Course Calendar Ma 16100 · Fall 2022

Week	Day	Class Activities	Outside of Class Activities
1	MON 8/22	Lesson 0 What should you know about this course?	Reading Sec 1.1: Review of Functions Sec 1.2: Representing Functions
	TUE 8/23	Recitation No Quiz	
	WED 8/24	Lesson 1 How do you represent growth and decay?	Reading Sec 1.3: Inverse, Exponential, and Logarithmic Functions
	THU 8/25	Recitation Quiz 0 (Syllabus Quiz)	Homework HW0 (Lesson 0) HW1 (Lesson 1)
	FRI 8/26	Lesson 2 What are the points on the unit circle?	Reading Sec 1.4: Trigonometric Functions and Their Inverses
2	MON 8/29	Lesson 3 What happens as you get infinitesimally close?	Reading Sec 2.1: The Idea of Limits Sec 2.2: Definition of Limits
	TUE 8/30	Recitation Quiz 1 (Lessons 0-1)	Homework HW2 (Lesson 2) HW3 (Lesson 3)
	WED 8/31	Lesson 4 How do you compute a limit?	Reading Sec 2.3: Techniques for Computing Limits
	THU 9/1	Recitation Quiz 2 (Lessons 2-3)	Homework HW4 (Lesson 4)
	FRI 9/2	Lesson 5 What happens if a limit approaches infinity?	Reading Sec 2.4: Infinite Limits *Last day to cancel without it appearing on your record

	MON 9/5	Labor Day Holiday No Class	
	TUE 9/6	Recitation Quiz 3 (Lesson 4)	Homework HW5 (Lesson 5)
3	WED 9/7	Lesson 6 What happens in the limit as x goes to infinity?	Reading Sec 2.5: Limits at Infinity
	THU 9/8	Recitation Quiz 4 (Lesson 5)	Homework HW6 (Lesson 6)
	FRI 9/9	Lesson 7 What does it mean for a function to be continuous?	Reading Sec 2.6: Continuity
	MON 9/12	Lesson 8 How can we measure the steepness of a curve?	Reading Sec 3.1: introducing the Derivative
	TUE 9/13	Recitation Quiz 5 (Lessons 6)	Homework HW7 (Lesson 7) HW8 (Lesson 8)
4	WED 9/14	Lesson 9 The derivative is also a function	Reading Sec 3.2: The Derivative as a Function
	THU 9/15	Recitation Quiz 6 (Lessons 7-8)	Homework HW9 (Lesson 9)
	FRI 9/16	Lesson 10 How do you compute the derivative?	Reading Sec 3.3: Rules of Differentiation
	MON 9/19	Review How to prepare for Exam 1?	*Last day to withdraw with a W with instructor and advisor signature
	TUE 9/20	Recitation Exam 1 Review (No Quiz)	Exam 1 (covers Lessons 0-10) 6:30-7:30pm in ELLT
5	WED 9/21	Lesson 11 How do you compute the derivative of a product of functions?	Reading Sec 3.4: The Product and Quotient Rules
	THU 9/22	Recitation Quiz 7 (Lesson 9)	Homework HW10 (Lesson 10) HW11 (Lesson 11)
	FRI 9/23	Lesson 12 How do you compute the derivative of a trigonometric function?	Reading Sec 3.5: Derivatives of Trigonometric Functions

6	MON 9/26	Lesson 13 How do you compute the derivative of a composite function?	Reading Sec 3.6: Derivatives as Rates of Change Sec 3.7: Chain Rule
	TUE 9/27	Recitation Quiz 8 (Lessons 10-11)	Homework HW12 (Lesson 12) HW13 (Lesson 13)
	WED 9/28	Lesson 14 More applications of the Chain Rule.	Reading Sec 3.7: Chain Rule
	THU 9/29	Recitation Quiz 9 (Lessons 12-13)	Homework HW14 (Lesson 14)
	FRI 9/30	Lesson 15 How do you compute derivatives of implicit functions?	Reading Sec 3.8: Implicit Differentiation
7	MON 10/3	Lesson 16 Why is e the base for the natural exponent?	Reading Sec 3.9: Derivatives of Logarithmic and Exponential Functions
	TUE 10/4	Recitation Quiz 10 (Lesson 14)	Homework HW15 (Lesson 15) HW16 (Lesson 16)
	WED 10/5	Lesson 17 What is the derivative of arcsine?	Reading Sec 3.10: Derivatives of Inverse Trigonometric Functions
	THU 10/6	Recitation Quiz 11 (Lessons 15-16)	Homework HW17 (Lesson 17)
	FRI 10/7	Lesson 18 How are rates of change related to each other?	Reading Sec 3.11: Related Rates
8	MON 10/10	October Break No Class	
	TUE 10/11	October Break No Class	
	WED 10/12	Lesson 19 More examples of related rates	Reading Sec 3.11: Related Rates
	THU 10/13	Recitation Quiz 12 (Lesson 17)	Homework HW18 (Lesson 18) HW19 (Lesson 19)
	FRI 10/14	Lesson 20 How can you find the maximum of a function using the derivative?	Reading Sec 4.1: Maxima and Minima
	SAT 10/15		MyLab Math Scheduled Maintenance (MLM will be down 1am-9am ET)

	MON 10/17	Review How to prepare for Exam 2?	
	TUE 10/18	Recitation Exam 2 Review (No Quiz)	Exam 2 (covers Lessons 11-20) 6:30-7:30pm in ELLT
9	WED 10/19	Lesson 21 What can the derivative tell us about a function?	Reading Sec 4.2: Mean Value Theorem Sec 4.3: What Derivatives Tell Us
	THU 10/20	Recitation Quiz 13 (Lessons 18-19)	Homework HW20 (Lesson 20) HW21 (Lesson 21)
	FRI 10/21	Lesson 22 More things that derivatives tell us.	Reading Sec 4.3: What Derivatives Tell Us
	MON 10/24	Lesson 23 How can you graph a function using the derivative?	Reading Sec 4.4: Graphing Functions
	TUE 10/25	Recitation Quiz 14 (Lesson 20-21)	Homework HW22 (Lesson 22) HW23 (Lesson 23) *Last day to withdraw from a course
10	WED 10/26	Lesson 24 More techniques for graphing functions	Reading Sec 4.4: Graphing Functions
	THU 10/27	Recitation Quiz 15 (Lessons 22-23)	Homework HW24 (Lesson 24)
	FRI 10/28	Lesson 25 How do you find an optimal solution using the derivative?	Reading Sec 4.5: Optimization Problems
	MON 10/31	Lesson 26 More techniques for solving optimization problems	Reading Sec 4.5: Optimization Problems
	TUE 11/1	Recitation Quiz 16 (Lesson 24)	Homework HW25 (Lesson 25) HW26 (Lesson 26)
11	WED 11/2	Lesson 27 How can you approximate the value of a function using the derivative?	Reading Sec 4.6: Linear Approximation and Differentials
	THU 11/3	Recitation Quiz 17 (Lessons 25-26)	Homework HW27 (Lesson 27)
	FRI 11/4	Lesson 28 How can you evaluate indeterminate limits using the derivative?	Reading Sec 4.7: l'Hopital's Rule

	MON 11/7	Lesson 29 What is the inverse of a derivative?	Reading Sec 4.9: Antiderivatives
	TUE 11/8	Recitation Quiz 18 (Lesson 27)	Homework HW28 (Lesson 28) HW29 (Lesson 29)
12	WED 11/9	Lesson 30 How do you approximate the area under a curve?	Reading Sec 5.1: Approximating Areas Under Curves
	THU 11/10	Recitation Quiz 19 (Lessons 28-29)	Homework HW30 (Lesson 30)
	FRI 11/11	Lesson 31 Computing the area under a curve exactly using definite integrals	Reading Sec 5.2: Definite Integrals
	MON 11/14	Review How to prepare for Exam 3?	
	TUE 11/15	Recitation Exam 3 Review (No Quiz)	Exam 3 (covers Lessons 20-30) 6:30-7:30pm in ELLT
13	WED 11/16	Lesson 32 What is the Fundamental Theorem of Calculus?	Reading Sec 5.3: Fundamental Theorem of Calculus
	THU 11/17	Recitation Quiz 20 (Lesson 30)	Homework HW31 (Lesson 31) HW32 (Lesson 32)
	FRI 11/18	Lesson 33 How do you work with integrals?	Reading Sec 5.4: Working with Integrals Sec 5.5 Substitution Rule
	MON 11/21	No Class (Class canceled due to Exam 1)	
	TUE 11/22	No Class (Class canceled due to Exam 2)	
1/	WED 11/23	Thanksgiving Break (No Class)	
	THU 11/24	Thanksgiving Break (No Class)	
	FRI 11/25	Thanksgiving Break (No Class)	
	SAT 11/26		MyLab Math Scheduled Maintenance (MLM will be down 1am-9am ET)

	MON 11/28	Lesson 34 How can you transform an integral into something easier to compute?	Reading Sec 5.5: Substitution Rule
	TUE 11/29	Recitation Quiz 21 (Lessons 31-32)	Homework HW33 (Lesson 33) HW34 (Lesson 34)
15	WED 11/30	Lesson 35 How can you model exponential growth?	Reading Sec 7.2: Exponential Models
	THU 12/1	Recitation Quiz 22 (Lessons 33-34)	Homework HW35 (Lesson 35)
	FRI 12/2	Review How to prepare for the Final Exam?	
	MON 12/5	Review How to prepare for the Final Exam?	Quiet Week - The University mandates that there are no homework, quizzes, or exams this week
	TUE 12/6	Recitation Final Exam Review (No Quiz)	
16	WED 12/7	Review How to prepare for the Final Exam?	
	THU 12/8	Recitation Final Exam Review (No Quiz)	
	FRI 12/9	No Class (Class canceled due to Exam 3)	
17	TUE 12/13	Final Exam 8:00am – 10:00am Rooms: LILY 1105, PHYS 114, PHYS 223, STEW 183 (Loeb Playhouse), STEW 314.	The Final Exam will take place in multiple rooms. Please read all announcements and emails to find your exam location.