Entering Math Expressions in LON-CAPA

In general, you will enter math expressions in LON-CAPA like you would on most calculators. Use / for division, * for multiplication and $^{\wedge}$ for power. Here are some specific rules that I would like to point out.

- 1. Always use * for multiplication to be safe. When a constant times a variable, * can be omitted. For example, to express 2x, you can type in either 2x or 2*x. However, when two variables multiply each other, you must use * in between them. For example, to express xy, you have to type in x*y. Thus, it is a good practice to always use * for multiplication to be safe.
- 2. Use and only use () when needed. Never use [], <> or {}. For example, to express $\frac{1}{2(x-1)+y}$, you should enter 1/(2*(x-1)+y), not 1/[2*(x-1)+y].
- 3. Always use () for the argument of a function. For example, type $\sin(x)$ instead of $\sin x$. Type $\ln(x)$ instead of $\ln x$.

Below is a list of examples that you will find helpful.

What You Want to Express	What You Type in LON-CAPA
does not exist	DNE
infinity, ∞	INF
negative infinity, $-\infty$	-INF
undefined	UNDEFINED
π	pi
$\frac{2x}{y+1}$	2*x/(y+1)
x^y	$x^{\wedge}(y)$
$e^{(x+2)}$	$e^{\wedge}(x+2)$
\sqrt{x}	$\operatorname{sqrt}(x) \text{ or } x^{\wedge}(1/2)$
$\frac{\sqrt[3]{x}}{x^{\frac{2}{5}}}$	$x^{\wedge}(1/3)$
$x^{\frac{2}{5}}$	$x^{\wedge}(2/5)$
$\ln x$	$\ln(x)$
$\ln x $	$\ln(\operatorname{abs}(x))$
$\sin x$	$\sin(x)$
$\tan^2 x$	$(\tan(x))^2$ Extra attention needed on this one.