ago,

Scheja tried to find a two-dimensional counterexample to (II). He proved
that for any three-dimensional regular local ring S with maximal ideal
generated by u, v, w, the two-dimensional ring R = S/(u2 + v3 + ws) is a
U.F.D,,but so is R[{X]]. He then discovered a number of previously unknown
complete local two-dimensional U.F,D.'s; but each one of them satisfied
Samuel's conjecture (cf. [32]). So after a while, he gave up. Apparently
he did so too sovon, for, as it turned out, he had actually found essentially
all the two-dimensional R for which (II) holds - there are very few®,
whereas there are many others for which (II) fails.

The first counterexample to {II) was found by Salmon [28] - it is the

ring
R = k(U) [[X,Y,2]]/x%+ ¥° + uz%)

where k is any field, and U 1is an indeterminate. Here R[[X]] is not a
U.F.D., whereas R is. But, if in the description of R we replace the
field’/k(U) by its algebraic closure, the resulting ring is no longer a
U.P.D.. This again should arouse the scepticism of any geometer; it means
that R is not a genuine U.F.D., in that C2(R) has many non-zero elements
vwhich happen to be thinly concealed, i.e. defined over an algebraic extension
of the residue field! Later on, a whole series of counterexamples was given
by Danilov [8, 81] and Grothendieck [unpublished]}; these all had the same
deficiency: they lost their U.F.D. property when the residue field was
extended to its algebraic closure. )

And indeed, (II) is true if the residue field of R is algebraically
closed.

in fact, a better result holds, To formulate it, we need the notion of
a discrete divisor class group {DCG). If R is any normal noetherian domain,
there is a canonical map i:CA(R) » C2(R[[X]]) defined as follows: £for any
height one prime ideal p in R, pR[[X]] is a'height one '
prime .ideal in R[[X]]; there is a unique map
Div(R) -+ Div(R[[X]]) sending each p to the corresponding divisor pR[[X]];

“Subsequently Erieskorn showed that there are no other analytic examples!
[4]. (In [22, §25], Brieskorn's result is extended to arbitrary two-dimen-
sional henselian local rings with algebraically closed residue field.) A
propos, the ring in question has a distinguished history, going back to Klein's
lectures on the icosahedron.

SPrecisely those which have rational singularities (provided the
singularity is resolvable}, cf. Theorem 3 in 53. A complete list of
rational U.F.D.'s is given in [22, §25].




one checks that this map takes pPrincipal divisors of R to principal divisors
of R[[X]}], and hence induces a map i:CL(R} + CL(R{{X]]) (cf. (12, sej).
i is easily seen to be injective [12, p. 35, Cor. 6.13] {in fact i has a
left inverse [ibid, p. 130, remarks}). R is said to have DCG if i is
bijective,

Note that if R is a U.F.D. (i.e. C2(R) = (0)), and R has DCG,
then Rf[X]] is a.U.F.D. (and conversely).

So (II) may be looked at from a more general point of view (due to
Danilov): study rings with DCG.®

Here is the result:

THEOREM 1. Let R be a compiete normal noetherian local ring
With algebraically closed residue field, and suppose
that C&(R) is a finitely generated abelian group .
Then R has DCG. {In particular, if R is a U.F.D.,
then so is R[[X]].}

The Theorem was proved by Danilov [10]), with some additional restrictions
on R, in the equicharacteristic case (i.e. when R contains a field);7? his
proof uses resolution of singularities and the theory of the Picard scheme
of a scheme which is proper over a field. A much more elementary proof,
using the theorem of Ramanujam-Samuel (cf. §5 below), was given by Storch
[34], under the assumptions that R contains a field and that the residue
field of R is uncountable and of cardinality strictly greater than that of
C2(R). Following some hints of Grothendieck, I worked out a theory of Picard
schemes for schemes proper over any complete local ring; with this machinery,
it was possible to make Danilov's and Storch's arguments apply to any R
whose singularities can be resolved [23, Theorem 1'}. Finally, Boutot

showed how to get rid of the ungainly condition of resolvable singularities
{23, Theorem 1}.

52, . The local Picard scheme.

To get a proper feeling for the preceding results (and in particular for
the terminclogy "DCG") one can adopt a philosophy due to Grothendieck. Let
R be a normal complete lccal noetherian ring. Assume for simplicity that
Spec(R} is regular ocutside the tlosed point, and that R c¢ontains a field
of representatives k. Foliowing some work of Mumford [25} on two-
dimensicnal analytic local rings Grothendieck proposed a method for giving
CL(R) a natural structure of locally algebraic group - the "local Picard
scheme' - over the residue field k of R. (For details, cf. [16, pp. 189-
191]. Roughly speaking, there should be a locally algebraic k-group P, and

fA survey of Danilov's excellent work on rings with DCG is given in §19
of [12].

Under these conditions he also proves the converse: DCG = C2(R)
finitely generated.




for k-algebras K a natural (K-functorial)} map
BK:CE(R @kK) +.P(K) (= K-valued points of P}

which, as a first approximation, can be thought of as being bijective. (This
is not true for 211 K, but never mind; at this moment we are just
describing a philosophy, and don't want to get involved with technicalities.)

If P is discrete (i.e. zero-dimensional) then P(k) = P(k[[X]]1), so
CL(R) = C2(R{[X]]) and R _ has DCG. <LConversely, if P has positive
dimension, then there is a tremendous number of points in the kernel of
P(k{[X]]) = P{(k) (think of them as little analytic arcs on P emerging from
the zero-point}. Se CL(R{{X]]) is bigger than C%(R), i.e. R does not
have DCG. .

Now R is a U.F.D.if P(k) (= CR(R)) = (0), i.e if P has just one
k-rational point. If k is algebraically closed, this means that P is
zero-dimensional, so R has DCG, (This is the "explanation" of Theorem 1,
§1). : _

If k is not algebraically closed, then P(k) can be (0) even if P
has positive dimension. In Salmon's example, for instance, P is the
projective plane cubic curve defined over k{U} by

X%z + Y3+ uzd = g,

whose only k(U)-rational point is (1,0,0). The above-mentioned counter-
examples'of Danilov and Grothendieck were constructed by completing the

local rings at the vertices of projecting cones over certain curves, namely
principal homogeneous spaces over elliptic curves having just one rational
point over their field of definition; then P turns out to be the elliptic
curve itself. As mentioned before, in each of these examples, the U.F.D.
property is destroyed by extending the residue field to its algebraic closure;
this appears now as a reflection of the fact that an elliptic curve over an
algebraically closed field has many rational points,

Thus we can say that (II} (§1) is basically a geometric statement; the
counterexamples of Salmon, Danilov and Grothendieck have arithmetic, but not
geometric, significance.

It should be emphasized that the local Picard scheme, per se, plays no
role, except for motivation, in the proof of Theorem 1. However the main
lines of the proof are similar to - or suggested by - those in Grothendieck's
proposed construction.

- Actually, it is only recentiy that the theory of local Picard schemes
has really been developed, by Boutot [3], who uses a different approach than
the one outlined by Grothendieck. Boutot considers a local ring R with
maximal ideal m, such that R contains a field of representatives k
(i.e. k maps canonically onto R/p). Let U = Spec(R) - {m}. ({Note that
for normal R, CL£(R) = Pic(U) if R has an isolated singularity, or more
generally if U is locally factorial.) The idea is to make Pic(U) into a




locally algebraic k-group in a natural way. To this end, for each noetherian
k-algebra A, let Ry, be the m-adic completion of R GmA, let ﬁA be the

inverse image of U in Spec(ﬁA), and consider the functor
P(A) = Pic(ﬁA).

Using M. Artin's representability criteria, Boutot shows ([3), and oral
communication):

Assume that depth R > 2 and that the k-vector space
wiw, @U) is finite-dimensional (these assumptions
held, for examplie, if R is complete, normal, and
of dimension 2 3)}. Then the &tale sheaf associated
to P is a locally algebraic k-group, whose Zariski
tangent space at the origin is Hl(U, 6U).

It seems reasonable to anticipate further interesting developments in
the study of local Picard schemes. After all, they should be no less
important for local rings than global Picard schemes are for varieties. One
can hope, for example, that the local Pic. will enter in a significant way
inte the theory of classification and deformation of singularities.

85, .Depth and discrete divisor class prc

‘This section is centered around Danilov's generalization of Samuel's

theorem (I} (61). Danilov's result [8, p. 374, Theorem 1] asserts that the
DCG property lives in depth 2:

THEOREM 2. If the normal noetherian ring R is such that the

localizations have DCG for all prime ideals
p such that depth(Rp) = 2, then R itself has
DCG.

(Danilov's proof of Theorem 2 uses some of the deep cohomological
results of {16], and he needs some additional mild hypothesis on R; but

there is a quite elementary proof which does not require this additional
condition [24}.)

Recall that a normal noetherian Ting R satisfies the Serre condition
(53) if for any prime ideal p with dim.(Rp) 2 3 we have also depth(Rp123.

COROLLARY 1. If the noetherian normal ring R satisfies (33), and
if all its two-dimensional localizations R have

DCG - for example if they are regular - then R has
DCG.

As before, this focuses attention on the two-dimensional case, for which
Danilov shows:




THEOREM 3 [9, §4]. For a two-dimensional normal local ring R
with resolvable singularity and perfect residue field
the following are equivalent:

(i) R has DCG.

(ii) R has a rational singularity.

(iii) The strict henselization of R has a finite
divisor class_group®.

Danilov also shows [9, §5)] that:

The converse of Corollary 1 holds if R is excellent
and contains a field of characteristic zero.-

Here again he uses some of the heavy machinery from {16}, plus the following
fact: if R is an excellent Q-algebra and f£:X + Spec(R) is a

resolution of singularities, then R has DCG if and only if H}(X, 6&) = (0)}
(Hence the DCG property localizes for excellent Q-algebras; whether this is
true for more general R doesn't seem to be known.))}

In view of Schéja's result (immediately following (II)(§1)), the
preceding gives:

If R is a complete equicharacteristic zero U.F.D.
of depth 2 3, then R satisfies (53). Furthermore,
the two-dimensional localizations of R have at
worst rational singularities (s¢o they are explicitly
known [22, §25]).

Here, if the residue field is algebraically closed (char. 0}, the
"depth > 3" hypothesis is superfluous. For, the U.F.D. property implies
that Boutot's local Picard scheme (§2) is zero-dimensional (it has just one
rational point), so its tangent space Hl(U, 0U) = 0, i.e. R has depth 2z 3.
_ Alternatively, as indicated just after Theorem 1 (%1), Danilov showeg that a
normal local ring R with algebraically closed char. 0 residue field, and
with finitely generated divisor class group, has DCG provided it is
complete {or, more generally, provided that a reduction to the complete case
via Artin's approximation theorems is possible, for example if R is the

8cf. also [22, §17]. The resolvability of the singularity of R is
equivalent to analytic normality [ibid. §16.2)}. Without this assumption, and
without any assumption on the residue field, it is still true that R has
DCG if and only if R has 2 pseudo-rational singularity [ibid, §9].

$"Explanation™: Hl(x, 6x) is the tangent space at the origin of the
local Picard scheme. {Danilov does not use this.)




local ring of an algebraic variety over €, or if R is analytic). Hence,
by the converse of Corollary 1, any such R satisfies (53).

A different approach to this last result is given by Hartshorne'and
Ogus, in [18, 6§2]. For excellent.normal local rings R with residue field
€, whose completion is algebraizable, they show that the (83) property
follows from the vanishing of Hl(x, 0x), where f£:X + Spec(R) is a
resolution of singularities. Their methods are analytic, being based on a
dualized version of the Grauert-Riemenschneider vanishing theorem.

In conclusion, we note that for the converse of Corollary 1, character-
istic zero is essential. Serre has given examples (over fields of positive
characteristic) of nom-singular pProjective surfaces V whose Picard scheme
is discrete (zero-dimensional) but not reduced. Danilov points out {s,

PP: 376-377] that the projecting cone over a suitable projective embedding
of such a V has a vertex whose completed local ring is normal, with DCG,
and three-dimensional, but of depth two (so it doesn't satisfy (83}).

54, U.F.D!'s which are not Cohen-Macaulax.

In Samuel's theoren (1)(51) one assumption on the U.F.D. R is that
the localizations of R are Cohen-Macaulay (C-M). At the end of the paper
(297 where (I) is given, Samuel states that a1l the examples of U.F.D/'s
known to him are locally C-M, and asks whether this is true in general.

In this connection, Murthy showed [26] (cf. also [12, §12} or [19,
{7.18)]) that any C-M U.F.D. R ¥hich is a homomorphic image of a regular
local ring is in fact a Gorenstein ring. The reason for this is that the
"canonical' (or "dualizing") module of R is a reflexive fractionary ideal
[19, (6.7), (7.29)], hence invertible, since R is a U.F.D.; and the
invertibility of the canonical module characterizes Gorenstein rings
[ibid, (5.9)).

Using a variant of local duality, Hartshorne and Ogus [18, §1] have

improved Murthy's result by weakening the hypothesis that R be C-M to the
two conditions:

(i) R satisfies (33) and

(ii) depth(Rpj 2 %dim.(Rp) * 1 for all primes p with dim.(Rp) 25,

For example, if R is a compliete local U.F.D, with algebraically closed
residue field of characteristic zero, then R satisfies (53) (cf. §3);
hence if R has dimension < 4, then both (i) and (ii) are satisfied, so R
is a Gorenstein ring. (Cf. [18, p. 428); this result is originally due to
M. Raynaud {unpublished}.)

The first example of a U.F.D. which is not locally C-M was given by
Bertin [1]; it is the ring of invariants of a cyclic group G of order 4
acting linearly on z polynomial ring B in 4 indeterminates over a field
k of characteristic 2. The U.F.D. property is established by a "Galois
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descent" technique of Samuel [12, §16], which gives an injective map of the
divisor class group of the fixed ring BG into H;(G,B*) (B* = units of B);
but B* = k*, on which G acts trivially, so that

Hl(G,B*) = HI(G,x*) = Homy (G,k*) = 0

(since k* has no 2-torsion). (The same argument applies to a cyclic group
of order pr acting on any polynomial ring over a field of char.p.)

To show that her example was not locally C-M, Bertin constructed
explicitly a system of homogeneous parameters which is not a regular sequence
(cf. [12, §516.8]). Then Hochster and Roberts noticed [20, p. 127] that
Bertin's example was very closely related to some surfaces previously studied
by Serre. (the same surfaces used in Danilov's example at the end of §3), and
that Serre's computations led to another proof of the failure of the C-M
property; since Serre's surfaces exist over fields of any characteristic
2 5, one gets examples similar to Bertin's over any such field.

In analogy with the situation discussed in §1, one could still reasonably
ask whether any complete local U.F.D. is C-M.

This question was open until quite recently, when the answer was found
to be "no". Freitag and Kiehl constructed a class of analytic local rings
(over the complex numbers) which are U.F.D.'s of dimension 60 and depth 3,
hence certainly not C-M. [15, p. 144, Thm. 5.8] (These examples arise in
connection with the study of the cusps of Hilbert modular groups associated
with totally real Galeis extensions of Q, whose Galois group is the alter-
nating group As (of order 60) on five elements; the methodsused involve
complex analysis, cohomology of groups, number theory,...). An argument of
Danilov [10, p. 235, remarks 5 and 3], making use of Artin's analytic
approximation theorem, implies ‘that the completions of the Freitag-Kiehl
examples are U.F.D!s {which are not C-M),

Over fields of characteristic > 0, some complete local non C-M U.F.D's
have been found even more recently by Fossum and Griffith. In fact they
show that the completion of Bertin's example is a U.F.D. [131. (Bertin's
example is a graded subring of a polynomial ring, and completion is with
respect to the powers of the irrelevant ideal.) More generally, in [14) they
treat the following situation:

Let k be a field of characteristic p > ¢, let n > 0, and let G bhe
a cyclic group of order pn operating on the polynomial ring
B = k[xl,xz,...,xpn] by cyclically permuting the indeterminates. This
action of G extends to the power series ring B = k[[xl,xz,...,xpn]]. Then:

{i) The fixed ring BG is a graded U.F.D. which is not C-M.

{Pzoof: essentially the same as for the above-mentioned
Hochster-Roberts examples.)
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(ii) The fixed ring 8% is the completion of B at
its irrelevant ideal (so that ﬁG is not C-M.)

(Proof: elementary.)

(iii) 2 (8% ¢ Hlte,B*)  (B* = units of B)
(Proof: by Samuel's Galois descent.)
{iv) (Main Result). If p" =4, 0r n=1 and p=: ¢

then Hl(G,ﬁ*) = 0 ({(whence, by (ii) and (iii}, .
86 s a complete local U.F.D. which is not C-M).

2

(Proof: elaborate computation.)

I hope the matter will not rest here, for there does not seem to be any
Teal insight yet into the connection between the U.F.D. and C-M properties
for complete local tings (not even for those obtained from cones over non-
singular projective varieties (80)). By real insight, I mean the sort of

understanding which the local Picard scheme gives us for the subjects treated
in §1..

85, JParafactoriality

The notion of parafactoriality was introduced by Grothendieck in (161,
and used effectively there to study factorial rings,

Recall that a noetherian local ring R with maximal ideal m is
parafactorial if depth R 2 2 and Pic(Spec(R) - {m}) = 0.

The connection of this notion with factoriality is the following simple
fact {16, p. 130, Cor. 3.10]: when dim.R 2 2, R is factorial if and only
if: R is parafactorial and Rp is factorial for every prime ideal P #m.

An early application was to the following conjecture of Samuel [30,
p. 172], which generalizes a classical global theorem of Lefschetz (cf. 50
example (ii)): a local complete intersection which is factorial in
codimension $3 is factorial. 1In [16, p. 132] Grothendieck showed:

]

A local complete intersection of dimension > 4
is parafactorial.

(From this, and from the above characterization of factorial rings, Samuel's
conjecture follows immediately, by induction on the dimension.)

A Tesult along similar lines has been proved by Ogus (27, p. 350,
Cor. 3.14}. Let R, m be as above, with R/m of characteristic zero. Let
d = dim.(R), and assume that R is a homomorphic image of a regular local




ring A of dimension d + r. Let U = Spec(R) - {m}, V = Spec(A) -
{closed point}. Assume further that:

(i) U 'is locally a complete intersection in V.
(ii) depth(R) 2 3.
(iii) r £d - 3 ("small embedding codimension").

Then, under these conditions, R is parafactorial.

Hartshorne and Ogus derive a number of corollaries from this result
[18, 53], Here is one: if, furthermore, R is locally factorial in
codimension §¢ 3 (so that by assumption (i) and Grothendieck's above theorem,
U is locally factorial) them R itself is factorial.

* * *

In response to a conjecture of Grothendieck, Samuel proved the
following theorem [31]:

Let R, m, be as above, and assume that the completion R is normai.
Let A be the power series ring R[[X]), and let p be the prime ideal
pA. Then the canonical map of divisor class groups CR(A) + Cz(Ap) is

‘bijective.

The same result for power series rings in any finite number of variables
was proved independently by Ramanujam [33, appendix]. (He reduces the
question to the one-variable case, then uses -as does Samuel- the Weierstrass
preparation theorem.)

An easy consequence is that A is parafactorial. (In fact one can
derive many other parafactorial rings, cf. [17, §(21.14)].)

This Ramanujam-Samuel theorem plays an important role in the proof of
Theorem 1 (51). It is also essential in Boutot's theory of local Pic. (§2),
for showing that the zero-section of the "local Picard functor" P is
represented by a closed immersion (this being one of Artin's representability
conditions ). In fact Boutot proves and uses the following strong form of
the Ramanujam-Samuel theorem:

Let R and A be noetherian local rings, B the maximal ideal of
R, $:R + A a local homomorphism making A formally smooth over R (for
the usual topologies), and such that the residue field of A is finite over
that of R. Let q e Spec(A) be such that q ¢ mhA and depth Ag 2 3. Then
Aq is parafactorial.

Having used this as input for the existence of local Pic., Boutot then
obtains further refinements as output, for example:

Let ¢:R ~ A be a local homomorphism of equicharacteristic local rings
making A formally smooth over R. Then A is parafactorial under either
of the following two sets of conditions:

(i) dim.(A) > dim.(R) and depth(A) 2z 3.
(ii) dim.(A) = dim.(R), R is parafactorial and strictly henselian.

-




As a corollary of this last generalized form of Ramanujam-Samuel's
theorem, Boutot gets the following result, which is manifestly related to
the subject matter of §1:

Let f£:X + 5 be a regular morphism of equi-
characteristic locally noetherian schemes. Suppose
that the strict henselization of the local ring of
each point of S is factorial. Then the same holds
for X. ’

Details will appear in Boutot's thesis.
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