
Functions Of A Complex Variable I
Instructor: Professor Alexandre Eremenko

Course Number: MA 53000
Credits: Three

Time: 11:30–12:20 PM MWF

Catalog Description

Complex numbers and complex-valued functions of one complex variable; dif-
ferentiation and contour integration; Cauchy’s theorem; Taylor and Laurent
series; residues; conformal mapping; special topics. More mathematically
rigorous than MA 52500.

Elements Of Stochastic Processes
Instructor: Professor Samy Tindel

Course Number: MA 53200
Credits: Three

Time: 3:30–4:20 PM MWF

Catalog Description

A basic course in stochastic models, including discrete and continuous time
Markov chains and Brownian motion, as well as an introduction to topics
such as Gaussian processes, queues, epidemic models, branching processes,
renewal processes, replacement, and reliability problems.

Probability Theory I
Instructor: Professor Christopher Janjigian

Course Number: MA 53800
Credits: Three

Time: 10:30–11:4 AM TTh

Catalog Description
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A basic course in stochastic models, including discrete and continuous time
Markov chains and Brownian motion, as well as an introduction to topics
such as Gaussian processes, queues, epidemic models, branching processes,
renewal processes, replacement, and reliability problems.

Ordinary Differential Equations and Dynamical Systems
Instructor: Professor Yuan Gao
Course Number: MA 54300

Credits: Three
Time: 4:30–5:45 PM TTh

Description

This is a graduate–level course on Ordinary differential equations and Dy-
namical systems. The course will start with an introduction to the basic
properties of differential equations, including solving linear systems, exis-
tence and uniqueness theory, flows and linearization, and linearized stabili-
ties. With these preparations, I will introduce advanced concepts related to
global existence, invariant/stable/unstable manifold, periodic orbits, limit
sets, averaging, chaotic and bifurcation theory. Preliminary knowledges on
basic concepts in linear algebra, calculus, analysis are required. The goal of
the course is to introduce the fundamental mathematical ideas in dynamical
systems. Each student will give a final presentation on related topics.

Real Analysis And Measure Theory
Instructor: Professor Rodrigo Banuelos

Course Number: MA 54400
Credits: Three

Time: 12:30–1:20 PM MWF

Catalog Description
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Metric space topology; continuity, convergence; equicontinuity; compact-
ness; bounded variation, Helly selection theorem; Riemann-Stieltjes inte-
gral; Lebesgue measure; abstract measure spaces; LP-spaces; Holder and
Minkowski inequalities; Riesz-Fischer theorem.

Introduction to Functional Analysis
Instructor: Professor Marius Dadarlat

Course Number: MA 54600
Credits: Three

Time: 1:30–2:20 PM MWF

Description

1. Banach spaces

2. Hilbert spaces

3. Linear Operators and functionals

4. The Hahn-Banach Theorem

5. Duality

6. The Open Mapping Theorem

7. The Uniform Boundedness Principle

8. Weak Topologies

9. Spectra of operators

10. Compact operators

11. Banach algebras and C*-algebras

12. Riesz calculus

13. Fredholm index

14. Gelfand transform
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15. Spectral theorem for normal operators

If time allows:

16. Unbounded Operators

17. Applications: Differential operators, Peter-Weyl theorem

Prerequisites: Familiarity with basic measure theory

Grading:

Attendance 35%,

HW 40%,

Final Exam 25% (a take-home 36 hours no collaboration exam).

No specific textbook is required. These topics are covered by most books
on functional analysis. A good reference is: Gert Pedersen, Analysis Now,
(Graduate Texts in Mathematics) Corrected Edition!

Introduction To Abstract Algebra
Instructor: Professor Freydoon Shahidi

Course Number: MA 55300
Credits: Three

Time: 10:30–11:20 AM MWF

Catalog Description

Group theory: Sylow theorems, Jordan-Holder theorem, solvable groups.
Ring theory: unique factorization in polynomial rings and principal ideal
domains. Field theory: ruler and compass constructions, roots of unity,
finite fields, Galois theory, solvability of equations by radicals.
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Linear Algebra
Instructor: Professor Bill Heinzer

Course Number: MA 55400
Credits: Three

Time: 3:30–4:20 PM MWF

Catalog Description

Review of basics: vector spaces, dimension, linear maps, matrices determi-
nants, linear equations. Bilinear forms; inner product spaces; spectral theory;
eigenvalues. Modules over a principal ideal domain; finitely generated abelian
groups; Jordan and rational canonical forms for a linear transformation.

Abstract Algebra II
Instructor: Professor Vaibhav Pandey

Course Number: MA 55800
Credits: Three

Time: 12:00–1:15 PM TTh

Description

This course is a continuation of MATH 557. The course will cover topics
in dimension theory, regular sequences, Koszul and local cohomology, Cohen
Macaulay rings, and Gorenstein rings. Following this, we will give an in-
troduction to the theory of tight closure and relook at Cohen-Macaulay and
Gorenstein rings through the lens of tight closure techniques.

Emphasis will be laid on calculating examples and possibly presentation of
particular topics by students towards the end of the course. Weekly home-
works will be assigned.

The course should be accessible to anyone who has done MATH 557 or has
a working knowledge of the text in Atiyah–McDonald.

No particular book will be followed, through broadly we will follow Bruns–
Herzog for the general theory.
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Introduction To Differential Geometry And Topology
Instructor: Professor Harold Donnelly

Course Number: MA 56200
Credits: Three

Time: 9:30–10:20 AM MWF

Description

Smooth manifolds; tangent vectors; inverse and implicit function theorems;
submanifolds; vector fields; integral curves; differential forms; the exterior
derivative; DeRham cohomology groups; surfaces in E3., Gaussian curva-
ture; two dimensional Riemannian geometry; Gauss-Bonnet and Poincare
theorems on vector fields.

Textbook: William Boothby, An Introduction to Differential Manifolds and
Riemannian Geometry, Second Edition, 2003, first six chapters

Prerequisites: several variable calculus, linear algebra, basics of general
topology

Introduction To Algebraic Topology
Instructor: Professor Xingshan Cui

Course Number: MA 57200
Credits: Three

Time: 1:30–2:45 PM TTh

Description

The course will be an introduction to algebraic topology, which is not only a
basic tool in topology, but is also important in many other fields such as dif-
ferential geometry, algebraic geometry, number theory, mathematical physics,
data science, quantum information, etc. The main focus is on homology and
cohomology. Along the way, we will cover CW-complexes, Universal Co-
efficient Theorem, Kunneth Theorem, Poincare duality, basics of category
theory, basics of homological algebra, and (if time permits) an introduction
to 3-/4-manifolds.
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Introduction To Additive Combinatorics
Instructor: Professor Ilya Shkredov
Course Number: MA 59500AC

Credits: Three
Time: 4:30–5:45 PM TTh

Description

Additive combinatorics is a rapidly developing new field of modern mathe-
matics, lying between number theory and combinatorics. A variety of tools
are used such as (besides number theory and combinatorics) dynamical sys-
tems, computer science, probability, geometry, algebra and so on. Roughly
speaking, additive combinatorics is the field that studies combinatorial prob-
lems that can be expressed through the group operation.

To get an idea of additive combinatorics, you can refer to the first result in
this area, namely the famous Cauchy theorem (1813) concerning addition in
Z/pZ, which says that the power of the sum A + B := a+ b : a ∈ A, b ∈ B
of two sets A,B from Z/pZ is either p or at minimum |A| + |B| − 1. Thus,
we have a general combinatorial statement for arbitrary sets, but this com-
binatorics includes the group operation +. Other results of additive combi-
natorics are those of van der Waerden theorem on arithmetic progressions
(which Khintchin called “a pearl of number theory”), Freiman’s structural
result on sumsets, the amazing Green-Tao theorem on arithmetic progres-
sions in the prime numbers, Bourgain-Glibichuk-Konyagin theorem on the
uniform distribution of multiplicative subgroups and many others.

In this course we plan to introduce you to the fundamental results of the area
and describe some relationships and connections of additive combinatorics
with number theory, combinatorics, ergodic theory, graph theory, Fourier
analysis, geometry and other branches of mathematics.

Extended Program:

1. Introduction, coloring problems.

2. Combinatorial ergodic theory and the regularity lemma.

3. Sumsets and difference sets.

4. Applications of Fourier analysis to additive combinatorics.
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5. Sets having no arithmetic progressions of length three.

6. Bohr sets and the spectrum.

7. Almost periodicity.

8. Freiman’s theorem on sets with small doubling.

9. The sum-product phenomenon: the real case.

10. The sum-product phenomenon: the finite fields case.

11. Gowers norms.

12. Multiplicative combinatorics.

Book: Terence Tao and Van H. Vu, Additive combinatorics

Prerequisites: 16*** (first year calculus).

All levels, undergraduate/graduate.

Elliptic Curves
Instructor: Professor Daniel Le
Course Number: MA 59500EC

Credits: Three
Time: 12:30–1:20 PM MWF

Description

Elliptic curves are the simplest ”non-trivial” objects across a wide swath of
subjects including complex geometry, algebraic geometry, algebraic topology,
and number theory. They correspondingly played a large role in the develop-
ment of all of these. In the course, elliptic curves will serve as examples of or
as an introduction to general phenomena in these areas. The course will start
with analytic aspects before moving to algebraic and arithmetic aspects. Our
focus will be on (co)homology of elliptic curves in various guises. Prerequi-
sites are complex analysis and field theory. Some knowledge of commutative
algebra, algebraic number theory, and algebraic varieties is recommended.
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Geometry Of Characteristic Classes
Instructor: Professor Sam Nariman
Course Number: MA 59500GCC

Credits: Three
Time: 12:00–01:15 PM TTh

Description

Characteristic classes are central to the modern study of the topology and
geometry of manifolds. They were first introduced in topology, where, for
instance, they could be used to define obstructions to the existence of certain
fiber bundles. Characteristic classes were later defined using connections on
vector bundles, thus revealing their geometric side.

This course aims to introduce the students to the three theories of charac-
teristic classes. They include characteristic classes of flat bundles, character-
istic classes of foliations, and characteristic classes of surface bundles. We
will mainly follow a book and a lecture note by Shigeyuki Morita. For the
characteristic classes of surface bundle, if time permits we will discuss the
Madsen-Weiss theorem.

We assume some basic knowledge in algebraic topology, differential topology
in particular de Rham forms, manifold, fiber bundle, homotopy groups.

Geometric Measure Theory
Instructor: Professor Monica Torres
Course Number: MA 59500GMT

Credits: Three
Time: 12:30–1:20 PM MWF

Description

Geometric Measure Theory is widely applied to many areas of Analysis and
Partial Differential Equations. This class is an introduction to Geometric
Measure Theory and is composed of two parts:
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In Part I we will study Hausdorff measures, Besicovitch’s covering theorem,
differentiation of measures, Lipschitz functions and Rademacher’s theorem,
Rectifiable sets and blow-ups of Radon measures, the area formula, sets of
finite perimeter, compactness of sets of finite perimeter, reduced boundary
and De Giorgi’s structure theorem, coarea formula, isoperimetric inequality.
With all these techniques at hand, we can show the existence of minimizers
of important geometric variational problems (i.e. minimal surface).

In Part II of the class we will introduce methods of geometric measure theory
to study regularity of minimizers, including the monotonicity formula. We
will obtain Lipschitz continuity and C1,α regularity of local perimeter mini-
mizers. Analysis of singularities and the Federer’s dimension reduction argu-
ment will also be discussed. If time permits, we will include other important
topics in geometric measure theory such as functions of bounded variation,
and their corresponding traces and Gauss-Green formulas on rough domains
(i.e; sets of finite perimeter).

Prerequisites: Basic measure theory (as in MA544 or equivalent).

Introduction to Quantum Computing
Instructor: Professor Eric Samperton

Course Number: MA 59500IQC = CS 59300
Credits: Three

Time: 10:30–11:45 AM TTh

Description

An introduction to the theory of quantum computation focused primarily
on foundations, theory, and rigor, rather than specific hardware implemen-
tations or heuristic applications. We will begin with the axioms of quantum
mechanics and the most common formulation of quantum computation based
on quantum circuits. We will then develop the core primitives in the quan-
tum algorithms toolkit (such as quantum Fourier transforms, phase estima-
tion, and Trotterization/quantum simulation) and establish some elementary
complexity-theoretic results (including some oracle separations, and various
lower and upper bounds), as well as work through the crown jewel of quan-
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tum algorithms to date—Shor’s factoring algorithm. Along the way, we will
see some of the more curious aspects of quantum information facilitated by
quantum entanglement (such as Grover search, quantum teleportation, su-
perdense coding, Bell violations). The last portion of the course will develop
the basic theory of quantum error-correcting codes and the fault tolerance
problem.

In particular, you may want to note that I do not plan to cover quantum
optimization, quantum machine learning, or post-quantum cryptography in
any depth (if at all).

Textbook: Quantum Computation and Quantum Information, Nielsen and
Chuang.

Prerequisites: Some first-year and most second-year graduate students in
CS, physics or mathematics should be comfortable in the class. Familiarity
with at least one of the following at the level of a first year graduate student
will be expected of all students: CS theory, quantum mechanics, abstract
algebra, functional analysis, linear algebra. Please inquire with the instructor
if you have any questions about whether this course is appropriate for you.

Quantum Groups and Applications
Instructor: Professor Oleksandr Tsymbaliuk

Course Number: MA 59500QGA
Credits: Three

Time: 1:30–2:20 PM MWF

Description

This is an introductory course to (finite) quantum groups, the subject ubiqui-
tous in various branches of modern mathematics and mathematical physics.
The course is expected to fit a wide variety of math/physics students: both
graduate as well as advanced undergraduate.

The theory of quantum groups originates from the math-physics work of Fad-
deev’s school in mid 80s in the study of quantum inverse scattering method.
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The theory was soon generalized in the papers of Drinfeld and Jimbo through
the formalism of Hopf algebras created by algebraic topologists in the mid-
dle of the 20th century. The basics of this theory were outlined in Drinfeld’s
1986 ICM talk, which still remains an excellent reference on the subject.

While being of independent interest, this subject finds many astonishing
applications in other areas of mathematics and physics: algebraic combi-
natorics, algebraic geometry, algebraic topology, category theory, differential
equations, harmonic analysis, integrable systems, knot theory, representation
theory, quantum field theory, quantum computations, and others.

Tentative list of topics: coalgebras, bialgebras, modules and comodules;
Hopf algebras, examples of U(sln) and C[SL(n)], and the pairing between
them; quantum plane, quantum SLq(2), and quantum Uq(sl2); quantum
groups Uq(g) and their Hopf algebra structure; finite dimensional represen-
tations of Uq(g) for q ̸=

√
1; center of Uq(g) and non-degenerate pairings;

R-matrices, Yang-Baxter equation, and Faddeev-Reshetikhin-Takhtajan con-
struction; universal R-matrices and Drinfeld’s quantum double; tensor cate-
gories and tensor functors; braid group action, root vectors, and PBW-type
basis; two integral forms of Uq(g) and q =

√
1 case; tangle category and its

representations, leading to the Jones polynomials; crystal bases.

Prerequisites: Familiarity with basic results on Lie algebras will be helpful.
Familiarity with basic notions of category theory may be useful for the second
part of the course.

Introduction to Type III Factors
Instructor: Professor Thomas Sinclair

Course Number: MA 59500TF
Credits: Three

Time: 3:30–4:20 PM MWF

Description

This course will serve as an introduction to the theory of von Neumann al-
gebras, focusing on factors of type III. We will give an elementary account of
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Tomita–Takesaki theory, including the theory of the modular automorphism
group, the noncommutative flow of weights, and the classification of type
IIIλ factors 0 ≤ λ ≤ 1. Examples and constructions from dynamical systems
and mathematical physics will be discussed. Time permitting, a selection of
topics such as Araki’s notion of relative entropy, Cuntz algebras, the axioma-
tization of Algebraic Quantum Field Theory, and connections with quantum
information theory will be presented.

References:

• U. Haagerup, “Tomita–Takesaki Theory for Pedestrians”

• M. Rieffel and A. van Daele, “A bounded operator approach to Tomita–
Takesaki theory”

• M. Takesaki, “Theory of Operator Algebras II”

Numerical Methods For PDEs I
Instructor: Professor Xiangxiong Zhang

Course Number: MA 61500
Credits: Three

Time: 1:30–2:45 PM TTh

Description

This is an introductory course of numerical solutions to partial differential
equations for any graduate students interested in computational mathemat-
ics, with emphasis on breadth rather than depth. The course will cover
key concepts with a balance between analysis and implementation, including
accuracy, stability and convergence of finite difference methods for time-
dependent problems such as wave equations, parabolic equations and conser-
vation laws. The finite element method for elliptic equations on structured
meshes will also be introduced. Linear system solvers such as the conju-
gate gradient method and the multigrid method, and ODE solvers such as
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Runge-Kutta method will also be discussed, if time permits. Homework
and the take-home final exam will consist of both analysis and coding by
Matlab. Sample Matlab codes will be provided to assist beginners, thus no
prior knowledge of coding is required. Recommended prerequisites include
linear partial differential equations, linear algebra, and Fourier analysis, all
of which will be reviewed during the lectures. Feel free to send an email to
zhan1966@purdue.edu for any questions. The lecture notes in previous years
are available at

http://www.math.purdue.edu/∼zhan1966/teaching/615/MA615 notes.pdf

Methods of Linear and Nonlinear Partial Differential Equations II
Instructor: Professor Changyou Wang

Course Number: MA 64300
Credits: Three

Time: 3:00–4:15 PM TTh

Description

This is the continuation of MA64200. We plan to cover the Moser-Nash-De
Giorgi continuity theory and the Calderon-Zygmund Lp-theory for second
order uniformly elliptic equations with diver-gence structures. Introduction
of the theory of viscosity solutions to elliptic equations introduced by P. Li-
ons, M. Crandall, L. Evans, and others. If time is permitted, some nonlinear
problems will be discussed.

Textbook and References

1. Elliptic Partial Differential Equations of Second Order, 2nd edition,
Springer, Berlin, by David Gilbarg and Neil S. Trudinger.

2. Elliptic Partial Differential Equations, Courant Lecture Notes Math.,
1, by Qing Han and Fanghua Lin.

3. Fully Nonlinear Elliptic Equations, American Mathematical Society
Colloquium Publication, 43, by X. Cabre and L. Caffarelli.
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4. User’s guide to viscosity solutions of second order partial differential
equations, Bull. Amer. Math. Soc. 27 (1992), no.1, 1-67, by M.
Crandall, H. Ishii, and P. L. Lions.

Algebraic Geometry II
Instructor: Professor Donu Arapura

Course Number: MA 66500
Credits: Three

Time: 10:30–11:45 AM TTh

Description

The one sentence definition of algebraic geometry is that it is the study of
spaces defined by polynomial equations. However, this description is a bit
misleading. Like a lot of mathematics, the subject underwent a paradigm
shift in the mid 20th century with the introduction of abstract methods,
and in particular, of methods from homological algebra. Topics such as the
classical Riemann-Roch theorem were reinterpreted in this language, and
then massively generalized.

This is ostensibly a second semester algebraic geometry class. So I will as-
sume that people are reasonably comfortable with basic algebraic geometry,
or things close to it, such as real or complex manifold theory. I plan to
develop sheaf cohomology more or less from scratch, and then apply it to
algebraic geometry and surrounding areas. For example, de Rham’s theorem
is fairly easy to prove using this machinery, as is the Riemann-Roch theo-
rem mentioned above. I also plan to cover the basics of complex algebraic
geometry. Some things, such as the genus of a curve or Jacobian varieties,
are much easier to understand over C.

If you are unsure whether you have the background, then just ask me. I will
not follow any book very closely, but some useful references are:

1. Griffiths, Harris, Principles of Algebraic Geometry
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2. Hartshorne, Algebraic Geometry

3. Voisin, Hodge theory and Complex Algebraic Geometry I, II
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