
Detailed Plan of Lectures for MA 165

Lesson 1

Topics: Exponential functions and logarithmic functions
Section Number: 1.3
Lecture Plan:

(1) Use the first 20 minutes to explain the ground rules.
• Structure of the course
• MyLabMath Homework
• Recitation Class (Pre-Quiz Exercise Problems)

(2) Exponential function
• Explanation using a picture
◦ Show how the graph of y = bx changes as b > 0 changes.
◦ Observation that all the graphs pass through (0, 1).
◦ The characterization of e: The tangent to the graph of y = bx at
(0, 1) has slope 1 when b = e.

(3) One-to-One function
• Definition using some set-theoretic and easy examples

◦ Basic relations

{
f−1(f(x)) = x
f(f−1(y)) = y

• Explanation using a picture
◦ Horizontal line test

• Examples:
Example 1© y = f(x) = x2 over (−∞,∞) (NOT one-to-one)
Example 2© y = f(x) = x2 over [0,∞) (one-to-one)

(4) Inverse function
• Definition of f−1 (when a one-to-one function f is given)
• How to find the formula for f−1 given the one for f
◦ Present the recipe using examples.

• Examples:
Example 3© f(x) = 2x+ 6 over (−∞,∞)
Example 4© f(x) = x2 over [0,∞)

• Relation between the graph of y = f(x) and that of y = f−1(x)
◦ Observation and explanation: symmetric w.r.t. y = x

(5) Logarithmic function
• Definition as the inverse of the exponential function
• Show the graph of the logarithmic function using the relation

1



2

Lesson 2

Topics: Trigonometric functions and their inverses
Section Number: 1.4
Lecture Plan:

(1) Use the first 10 minutes to discuss some difficult problems from MyLabMath HW
for Lesson 1. This should serve as a review of Lesson 1.
• Review of Lesson 1
• MyLabMath Homework for Lesson 1

(2) Trigomometric functions as a whole
• Definition of sin θ, cos θ, and tan θ
◦ Visualization using the unit circle

Warning: Be aware that most of the students have only seen the definition
using a right triangle. Force them to grow out of SOH CAH TOH.

◦ Discussion and explanation of how to visualize tan θ
• Disscussion of the basic relation sin2 θ + cos2 θ = 1.

(3) Sine function
• The graph of the sine function
◦ how to visualize the graph using the unit circle definition

• Inverse sine function:
◦ Discussion of how to define the inverse sine function

by restricting its domain to [−π
2
,
π

2
]

◦ The graph of the inverse sine function
(4) Cosine function

• The graph of the cosine function
◦ how to visualize the graph using the unit circle definition

• Inverse cosine function:
◦ Discussion of how to define the inverse cosine function

by restricting its domain to [0, π]
◦ The graph of the inverse cosine function

(5) Exact values for the inverse functions
• Examples

Example 1© sin−1

(√
3

2

)
=
π

3

Example 2© cos−1

(
−
√

3

2

)
=

5π

6
Example 3© cos−1 (cos(3π)) = π 6= 3π

Example 4© sin−1

(
sin

(
3π

4

))
=
π

4
6= 3π

4
Warning: Make them aware that, using Examples 3© and 4©, the answer is

different from what is naively expected, because of the convention for the choice
of the domain above. Explain using the picture of the unit circle and corresponding
angles.

If time permits:
(6) Tangent function

• The graph of the tangent function
◦ how to visualize the graph using the unit circle definition

• Inverse tanget function:
◦ Discussion of how to define the inverse tangent function

by restricting its domain to [−π
2
,
π

2
]

◦ The graph of the inverse tangent function
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Lesson 3

Topics: The idea of limits, Definition of limits
Section Number: 2.1, 2.2
Lecture Plan:

(1) Use the first 10 minutes to discuss some difficult problems from MyLabMath HW
for Lesson 2. This should serve as a review of Lesson 2.
• Review of Lesson 2
• MyLabMath Homework for Lesson 2

(2) Introduction to the notion of the limit
• Discussion of the average velocity vs instantaneous velocity using Example 1

on Page 56 of the textbook
◦ Average velocity
◦ Instantaneous velocity −→ slope of the tangent

(3) Definition of the limit limx→a f(x) = L in general.
• Explanation using the picture
• Emphasize that limx→a f(x) 6= f(a) in genral.
• Discussion of the examples where the denominator becomes 0
if you plug in x = a

Example 1© limx→2
x3 − 8

x− 2

Example 2© limx→1

√
x− 1

x− 1
(4) Definition of the right hand limit and left hand limit

• Discussion of the difficult examples involving the absolute value

Example 3© limx→1−
2x2 − 6x+ 4

|x− 1| vs. limx→1+
2x2 − 6x+ 4

|x− 1|
• Discussion of the “confusing” example (the true meaning of the right hand

limit may contradict the superficial understanding) using the picture for explana-
tion

Example 4© lim
x→

(π
2

)+ tanx

If time permits:
(5) More of some difficult examples

Example 5© limx→0 cos

(
1

x

)
vs. limx→0 x · cos

(
1

x

)
Example 6© limx→1+

x− 1

|x− 1| vs. limx→1−
x− 1

|x− 1| vs. limx→1
x− 1

|x− 1|
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Lesson 4

Topics: Techniques of computing the limits
Section Number: 2.3
Lecture Plan:

(1) Use the first 10 minutes to discuss some difficult problems from MyLabMath HW
for Lesson 3. This should serve as a review of Lesson 3.
• Review of Lesson 3
• MyLabMath Homework for Lesson 3

(2) Factoring the denominaor, which becomes 0 when you plug in x = a
• Work out some examples

Example 1© limx→2
x2 − 6x+ 8

x2 − 4
◦ Mention the fact that

A polynomial P(x) becomes 0 when x = a ⇐⇒ x− a divides P (x)
• Work out some examples

Example 2© limx→1

√
x− 1

x− 1
(3) Piecewise defined function

Example 3©

f(x) =

{
−2x+ 4 if x ≤ 1√
x− 1 if x > 1

Then


limx→1− f(x) = ?
limx→1+ f(x) = ?

limx→1 f(x) = ?

(4) Squeeze Theorem
• Statement

f(x) ≤ g(x) ≤ h(x)

x→ a ↓ ↓ ↓

L L L

• Work out some examples

Example 4© limx→0 x
2 · sin

(
1

x

)
Exercise: limx→0 x · sin

(
1

x

)
Important Example 5© limx→0

sinx

x
◦ Discuss the detail with the picture.

(5) Discussion of some easy trig limits

Example 6© limx→0
sin2 x

1− cosx

Example 7© limx→0
1− cos 2x

sinx
◦ Review of the double angle formula

cos 2x = cos2 x− sin2 x = 1− 2 sin2 x
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Lesson 5

Topics: Infinite limits and limits at infinity
Section Number: 2.4, 2.5
Note: In the original syllabus these topics were to be discussed in two seperate lessons.

However, there is not much to be discussed in each topic by itself. We find it better to
discuss both of them together in one lesson.

Lecture Plan:

(1) Use the first 10 minutes to discuss some difficult problems from MyLabMath HW
for Lesson 4. This should serve as a review of Lesson 4.
• Review of Lesson 4
• MyLabMath Homework for Lesson 4

(2) Show some examples of the limits which approach ±∞ by drawing the graph of
the function.
• Examples

Example 1© y = f(x) =
x− 2

(x− 1)2(x− 3)
limx→1− f(x) =∞
limx→1+ f(x) =∞
limx→1 f(x) =∞


limx→3− f(x) = −∞
limx→3+ f(x) =∞
limx→3 f(x) DNE

Example 2© y = f(x) =
x2 − 4x+ 3

x2 − 1
{limx→1 f(x) = −1 , even though f(1) is undefined

limx→−1− f(x) = +∞
limx→−1+ f(x) = −∞
limx→−1 f(x) DNE

(3) Show a typical example where a (seemingly correct) geometrical interpretation of
the “right hand side” limit may be deceiving.
• Examples

Example 3© lim
θ→

(π
2

)− tanx vs. lim
θ→

(π
2

)+ tanx

(4) Explain how the limits can be computed when x→∞ or x→ −∞ by examples.
Warning: Emphasize that “plugging in ±∞ will NOT work.
• Examples

Example 4© limx→−∞

(
2 +

10

x2

)
Example 5© limx→∞

(
3x4 − 5x3 + 6x2 − x+ 10

)
Example 6© limx→−∞

(
2x3 + 3x2 − 12

)
Example 7© limx→∞

3x+ 2

x2 − 1

Example 8© limx→∞
5x4 + 4x2 − 1

3x4 + 8x2 + 4

Example 9© limx→−∞
x3 − 2x+ 1

2x+ 4

Example 10© limx→−∞
x4 − 2x+ 1

2x+ 4

Example 11© limx→∞
10x3 − 3x2 + 8√

25x6 + x4 + 2
vs. limx→−∞

10x3 − 3x2 + 8√
25x6 + x4 + 2

(TRICKY !)



6

Lesson 6

Topics: Continuity
Section Number: 2.6
Lecture Plan:

(1) Use the first 10 minutes to discuss some difficult problems from MyLabMath HW
for Lesson 5. This should serve as a review of Lesson 5.
• Review of Lesson 5
• MyLabMath Homework for Lesson 5

(2) Definition of a function y = f(x) being continuous at x = a
• Explanation (visualization) using a picture
• Formal definition

f is continuous at x = a
⇐⇒

limx→a f(x) = f(a)
⇐⇒

1© f(a) is defined.
2© limx→a f(x) exists.
3© limx→a f(x) = f(a).

• Example

f(x) =
x(x− 1)

(x2 − 7x+ 12)(x− 1)
=

x(x− 1)

(x− 3)(x− 4)(x− 1)
.

Q1: Where is f defined ?
A1: When x 6= 3, 4, 1.
Q2: At what point(s) over (∞,∞), is f NOT continuous ?
A1: At x = 3, 4 (infinite discontinuity),

and at x = 1 (removable discontinuity).
Draw the graph and explain.

(3) Intermediate Value Theorem
• Picture
• Statement

f continuous over [a, b]
f(a) < L < f(b)

=⇒
∃ c ∈ (a, b) s.t. f(c) = L.

(4) Example Problems
Example 1©: Find over which interval, the equation

x3 − 2x = 3

has a solution

(−1, 0)(0, 1)(1, 2)(2, 3)(3, 4).

x -1 0 1 2 3 4

f(x) 1 0 -1 4 21 56
Since the number 3 lies between −1 and 4, i.e.,

−1 < 3 = L < 4,

we conclude by I. M. V. Th. that there is a number c ∈ (1, 2) such that
f(c) = L, i.e.,

c3 − 2c = 3.

So we conclude that the equation has a solution over the interval (1, 2).
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Example 2©: Determine the constants a & b so that the piece-wise defined
function

f(x) =

 x2 + 3x+ a

x+ 1
when x < −1

b when x ≥ −1

is continuous everywhere.
Solution.
Step 0.

Observe that the function f is continuous (no matter what a & b are)
when x 6= −1.

So we only have to check the continuity at x = −1.
Step 1.

limx→−1− f(x) has to exist, i.e.,

limx→−1−
x2 + 3x+ a

x+ 1
= L where L is some finite number.

−→
limx→−1− x2 + 3x+ a

=
x2 + 3x+ a

x+ 1
· (x+ 1)

= L · 0 = 0.
i.e.,

limx→−1− x2 + 3x+ a = 0
−→

(−1)2 + 3(−1) + a = 0
−→

a = 2.
And in fact, when a = 2, we have

limx→−1− f(x) = limx→−1−
x2 + 3x+ a

x+ 1

= limx→−1−
x2 + 3x+ 2

x+ 1

= limx→−1−
��

��(x+ 1)(x+ 2)

���x+ 1
= 1.

Step 2.
In order for f to be continuous, we have to have

limx→−1− f(x) = f(−1) = limx→−1+ f(x)

‖ ‖ ‖

1 b b

−→
b = 1.
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Lesson 7

Topics: Introducing the Derivative
Section Number: 3.1
Lecture Plan:

(1) Use the first 10 minutes to discuss some difficult problems from MyLabMath HW
for Lesson 6. This should serve as a review of Lesson 6.
• Review of Lesson 6
• MyLabMath Homework for Lesson 6

(2) Derivative as the slope of tangent
• Draw the picture with
◦ the graph of the function y = f(x)
◦ the points P (a, f(a)) and Q(x, f(x)), and the secant joining P and Q

• Main Idea
mPQ: the slope of the secant
mtan: the slope of the tangeny

As the point Q gets closer to P , the slope mPQ gets closer to mtan.
• Formula

mtan = limQ→P mPQ

= limx→a
f(x)− f(a)

x− a
Note: Slightly different notation with the same picture
◦ the graph of the function y = f(x)
◦ the points P (a, f(a)) and Q(a + h, f(a + h)), and the secant joining P

and Q
mtan = limQ→P mPQ

= limh→0
f(a+ h)− f(a)

(a+ h)− a
= limh→0

f(a+ h)− f(a)

h
• Examples

Example Problem 1©: Find the euqation of the tangent to y = f(x) =
3

x

at

(
2,

3

2

)
.

Solution.
Using the first formula, we compute

mtan = limx→a
f(x)− f(a)

x− a
= limx→2

f(x)− f(2)

x− 2

= limx→2

3

x
− 3

2
x− 2

= limx→2

3 · 2− 3 · x
x · 2
x− 2

= limx→2

3(2− x)

x · 2
2x(x− 2)

= limx→2
−3

2x
= −3

4
.
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Using the second formula, we also compute

mtan = limh→0
f(a+ h)− f(a)

h
= limh→0

f(2 + h)− f(2)

h

= limh→0

3

2 + h
− 3

2
h

= limh→0

3 · 2− 3 · (2 + h)

(2 + h) · 2
h

= limh→0

3 {2− (2 + h)}
(2 + h) · 2
2(2 + h)h

= limh→0
−3

2(2 + h)
= −3

4
.

Conclusion

The tangent line has the slope mtan = −3

4
passing the point

(
2,

3

2

)
.

Therefore, its equation is given by y − 3

2
=

(
−3

4

)
(x− 2).

Example Problem 2©: Given the function f(x) =
√

2x+ 3, find f ′(5).

Solution.
Using the first formula, we compute

f ′(5) = limx→5
f(x)− f(5)

x− 5

= limx→5

(
(√

2x+ 3
)
−
(√

2 · 5 + 3
)

x− 5
= limx→5

√
2x−

√
10

x− 5

= limx→5

(√
2x−

√
10
) (√

2x+
√

10
)

(x− 5)
(√

2x+
√

10
)

= limx→5
2x− 10

(x− 5)
(√

2x+
√

10
) = limx→5

2��
��(x− 5)

���
�(x− 5)
(√

2x+
√

10
)

= limx→5
2√

2x+
√

10
=

2√
2 · 5 +

√
10

= �2

�2
√

10
=

√
10

10
Exercise: Compute f ′(5) using the second formula.

Example Problem 3© (Optional !): Given the function g(x) =
1

x2
, compute

g′(3) using the second formula.
(3) Challenge Problem

• Statement of the problem: We have the function y = f(x) whose slope of the
tangent at (3, f(3)) is equal to 2, i.e., f ′(3) = 2.

Evaluate the following limit

lim
h→0

f(3 + 4h)− f(3− 7h)

5h
.

• Point of the problem: We know, using the second formula,

lim
h→0

f(3 + h)− f(3)

h
= f ′(3) = 2.

But how the h*ll could we compute the above limit, which seems to have nothing
to do with the definition of the derivative ?

Solution.
Use the picture to explain

lim
h→0

f(3 + 4h)− f(3− 7h)

(3 + 4h)− (3− 7h)
= f ′(3) = 2.

Now we compute

limh→0
f(3 + 4h)− f(3− 7h)

5h
= limh→0

f(3 + 4h)− f(3− 7h)

(3 + 4h)− (3− 7h)
· 11h

5h

= f ′(3) · 11

5
= 2 · 11

5
=

22

5
.
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Lesson 8

Topics: Derivative as a function
Section Number: 3.2
Lecture Plan:

(1) Use the first 10 minutes to discuss some difficult problems from MyLabMath HW
for Lesson 7. This should serve as a review of Lesson 7.
• Review of Lesson 7
• MyLabMath Homework for Lesson 7

(2) Derivative as a function
• Main Idea
f : a function which sends x to the value f(x) of of the function f

f : x 7→ f(x)

f ′: a function which sends x to the value f ′(x) of the slope of the tangent at (x, f(x))

f : x 7→ f ′(x)

• Formula (How to compute f ′(x))

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
◦ Example Problem: Given f(x) = −x2 + 6x, compute f ′(x).

Solution.

f ′(x) = limh→0
f(x+ h)− f(x)

h

= limh→0
{−(x+ h)2 + 6(x+ h)} − {−x2 + 6x}

h

= limh→0
−2hx+ h2 + 6h

h
= limh→0(−2x+ h+ 6)

= −2x+ 6.

• Warning: Domain of f ′ maybe different from the one for f .
◦ Example

f : f(x) =
√
x has domain [0,∞)

f ′:

f ′(x) = limh→0
f(x+ h)− f(x)

h

= limh→0

√
x+ h−

√
x

h

= limh→0

(√
x+ h−

√
x
) (√

x+ h+
√
x
)

h
(√
x+ h+

√
x
)

= limh→0

(√
x+ h

)2 − (
√
x)

2

h
(√
x+ h+

√
x
) = limh→0

�h

�h
(√
x+ h+

√
x
)

=
1

2
√
x

has domain (0,∞).

That is to say, unlike the original function f(x) =
√
x, the derivative f ′(x) =

1

2
√
x

is NOT defined when x = 0.
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• Graph of the derivative
◦ Draw the graph of the following piecewise defined function

f(x) =


−3x− 5 when x ≤ −2
x+ 3 when −2 < x ≤ 0

−1

2
x+ 3 when 0 < x

◦ Show how to draw the graph of the derivative f ′, knowing the graph of f ,
even when one does not have the explicit formula for f (or f ′)

(3) Continuity vs Differentiability
• Formal definitions (Skip for the moment, and come back later)
• Geometrical meaning (down-to-earth explanation)
Continuous ↔ the graph is without jump

↔You can draw the graph of the function without leaving the paper
differentiable ↔ the graph is smooth

Draw the graph of the function, and describe where the function is
continuous/differentialble.

• Examples
Example 1©: y = f(x) = |x+ 2|
Example 2©: y = f(x) =

√
|x|

Example 3©: y = f(x) = 3
√
x

(4) Differentialble =⇒ Continuous
Warning: Differentialble��⇐= Continuous
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Lesson 9

Topics: Rules of differentiation
• Linearity
• Power Rule
• Product Rule
• Quotient Rule

Section Number: 3.3, 3.4
Note: In the original syllabus these four topics were to be discussed in two seperate

lessons. However, We can easily cover these four topics in one lesson and the students
easily understand them. We actually find it even better to discuss all of these in one
lesson.

Lecture Plan:

(1) Use the first 10 minutes to discuss some difficult problems from MyLabMath HW
for Lesson 8. This should serve as a review of Lesson 8.
• Review of Lesson 8
• MyLabMath Homework for Lesson 8

(2) Lineraity
• (cf)′ = cf ′ (c constant)
• (f + g)′ = f ′ + g′

(3) Power Rule
• (xn)′ = n · xn−1

Warning: “n” does not have to be an integer.
Example:

(
√
x)′ =

(
x

1
2

)′
(n = 1

2
)

=
1

2
x

1
2
−1 =

1

2
x−

1
2

=
1

2
√
x
.

• Verification of Power Rule when n = 3

f(x) = x3

f ′(x) = (x3)′ =?

f ′(x) = limh→0
f(x+ h)− f(x)

h

= limh→0
(x+ h)3 − x3

h

= limh→0
(x3 + 3xh + 3xh2 + h3)− x3

h
= limh→0(3x2 + 3xh+ h2)
= 3x2

= nxn−1.

• Special case of Power Rule

(1)′ = (x0)′ (n = 0)
= 0 · x0−1 = 0.

Application
(c)′ = (c · 1)′ = c(1)′ = 0 (c constant)
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(4) Examples (of Linearity and Power Rule)
Example 1©:

(3x3 − 5x+ 12)′ = (3x3)′ − (5x)′ + (12)′

= 3(x3)′ − 5(x)′ + (12)′

= 3 · 3x2 − 5 · 1 + 0
= 9x2 − 5.

Example 2©: y = 3t+ 2et

dy

dt
= 3 + 2et

(5) Product Rule
• (fg)′ = f ′g + fg′

• Verification of Product Rule

(fg)′ = (fg)′(x)

= limh→0
(fg)(x+ h)− (fg)(x)

h

= limh→0
f(x+ h)g(x+ h)− f(x)g(x)

h

= limh→0
f(x+ h)g(x+ h)− f(x)g(x+ h) + f(x)g(x+ h)− f(x)g(x)

h

= limh→0

{
f(x+ h)− f(x)

h
· g(x+ h) + f(x) · g(x+ h)− g(x)

h

}
= f ′(x)g(x) + f(x)g′(x) = f ′g + fg′

• Example

(x7)′ = 7x6 (by Power Rule)
‖

(x3 · x4)′ = (x3)′(x4) + (x3)(x4)′ (by Product Rule)
= 3x2 · x4 + x3 · 4x3

= 7x6 (the same as above obtained by Power Rule)

(6) Examples of Product Rule
Example 3©:

(x2ex)′ = (x2)′ex + x2(ex)′

= 2xex + x2ex

= (2x+ x2)ex.
Example 3©:

d

dv

{
v2(2
√
v + 1)

}
=

d

dv
(v2)(2

√
v + 1) + v2 d

dv
(2
√
v + 1)

= 2v(2
√
v + 1) + v2

(
2

1

2
√
v

+ 1

)
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(7) Quotient Rule

•
(
f

g

)′
=
f ′g − fg′

g2

• Verification of Quotient Rule

(
f

g

)′
=

(
f

g

)′
(x)

= limh→0

(
f

g

)
(x+ h)−

(
f

g

)
(x)

h

= limh→0

f(x+ h)

g(x+ h)
− f(x)

g(x)

h

= limh→0

f(x+ h)g(x)− f(x)g(x+ h)

g(x+ h)g(x)

h

= limh→0
f(x+ h)g(x)− f(x)g(x+ h)

hg(x+ h)g(x)

= limh→0
f(x+ h)g(x)− f(x)g(x) + f(x)g(x)− f(x)g(x+ h)

hg(x+ h)g(x)

= limh→0

f(x+ h)− f(x)

h
· g(x)− f(x) · g(x+ h)− g(x)

h
g(x+ h)g(x)

=
f ′(x)g(x)− f(x)g′(x)

g(x)2
=
f ′g − fg′

g2

COMPLAINTS: This is so hard !!!
• Easier way to verify Quotient Rule

Product Rule −→ Quotient Rule

Step 1. Show

(
1

g

)′
= − g

′

g2
.

Observe g · 1

g
= 1.

−→(
g · 1

g

)′
= (1)′ = 0

‖ by Product Rule

g′
(

1

g

)
+ g

(
1

g

)′
−→

g′
(

1

g

)
+ g

(
1

g

)′
= 0

−→
g

(
1

g

)′
= −g′

(
1

g

)
= −g

′

g
−→(

1

g

)′
= − g

′

g2
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Step 2. Use Step 1 and Product Rule once more.(
f

g

)′
=

(
f · 1

g

)′
Product Rule

= f ′
(

1

g

)
+ f

(
1

g

)′
Step 1

= f ′
(

1

g

)
+ f

(
− g
′

g2

)′
=

f ′g − fg′

g2
.

• Examples
Example 5©:(

x2 + 3x+ 4

x2 − 1

)′
=

(x2 + 3x+ 4)′(x2 − 1)− (x2 + 3x+ 4)(x2 − 1)′

(x2 − 1)2

=
(2x+ 3)(x2 − 1)− (x2 + 3x+ 4) · 2x

(x2 − 1)2

=
−3x2 − 110x− 3

(x2 − 1)2

Example 6©:

(e−x)′ =

(
1

ex

)′
= − (ex)′

(ex)2
= − ex

e2x

= − 1

ex
= −e−x.

Example 7©:(
4xex

x2 + 1

)′
=

(4xex)′(x2 + 1)− (4xex)(x2 + 1)′

(x2 + 1)2

=
(4ex + 4xex)(x2 + 1)− (4xex) · 2x

(x2 + 1)2

= −4ex(x3 − x2 + x+ 1

(x2 + 1)2
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Lesson 10

Topics: Derivatives of trigonometric functions
Section Number: 3.5
Lecture Plan:

(1) Use the first 10 minutes to discuss some difficult problems from MyLabMath HW
for Lesson 9. This should serve as a review of Lesson 9.
• Review of Lesson 9
• MyLabMath Homework for Lesson 9

(2) Basic limits involving trig functions
• Basic Limits

Limit (i): limx→0
sinx

x
= 1

Note: It was shown using the Squeeze Theeorem.
Meaning: When x is small (i.e., ∼ 0), sinx and x are almost equal (i.e., sinx ∼ x).

Limit (ii): limx→0
cosx− 1

x
= 0

◦ Verification

limx→0
cosx− 1

x
= limx→0

cosx− 1

x
· cosx+ 1

cosx− 1

= limx→0
cos2 x− 1

x(cosx+ 1)

= limx→0
− sin2 x

x(cosx+ 1)

= limx→0−
sinx

x
· sinx · 1

cosx+ 1

= −1 · 0 · 1

2
= 0.

• Exercises
Exercise 1©:

limx→0
sin 4x

x
= limx→0

sin 4x

4x
· 4x

x
= 1 · 4 = 4.

Exercise 2©:

limx→0
sin 3x

sin 5x
= limx→0

sin 3x

3x
· 5x

sin 5x
· 3x

5x
= 1 · 1 · 3

5
=

3

5
.

(3) Derivatives of the trigonometric functions
• Formulas 

d

dx
(sinx) = cosx

d

dx
(cosx) = − sinx

d

dx
(tanx) = sec2 x

• Verifications

d

dx
(sinx) = limh→0

sin(x+ h)− sinx

h

= limh→0
sinx cosh+ cosx sinh− sinx

h

= limh→0

{
sinx · cosh− 1

h
+ cosx · sinh

h

}
↓ ↓
0 1

= cosx.
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d

dx
(cosx) = limh→0

cos(x+ h)− cosx

h

= limh→0
cosx cosh− sinx sinh− cosx

h

= limh→0

{
cosx · cosh− 1

h
− sinx · sinh

h

}
↓ ↓
0 1

= − sinx.

d

dx
(tanx) =

d

dx

(
sinx

cosx

)
=

(sinx)′ cosx− sinx(cosx)′

cos2 x

=
cosx · cosx− sinx(− sinx)

cos2 x
cos2 x+ sin2 x

cos2 x
1

cos2 x
= sec2 x.

(4) Other Derivatives
• Formulas 

d

dx
(cscx) = − cscx cotx

d

dx
(secx) = secx tanx

d

dx
(cotx) = − cot2 x

• Verifications

d

dx
(secx) =

d

dx

(
1

cosx

)
=

(1)′ cosx− 1(cosx)′

cos2 x

=
−(− sinx)

cos2 x
sinx

cos2 x
1

cosx
· sinx

cosx
= secx tanx.

Note: Verfications of the other formulas are left to the students as an exercise.
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Lesson 11

Topics: Derivatives as Rate of Change, Chain Rule Part I
Section Number: 3.6, 3.7
Lecture Plan:

(1) Use the first 10 minutes to discuss some difficult problems from MyLabMath HW
for Lesson 10. This should serve as a review of Lesson 10.
• Review of Lesson 10
• MyLabMath Homework for Lesson 10

(2) Position function, velocity, acceleration
• General Idea

s(t) = f(t): position as a function of time t
v(t) = s′ = f ′(t): velocity Note. |v|: speed
a(t) = v′ = f ′′(t): acceleration

• Example
s(t) = f(t) = t2 − 5t
v(t) = s′ = f ′(t) = 2t− 5 Note. |v|(t) = |2t− 5|
a(t) = v′ = f ′′(t) = 2

◦ with the accompanying graphs
(3) Chain Rule

• Situation
A

g−→ B
f−→ C

A
g◦f−→ C

x 7→ u = g(x) 7→ y = f(u) = f(g(x)) = (f ◦ g)(x)

Remark:
(i) Draw the diagram.
(ii) The order matters, i.e., f ◦ g 6= g ◦ f .

• Formula

(f ◦ g)′(x) = f ′(u) · g′(x) = f ′(g(x)) · g′(x)
dy

dx
=

dy

du
· du
dx

• Examples
Example 1©: y = sin3 x = (f ◦ g)(x)

x 7→ u = g(x) = sinx 7→ y = f(u) = u3

dy

dx
=

dy

du
· du
dx

= 3u2 · cosx
= 3(sinx)2 · cosx
= 3 sin2 x · cosx

Note: Draw the diagram.
Example 2©: y = (tanx+ 10)21 = (f ◦ g)(x)

x 7→ u = g(x) = tanx+ 10 7→ y = f(u) = u21

dy

dx
=

dy

du
· du
dx

= 21u20 · sec2 x
= 21(tanx+ 10)20 · sec2 x

Note: Draw the diagram.
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(4) Meaning of the Chain Rule
• Meaning of the Derivative
◦ Situation

y = f(x) & f ′(x) = 3

f ′(x) = limh→0
f(x+ h)− f(x)

h

= lim∆x→0
∆y

∆x
= 3

◦ Meaning
∆y is about 3 times as much as ∆x (when |Deltax is small (i.e., ∆x ∼

0)).
• Meaning of the Chain Rule
◦ Situation

x 7→ u = g(x) 7→ y = f(u) = f(g(x)) = (f ◦ g)(x)

g′(x) = 3 i.e., limh→0
∆u

∆x
= 3

f ′(u) = 7 i.e., limh→0
∆y

∆u
= 7

◦ Formula

(f ◦ g)′(x) = lim∆x→0
∆y

∆x

= lim∆x→0
∆y

∆u
· ∆u

∆x
= f ′(u) · g′(x) = 7 · 3 = 21

=
dy

du
· du
dx

◦ Meaning
∆y is about 7 times as much as ∆u, and ∆u is about 3 times as much as ∆x
(when ∆x is small (i.e., ∆ ∼ 0), and hence ∆u is small (i.e., ∆u ∼ 0) ).
Therefore, ∆y is about 7 · 3 = 21 times as much as ∆x
(when ∆x is small (i.e., ∆ ∼ 0).
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Lesson 12

Topics: Chain Rule Part II
Section Number: 3.7
Lecture Plan:

(1) Use the first 15 minutes to discuss some difficult problems from MyLabMath HW
for Lesson 11. This should serve as a review of Lesson 11.
• Review of Lesson 11
• MyLabMath Homework for Lesson 11

(2) Chain Rule for Composition of three or more functions
• Examples

Example 1©: y = sin (ecos x)
x 7→ u = cosx 7→ t = eu 7→ y = sin t

dy

dx
=

dy

dt
· dt
du
· du
dx

= cos t · eu · (sinx)
= cos (ecos x) · ecos x · (− sinx)

Example 2©: y = sin5 (cos(8x))
x 7→ u = 8x 7→ t = cosu 7→ s = sin t 7→ y = s5

dy

dx
=

dy

ds
· ds
dt
· dt
du
· du
dx

= 5s4 · cos t · (− sinu) · 8
= 5 sin4(cos(8x)) · cos(cos(8x)) · (− sin(8x)) · 8

(3) 2nd derivative of composition
• Question

d2

dx2
[f(g(x))] = ?

• Answer

d2

dx2
[f(g(x))] =

d

dx

{
d

dx
[f(g(x))]

}
=

d

dx
{[f ′(g(x)) · g′(x)]} (by Chain Rule)

=
d

dx
{f ′(g(x))} · g′(x) + f ′(g(x)) · d

dx
{g′(x)} (by Product Rule)

= {f ′′(g(x)) · g′(x)} · g′(x) + f ′(g(x)) · g′′(x) (by Chain Rule plus Definition)

= f ′′(g(x)) · [g′(x)]
2

+ f ′(g(x)) · g′′(x)
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Lesson 13

Topics: Implicit Differentiation
Section Number: 3.8
Lecture Plan:

(1) Use the first 10 minutes to discuss some difficult problems from MyLabMath HW
for Lesson 12. This should serve as a review of Lesson 12.
• Review of Lesson 12
• MyLabMath Homework for Lesson 12

(2) Explicit Differentiation vs Implicit Differentiation

Example 1: x2 + y2 = 1

• Explicit Differentiation
Warning: There is no such terminology as “Explicit Differentiation”. I made it

up merely to emphasize the importance of “Implicit Differentiation” in contrast.

Solve for y.

y2 = 1− x2

−→
y = ±

√
1− x2

Now compute the differentiation.

dy

dx
= ± −2x

2
√

1− x2
= ± −x√

1− x2
.

• Implicit Differentiation

Write down the equation.

x2 + y2 = 1.

Differentiate both sides of the equation.

d

dx
(x2 + y2) =

d

dx
(1)

−→
2x+ 2y · dy

dx
= 0.

Now compute the differentiation.

2y · dy
dx

= −2x.
−→

dy

dx
= −−2x

2y
= −x

y

• Example Problem: Find the equation of the tangent line to x2 + y2 = 1 at

the point

(
1

2
,

√
3

2

)
.

Solution: Draw the picture.

Slope of the tangent:
dy

dx
== −x

y
= − 1/2√

3/2
= − 1√

3
.

Equation of the tangent: y −
√

3

2
= − 1√

3

(
x− 1

2

)
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Example 2: x2 + xy − y3 = 7

• Explicit Differentiation

Solve for y ... y3 − xy + 7− x2 = 0 ... You can’t !
(unless you know how to solve the cubic equation !)

−→
(y =??? Now compute the differentiation

dy

dx
=???.)

• Implicit Differentiation

Write down the equation.

x2 + xy − y3 = 7.

Differentiate both sides of the equation.

d

dx
(x2 + xy − y3) =

d

dx
(7)

−→
2x+ 1 · y + x · dy

dx
− 3y2 · dy

dx
= 0.

Now compute the differentiation.

2x+ y + (x− 3y2)
dy

dx
= 0.

−→
dy

dx
= −−2x− y

x− 3y2

• Example Problem: Find the equation of the tangent line to x2 + xy− y3 = 7
at the point (3, 2).

Solution: (Draw the picture. Use Desmos (∧ ◦ ∧)))

Slope of the tangent:
dy

dx
==
−2x− y
x− 3y2

=
−2 · 3− 2

3− 3 · 22
=
−8

−9
=

8

9

Equation of the tangent: y − 2 =
8

9
(x− 3)

(3) One More Example of Implicit Differentiation

sin(xy) = x2 + y

• Implicit Differentiation

Write down the equation.

sin(xy) = x2 + y.

Differentiate both sides of the equation.

d

dx
(sin(xy)) =

d

dx
(x2 + y)

−→
cos(xy)

(
1 · y + x · dy

dx

)
= 2x+

dy

dx
.

Now compute the differentiation.

x cos(xy)
dy

dx
− dy

dx
= y cos(xy) + 2x.

−→
dy

dx
=
y cos(xy) + 2x

x cos(xy)− 1
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Lesson 14

Topics: Derivatives of Logarithmic and Exponential Functions
Section Number: 3.9
Lecture Plan:

(1) Use the first 10 minutes to discuss some difficult problems from MyLabMath HW
for Lesson 13. This should serve as a review of Lesson 13.
• Review of Lesson 13
• MyLabMath Homework for Lesson 13

(2) Derivative of a logarithmic function y = lnx
• Problem:

dy

dx
= ?

• Solution:
y = lnx

−→
ey = eln x = x

Differentiate both sides of the equation.

d

dx
(ey) =

d

dx
(x)

−→
ey · dy

dx
= 1

Now compute the differentiation.

dy

dx
=

1

ey
=

1

x
.

Grand Conclusion

d

dx
(lnx) =

dy

dx
=

1

x

(3) Variation: Derivative of a logarithmic function y = ln |x|
• Problem:

dy

dx
= ?

• Solution:

|x| =


−x if x < 0
0 if x = 0
x if x > 0

ln |x| =
{

ln(−x) if x < 0
lnx if x > 0

Case: x < 0

d

dx
(ln |x|) =

d

dx
(ln(−x)) =

1

−x (−1) =
1

x

Case: x > 0
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d

dx
(ln |x|) =

d

dx
(lnx) =

1

x

Grand Conclusion

d

dx
(ln |x|) =

dy

dx
=

1

x

• Exercise

y = ln | sinx|

dy

dx
=?

x 7→ u = sinx 7→ y = ln |u|

dy

dx
=

dy

du
· du
dx

=
1

u
· cosx

=
1

sinx
· cosx = cotx.

• Extra: Derive

d

dx
(lnx) =

1

x
using the fact that lnx & ex are inverse to each other.

x 7→ y = lnx 7→ z = ey = eln x = x

dz

dx
=

dz

dy
· dy
dx

‖
dx

dx
= 1

−→

dy

dx
=

1

ey
=

1

x
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(4) Derivative of an exponential function y = bx (b > 0 : some constant)
• Problem:

dy

dx
= ?

• Solution:
Case: b = e

dy

dx
=

d

dx
(ex) = ex

Case: b general

Observe

y = bx = (eln b)x = eln b·x

Now use the Chain Rule.

x 7→ u = ln b · x 7→ y = eu

dy

dx
=

dy

du
· du
dx

= eu · ln b
= eln b·x · ln b
= bx · ln b

Grand Conclusion

d

dx
(bx) = bx · ln b

• Exercise

y = 3x

dy

dx
=

d

dx
(3x) = 3x · ln 3.

Note:

y = ex

dy

dx
=

d

dx
(ex) = ex · ln e = ex · 1 = ex

(5) Review

y = f(x)
dy

dx

y = lnx
1

x

y = ln |x| 1

x

y = log5 x =
lnx

ln 5

1

ln 5

1

x
y = ex ex

y = 5x 5x · ln 5
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• Exercise

y = 5sin x

x 7→ u = sinx 7→ y = 5u

dy

dx
=

dy

du
· du
dx

= 5u · ln 5 · cosx
= 5sin x · ln 5 · cosx

(6) Lagarithmic Differentiation

• Example
Problem:

y =
(x3 − 1)4

√
3x− 1

x2 + 4

dy

dx
= ?

Solution 1: Use Quotient Rule ... Mess !
Solution 2: Slicker way ! Loagrithmic Differentiation !

Take “ln” of both sides of the equation.

ln y = ln

(
(x3 − 1)4

√
3x− 1

x2 + 4

)
= 4 ln(x3 − 1) +

1

2
ln(3x− 1)− ln(x2 + 4)

Differentiate both sides of the equation.

d

dx
(ln y) =

d

dx

(
4 ln(x3 − 1) +

1

2
ln(3x− 1)− ln(x2 + 4)

)
−→

1

y

dy

dx
= 4 · 3x2

x3 − 1
+

1

2
· 3

3x− 1
− 2x

x2 + 4
−→

dy

dx
= y ·

{
4 · 3x2

x3 − 1
+

1

2
· 3

3x− 1
− 2x

x2 + 4

}
=

(x3 − 1)4
√

3x− 1

x2 + 4
·
{

12x2

x3 − 1
+

3

2(3x− 1)
− 2x

x2 + 4

}
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Lesson 15

Topics: Derivatives of the functions of the form f(x)g(x)

Section Number: 3.9
Lecture Plan:

(1) Use the first 10 minutes to discuss some difficult problems from MyLabMath HW
for Lesson 14. This should serve as a review of Lesson 14.
• Review of Lesson 14
• MyLabMath Homework for Lesson 14

(2) Derivatives of the functions of the form f(x)g(x)

Example 1: y = xx

• Problem

dy

dx
= ?

• Answer
◦ Wrong Answer 1© (Exponential Function version (bx)′ = bx · ln b)

d

dx
(xx) �= xx · lnx

Remark:
Why is it wrong ?
Because, in order to use the formula for the derivative of an exponential

function, “b” has to be a constant, while “x” is NOT a constant.
◦ Wrong Answer 2© (Power Rule version (xn)′ = nxn−1)

d

dx
(xx) �= x · xx−1 = xx

Remark:
Why is it wrong ?
Because, in order to use the Power Rule, “n” has to be a constant, while

“x” is NOT a constant.

◦ Genuine Answer
Method 1

y = xx

−→
ln(y) = ln(xx) = x lnx

−→
d

dx
(ln(y)) =

d

dx
(x lnx)

−→
1

y

dy

dx
= 1 · lnx+ x · 1

x−→
dy

dx
= y · (lnx+ 1) = xx(lnx+ 1)

Method 2

y = xx =
(
eln x

)x
= eln x·x = ex ln x

Now use the Chain Rule.

x 7→ u = x lnx 7→ y = eu
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dy

dx
=

dy

du
· du
dx

= eu ·
(

1 · lnx+ x · 1

x

)
= ex ln x ·

(
1 · lnx+ x · 1

x

)
= xx(lnx+ 1)

• Funny (!?) Observation

dy

dx
= xx(lnx+ 1) (genuine answer)

= xx · lnx+ xx

= Wrong Answer 1©+ Wrong Answer 2©
Is this a sheer coincidene ?
NO. (←− Chain Rule in Calculus of several variables !)

Example 2: y = xsin x

Method 1

y = xsin x

−→
ln(y) = ln(xsin x) = sinx lnx

−→
d

dx
(ln(y)) =

d

dx
(sinx lnx)

−→
1

y

dy

dx
= cosx lnx+ sinx · 1

x−→
dy

dx
= y ·

(
cosx lnx+

sinx

x

)
= xsin x

(
cosx lnx+

sinx

x

)
Method 2

y = xsin x =
(
eln x

)sin x
= eln x·sin x = esin x ln x

Now use the Chain Rule.

x 7→ u = sinx lnx 7→ y = eu

dy

dx
=

dy

du
· du
dx

= eu ·
(

cosx · lnx+ sinx · 1

x

)
= esin x ln x ·

(
cosx · lnx+ sinx · 1

x

)
= xsin x

(
cosx lnx+

sinx

x

)
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Lesson 16

Topics: Derivatives of the Inverse Trigonometric Finctions
Section Number: 3.10
Lecture Plan:

(1) Use the first 10 minutes to discuss some difficult problems from MyLabMath HW
for Lesson 15. This should serve as a review of Lesson 15.
• Review of Lesson 15
• MyLabMath Homework for Lesson 15

(2) Derivative of the Inverse Sine

y = sin−1 x = arcsinx

(
�=

1

sinx

)
• Question:

dy

dx
= ?

• Answer:
y = sin−1 x

−→
sin y = x

Differentiate both sides of the equation.
d

dx
(sin y) =

d

dx
(x)

−→
cos y · dy

dx
= 1

−→
dy

dx
=

1

cos y
=

1√
1− x2

Explanation of cos y =
√

1− x2 drawing the picture.

Grand Conclusion

d

dx
(sin−1 x) =

dy

dx
=

1√
1− x2

(3) Derivative of the Inverse Cosine

y = cos−1 x = arccosx

(
�=

1

cosx

)
• Question:

dy

dx
= ?

• Answer:
y = sin−1 x

−→
cos y = x

Differentiate both sides of the equation.
d

dx
(cos y) =

d

dx
(x)

−→
− sin y · dy

dx
= 1

−→
dy

dx
=

1

− sin y
=

1

−
√

1− x2

Explanation of sin y =
√

1− x2 drawing the picture.



30

Grand Conclusion

d

dx
(sin−1 x) =

dy

dx
=

1

−
√

1− x2

(4) Derivative of the Inverse Tangent

y = tan−1 x = arctanx

(
�=

1

tanx

)
• Question:

dy

dx
= ?

• Answer:
y = tan−1 x

−→
tan y = x

Differentiate both sides of the equation.
d

dx
(tan y) =

d

dx
(x)

−→
sec2 y · dy

dx
= 1

−→
dy

dx
=

1

sec2 y
=

1

tan2 y + 1
=

1

x2 + 1

Grand Conclusion

d

dx
(tan−1 x) =

dy

dx
=

1

x2 + 1
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Lesson 17

Topics: Related Rates, Part I
Section Number: 3.11
Lecture Plan:

(1) Use the first 10 minutes to discuss some difficult problems from MyLabMath HW
for Lesson 16. This should serve as a review of Lesson 16.
• Review of Lesson 16
• MyLabMath Homework for Lesson 16

(2) Typical Example
Step 0. Picture

Monkey George hanging onto the baloon
Step 1. Given

dV

dt
= 100 cm3/s

Step 2. Unknown
dr

dt
= ? when D = 50 cm (−→ r = 25)

Step 3. Relation

V =
4

3
πr3

Step 4. Solution
dV

dt
=

4

3
π · 3r2 · dr

dt

100 =
4

3
π · 3(25)2 · dr

dt−→
dr

dt
=

100
4

3
π · 3 · (25)2

=
100

4π(25)2
=

1

25π

(3) More Examples
Example 1©:

Step 0. Picture
Ladder leaning on the wall

Step 1. Given
dx

dt
= 1

Step 2. Unknown
dy

dt
= ? when x = 6

Step 3. Relation
x2 + y2 = 102

Step 4. Solution
d

dt
(x2 + y2) =

d

dt
(102)

−→
2x · dx

dt
+ 2y · dy

dt
= 0

2 · 6 · dx
dt

+ 2 · 8 · dy
dt

= 0
−→

dy

dt
= −2 · 6 · 1

2 · 8 = −3

4
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Example 2©:
Step 0. Picture

Reversed conical tank with water pouring in
Step 1. Given

dV

dt
= 2

Step 2. Unknown
dh

dt
= ? when h = 3

Step 3. Relation

V =
1

3
πr2h

=
1

3
π

(
2

4
h

)2

h =
1

12
πh3

Step 4. Solution
dV

dt
=

1

12
π · 3h2 · dh

dt

2 =
1

12
π · 3 · 32 · dh

dt−→
dh

dt
=

2
1

12
π · 3 · 32

=
8

9π
.

Example 3©:
Step 0. Picture

Gravel piling up in a conical shape
Step 1. Given

dV

dt
= 30

Step 2. Unknown
dh

dt
= ? when h = 10

Step 3. Relation

V =
1

3
πr2h

=
1

3
π

(
1

2
h

)2

h =
1

12
πh3

Step 4. Solution
dV

dt
=

1

12
π · 3h2 · dh

dt

30 =
1

12
π · 3 · 102 · dh

dt−→
dh

dt
=

30
1

12
π · 3 · 102

=
6

5π
.
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Example 4©:
Step 0. Picture

Snowball melting
Step 1. Given

dS

dt
= −1

Step 2. Unknown
dD

dt
= ? when D = 10

Step 3. Relation

S = 4πr2 = 4π

(
D

2

)2

= πD2

Step 4. Solution
S = πD2

dS

dt
= π · 2D · dD

dt

−1 = π · 2 · 10 · dD
dt−→

dD

dt
=

−1

π · 2 · 10
= − 1

20π
.
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Lesson 18

Topics: Related Rates, Part II
Section Number: 3.11
Lecture Plan:

(1) Use the first 10 minutes to discuss some difficult problems from MyLabMath HW
for Lesson 17. This should serve as a review of Lesson 17.
• Review of Lesson 17
• MyLabMath Homework for Lesson 17

(2) Brief Review
Step 0. Picture with variables
Step 1. Given
Step 2. Unknown
Step 3. Relation
Step 4. Solution

(3) More Examples
Example 5©:

Step 0. Picture
Two cars running toward weat and north, respectively.

Step 1. Given
dx

dt
= −50,

dy

dt
= −60

Step 2. Unknown
dz

dt
= ? when x = 0.3, y = 0.4

Step 3. Relation
x2 + y2 = z2

Step 4. Solution
d

dt
(x2 + y2) =

d

dt
(z2)

2x · dx
dt

+ 2y · dy
dt

= 2z
dz

dt

2 · 0.3 · (−50) + 2 · 0.4 · (−60) = 2 · 0.5 · dz
dt

(0.5 =
√

0.32 + 0.42)
−→

dz

dt
= −78.

Example 6©:
Step 0. Picture

Shadow of a person walking away from the streetlight
Step 1. Given

dx

dt
= 5

Step 2. Unknown
dy

dt
= ? when x = 40

Step 3. Relation

y : 15 = (y − x) : 6 i.e.,
y

15
=
y − x

6−→
6y = 15(y − x) −→ 15x = 9y

−→
y =

15

9
x =

5

3
x

Step 4. Solution
dy

dt
=

5

3

dx

dt
=

5

3
· 5 =

25

3
.
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Example 7©:
Step 0. Picture

Boat approaching a pier
Step 1. Given

dl

dt
= −1

Step 2. Unknown
dx

dt
= ? when x = 8

Step 3. Relation
l2 = x2 + 12

Step 4. Solution
d

dt
(l2) =

d

dt
(x2 + 12)

2l · dl
dt

= 2x · dx
dt

2 ·
√

65 · (−1) = 2 · 8 · dx
dt

(
√

65 =
√

12 + 82)
−→

dx

dt
=

2 ·
√

65 · (−1)

2 · 8 = −
√

65

8

Example 8©:
Step 0. Picture

Flying a kite
Step 1. Given

dx

dt
= 8

Step 2. Unknown
dθ

dt
= ? when s = 200

Step 3. Relation
x tan θ = 100

Step 4. Solution
d

dt
(x tan θ) =

d

dt
(100)

dx

dt
· tan θ + x · sec2 θ

dθ

dt
= 0

s = 200

x =
√

2002 − 1002 = 100
√

3

tan θ =
100

100
√

3
=

1√
3

sec θ =
1

cos θ
=

1√
3/2

=
2√
3

Picture of the right triangle

8 · 1√
3

+ 100
√

3 ·
(

2√
3

)2

· θ
dt

= 0

−→

θ

dt
=

−8 · 1√
3

100
√

3 ·
(

2√
3

)2 = − 1

50
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Lesson 19

Topics: Maxima & Minima
Section Number: 4.1
Lecture Plan:

(1) Use the first 10 minutes to discuss some difficult problems from MyLabMath HW
for Lesson 18. This should serve as a review of Lesson 18.
• Review of Lesson 18
• MyLabMath Homework for Lesson 18

(2) Explanation of Absolute (Local) Max & Min using the picture
• Example
Look at

f(x) = 3x4 − 16x3 + 18x2 over [−1, 4]
Draw the graph of the function.

Absolute Max 37 at x = −1
Absolute Min −27 at x = 3
Local Max 5 at x = 1

but NOT 37 at x = −1
or 32 x = 4

Local Min 0 at x = 0
−27 at x = 3

Big Warning: Exclude the end points from the consideration of local max
and local min.

(3) Extreme Value Theorem
• Statement
y = f(x) a function continuous on [a, b] (which is a closed interval).
=⇒
f has abs. max and abs. min.
• Explanation using the picture
◦ Typical Case
◦ Cases where some assumption E.V. Th. does not hold, and the assertion
fails ot hold

(4) Recipe to find abs. max and abs. min
• Situation
y = f(x) a function continuous over [a, b]

Step 1.
Look at

1© end points a, b
1© critical numbers c

Meaning of “critical numbers”:
f ′(c) = 0

or
f ′(c) does not exist.

Step 2.
Compare f(a), f(b) and f(c)’s.

biggest −→ abs. max
smallest −→ abs. min

Note: We allow the tie for the biggest and/or smallest.
(5) Explanation using the picture of

f(c) local max or local min
&

f ′(c) exists

 =⇒ f ′(c) = 0
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(6) Example Problems
Example Problem 1: Find abs. max and abs. min of

y = f(x) = x3 − 3x2 + 1 over [−1

2
, 4].

Step 1.

1© a = −1

2
, b = 4

2© f ′(x) = 3x2 − 6x = 3x(x− 2)
f ′(c) = 3c(c− 2) = 0 −→ c = 0, 2

Step 2. f

(
−1

2

)
=

1

8
, f(4) = 17

f(0) = 1, f(2) = −3
−→

Absolute Max 17 at x = 4
Absolute Min −3 at x = 2

Show the picture of the graph.

Example Problem 2: Find abs. max and abs. min of

y = f(x) = x3 over [−1, 2].

Step 1.
1© a = −1, b = 2
2© f ′(x) = 3x2

f ′(c) = 3c2 = 0 −→ c = 0
Step 2.{

f(−1) = −1, f(2) = 8
f(0) = 0,

−→
Absolute Max 8 at x = 2
Absolute Min −1 at x = −1

Show the picture of the graph.

Note: 0 at x = 0 is NOT either abs. max or abs. min.
0 at x = 0 is NOT either local max or local min.

Example Problem 3: Find abs. max and abs. min of

y = f(t) = 2 cos t+ sin(2t) over [0,
π

2
].

Step 1.

1© a = 0, b =
π

2
2©

f ′(t) = −2 sin t+ 2 cos(2t)
= −2 sin t+ 2(cos2 t− sint)
= −2 sin t+ 2(1− 2 sint)
= −2(2 sin2 t+ sin t− 1)
= −2(2 sin t− 1)(sin t+ 1)

f ′(c) = −2(2 sin c− 1)(sin c+ 1) = 0
−→

sin c =
1

2
or��−1

−→ c =
π

6
∈ [0,

π

2
]

Step 2.



38 

f(0) = 2, f
(π

2

)
= 0

f
(π

6

)
= 2 cos

(π
6

)
+ sin

(
2 · π

6

)
= 2 ·

√
3

2
+

√
3

2

=
3
√

3

2−→

Absolute Max
3
√

3

2
at t =

π

6
Absolute Min 0 at t =

π

2
Note:

2 =
4

2
<

3
√

3

2
since

22 =

(
4

2

)2

=
16

4
<

9 · 3
4

=

(
3
√

3

2

)2

Show the picture of the graph.
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Lesson 20

Topics: Mean Value Theorem & What derivatives tell us Part 1
(1st derivative test & 2nd derivative test)
Section Number: 4.2, 4.3
Lecture Plan:

(1) Use the first 10 minutes to discuss some difficult problems from MyLabMath HW
for Lesson 19. This should serve as a review of Lesson 19.
• Review of Lesson 19
• MyLabMath Homework for Lesson 19

(2) Mean Value Theorem
• Statement

y = f(x) a function continuous over [a, b]
differentiable over (a, b)

=⇒
∃ c ∈ (a, b) s.t. f ′(c) =

f(b)− f(a)

b− a .

• Explanations
◦ using the slopes Draw the picture.

Let’s call point P (a, f(a)) and Q(b, f(b)).

Then
f(b)− f(a)

b− a is the slope of the line PQ.

On the other hand, f ′(c) is the slope of the tangent at the point (c, f(c)).
Therefore, what Mean Value Theorem is telling us is that at some point
c ∈ (a, b) the slope of the tangent is equal to the slope of the line PQ.

◦ using the velocity
Say, I drive from West Lafayette to Chicago, total of 240 miles in 3 hours.

In Chicago, I get pulled over by a police (who has been watching me from
the air). I insist that I was always going under the speed limit of 70 miles,
always looking at the speedometer. The policeman then smiles and says “I

took Calculus at Purdue. The average speed is
240− 0

3− 0
. By the Mean Value

Theorem at some point c ∈ (0, 3), the reading f ′(c) of the speedometer is

exactly the average speed, i.e., f ′(c) =
240− 0

3− 0
= 80. Therefore, I have to

give you a speeding ticket.”
• Example
f(x) = 2x3 − 3x+ 1

Check continuous over [−2, 2] X
Check differentiable over (−2, 2) X

Compute
f(2)− f(−2)

2− (−2)
=

11− (−9)

4
= 5

Mean Value Theoirem says
∃ c ∈ (−2, 2) s.t. f ′(c) = 5

Examination of the statement:
f ′(x) = 6x2 − 3

−→
f ′(c) = 6c2 − 3 = 5

−→
6c2 = 8 −→ c2 =

4

3−→
c = ±

√
4

3
will do, i.e., f ′(c) = 5.
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(3) Rolle’s Theorem (Special Case of Mean Value Theorem)
• Situation
The same situation as in the Mean Value Theorem
With the extra assumption f(a) = f(b)
=⇒
∃ c ∈ (a, b) s.t. f ′(c) =

f(b)− f(a)

b− a = 0.

• Explanation Draw the picture !
(4) Corollary to Rolle’s Theorem

• Statement
y = f(x) a function continuous over [a, b]

differentiable over (a, b)
&
f ′(c) = 0 for any c ∈ (a, b)

=⇒
f is a constant function.

• Proof: Proof by contradiction
Suppose f is NOT a constant function

−→
∃α, β ∈ [a, b] s.t. f(α) 6= f(β) (say, α < β)
y = f(x) a function continuous over [α, β]

differentiable over (α, β)
M.V.Th.−→
∃ c ∈ (α, β)(⊂ (a, b)) s.t. f ′(c) =

f(β)− f(α)

β − α 6= 0.

This contradicts the assumption f ′(c) = 0 for all c ∈ (a, b).
Therefore, f is a constant function.
• Application
◦ Problem:

sin−1

(
2

5

)
+ cos−1

(
2

5

)
= ?

◦ Solution:
Consider f(x) = sin−1(x) + cos−1(x), which is

continous over [−1, 1]
differentiable over (−1, 1)

Compute

f ′(x) =
1√

1− x2
+

(
− 1√

1− x2

)
= 0.

Corollary−→
f is a constant over [−1, 1]
Now

f

(
2

5

)
= sin−1

(
2

5

)
+ cos−1

(
2

5

)
‖

f(0) = sin−1(0) + cos−1(0)

= 0 +
π

2
=
π

2
That is to say,

sin−1

(
2

5

)
+ cos−1

(
2

5

)
=
π

2
.
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Alternative Solution
Draw the picture of a right triangle with hypotenuse 5 and vertical side 2.

(5) Strange Example (?!)

Situation: y = f(x) = x2/3 over [−1, 1] = [a, b]
Draw the picture.
Observe f(a) = f(b) = 1.
But there is no c ∈ (a, b) = (−1, 1) s.t.

f ′(c) =
f(b)− f(a)

b− a = 0!

Rolle’s Theorem fails ?
No. Since f is NOT differentiable at 0, the assumption of f being differentiable

over (a, b) is NOT satisfied.
Therefore, we can NOT apply Rolle’s Theorem.

(6) 1st Derivative Test & 2nd Derivative Test
• 1st Derivative Test
Situation: f is differentiable near the point c

x c

f ′(x) + 0 −
f(x) ↗ local max ↘

x c

f ′(x) − 0 +

f(x) ↘ local min ↗

• 2nd Derivative Test
Situation: f ′, f ′′ exist near the point c & f ′′ is continuous near c)

x c

f ′(x) 0

f ′′(x) −
f(x) _

local max

x c

f ′(x) 0

f ′′(x) +

f(x) ^
local min

Warning: Consider the example

f(x) = x4

f ′(x) = 4x3

f ′′(x) = 12x2

x c

f ′(x) − 0 +

f ′′(x) 0

f(x) ↘ local min ↗
1st Derivative Test −→ local min
We cannot use 2nd Derivative Test
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Lesson 21

Topics: What derivatives tell us Part II
Section Number: 4.3
Lecture Plan:

(1) Use the first 10 minutes to discuss some difficult problems from MyLabMath HW
for Lesson 20. This should serve as a review of Lesson 20.
• Review of Lesson 20
• MyLabMath Homework for Lesson 20

(2) How to figure out the shape of a graph
Example 1©

y = f(x) = 3x4 − 4x3 − 6x2 + 12x+ 1
f ′(x) = 12x3 − 12x2 − 12x+ 12

= 12(x3 − x2 − x+ 1)
= 12(x− 1)(x2 − 1)
= 12(x− 1)(x− 1)(x+ 1)
= 12(x+ 1)(x− 1)2

f ′′(x) = 36x2 − 24x− 12
= 12(3x2 − 2x− 1)
= 12(3x+ 1)(x− 1)

f ′(x) = 0 −→ x = −1, 1

f ′′(x) = 0 −→ x = −1

3
, 1

x −1 −1

3
1

f ′(x) − 0 + + + 0 +

f ′′(x) + + + 0 − 0 +

f(x)
neither local min

nor local max
inf. pt. inf. pt.

local min

Desmos Picture

Note:
inf. point ⇐⇒ where the concavity changes

��⇐⇒ f ′(c) = 0
⇐⇒ f ′(c) = 0

Example related to the note:

y = f(x) = x4 + 3x
f ′(x) = 4x3 + 3
f ′′(x) = 12x2

x 0

f ′(x) + 3 +

f ′′(x) + 0 +

Then even though f ′′(0) = 0, the point (0, 0) is NOT an inflection point.
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Example 2©

y = f(x) = xx over (0,∞)

Computation of f ′(x)

y = xx

ln y = x lnx
1

y

dy

dx
= 1 · lnx+ x · 1

x

f ′(x) =
dy

dx
= y(lnx+ 1)
= xx(lnx+ 1)

y = f(x) = xx

f ′(x) = y(lnx+ 1)
= xx(lnx+ 1)

f ′′(x) = (xx)′ · lnx+ xx · 1

x
+ (xx)′

= xx(lnx+ 1) lnx+ xx · 1

x
+ xx(lnx+ 1)

= xx
{

(lnx+ 1)2 +
1

x

}
> 0

x 0
1

e
f ′(x) × − 0 +

f ′′(x) × + + +

f(x) ↘ ↗
cancave up concave down

local and absolute
min

Desmos Picture

Note: limx→0+ xx = 1. (We will see why this computation holds later.)

Example 3©

y = f(x) = sin2 x over [0, 2π]
f ′(x) = 2 sinx cosx

= 2 sin(2x)
f ′′(x) = 2 cos(2x) · 2

= 4 cos(2x)

Picture of the unit circle to figure out in what anlges f ′(x) and/or
f ′′(x) becomes 0.

f ′(x) = 0 ⇐⇒ x = 0,
π

2
, π,

3π

2
, 2π

f ′′(x) = 0 ⇐⇒ x =
π

4
,

3π

4
,

5π

4
,

7π

4
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x 0
π

4

π

2

3π

4
π

5π

4

3π

2

7π

4
2π

f ′(x) 0 + + + 0 − − − 0 + + + 0 − − − 0

f ′′(x) 4 + 0 − − − 0 + + + 0 − − − 0 + 4

f(x)

Desmos Picture !
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Lesson 22

Topics: Graphing functions
Section Number: 4.4
Note: In the original syllabus the topic of graphing functions was to be discussed in

Part 1 and Part 2 during the two seperate lessons. We find it better to discuss the subject
in one single lesson.

Lecture Plan:

(1) Use the first 10 minutes to discuss some difficult problems from MyLabMath HW
for Lesson 21. This should serve as a review of Lesson 21.
• Review of Lesson 21
• MyLabMath Homework for Lesson 21

(2) How to sketch the graph of a function
Example 1©

f(x) =
x3

3
− 400x = x

(
x2

3
− 400

)
= x

(
x+
√

1200
) (
x−
√

1200
)

over the domain (−∞,∞)
f ′(x) = x2 − 400 = (x+ 20)(x− 20)
f ′′(x) = 2x

f(x) = 0⇐⇒ x = ±
√

1200 = ±20
√

3
f ′(x) = 0⇐⇒ x = ±20
f ′′(x) = 0⇐⇒ x = 0

x −20 0 20

f ′(x) + 0 − − − 0 +

f ′′(x) − − − 0 + + +

f(x)
16000

3
↗ ↘ 0 concave up concave up

concave up concave down ↘ ↗
inf. pt. −1600

3

Desmos Picture !

Example 2©

f(x) =
x3

x2 − 1
over the domain x 6= ±1 i.e., (−∞,−1) ∪ (−1, 1) ∪ (1,∞)

f ′(x) =
3x2(x2 − 1)− x3 · 2x

(x2 − 1)2

=
x2(x2 − 3)

(x2 − 1)2

f ′′(x) =
(4x3 − 6x)(x2 − 1)2 − (x4 − 3x2) · 2(x2 − 1) · 2x

(x2 − 1)4

=
2x(x2 + 3)

(x2 − 1)3

f(x) = 0⇐⇒ x = 0

f ′(x) = 0⇐⇒ x = 0,±
√

3
f ′′(x) = 0⇐⇒ x = 0
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x −
√

3 −1 0 1
√

3

f ′(x) + 0 − × − 0 − × − 0

f ′′(x) − − − × + 0 − × + + +

f(x) c. d. c. d. × ↘ c. d. × ↘ ↗
↗ ↘ × c. u. ↘ × c. u. c. u.

(i) Behavior around where the function is not defined

lim
x→−1−

x3

x2 − 1
= −∞, lim

x→−1+

x3

x2 − 1
=∞

lim
x→1−

x3

x2 − 1
= −∞, lim

x→1+

x3

x2 − 1
=∞

(ii) Behavior around ±∞

x3

x2 − 1
= x+

x

x2 − 1
with lim

x→+∞

x

x2 − 1
= lim
x→−∞

x

x2 − 1
= 0

That is to say, y = x is the slant asymptote fpr y = f(x) =
x3

x2 − 1
at ±∞

Desmos Picture !

Example 3©

f(x) = e−x
2

over the domain (−∞,∞)

f ′(x) = e−x
2

(−2x)

= −2xe−x
2

f ′′(x) = −2e−x
2

+ (−2x)(−2xe−x
2

) = 2e−x
2

(2x2 − 1)

f(x) > 0
f ′(x) = 0⇐⇒ x = 0

f ′′(x) = 0⇐⇒ x = ±
√

1

2

x −
√

1

2
0

√
1

2
f ′(x) + + + 0 − − −
f ′′(x) + 0 − − − 0 +

f(x) concave up ↗ 1 ↘ concave up

↗ concave down concave down ↘
(i) Behavior around ±∞

lim
x→−∞

e−x
2

= lim
x→+∞

e−x
2

= 0.

Desmos Picture !
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Example 4©

f(x) =
1

8
x

2
3 (9x2 − 8x− 16)

over the domain (−∞,∞)

f ′(x) =
(

9x
8
3 − x

5
3 − 2x

2
3

)
= 3x

5
3 − 5

3
x

2
3 − 4

3
x−

1
3

=
(x− 1)(9x+ 4)

3x
1
3

f ′′(x) =
45x2 − 10x+ 4

9x
4
3

f(x) = 0⇐⇒ x = 0,
4± 4

√
10

9

f ′(x) = 0⇐⇒ x = −4

9
, 1

Note: f ′(x) DNE at x = 0
f ′′(x) > 0 (except for x = 0, where f ′′(x) DNE)

since 45x2−10x+4 = 45

(
x− 1

9

)2

+
279

81
> 0 and since x

4
3 > 0

x −4

9
0 0

f ′(x) − 0 + × − 0 +

f ′′(x) + + + × + + +

f(x) concave up concave up 0 concave up concave up

↘ ↗ ↘ ↗

Desmos Picture !
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Lesson 23

Topics: Optimization Problem, Part 1
Section Number: 4.5
Lecture Plan:

(1) Use the first 10 minutes to discuss some difficult problems from MyLabMath HW
for Lesson 22. This should serve as a review of Lesson 22.
• Review of Lesson 22
• MyLabMath Homework for Lesson 22

(2) Typical Pattern of an Optimization Problem and its Solution
• Explanation of the pattern using an example
Example Problem 1©

Picture with variables: Picture of a rancher constructing a recutangular
corral to raise pigs. Set up some appropriate varibles.

Condition: 4x+ y = 400
Objective: Specification of the optimization problem

Maximize the area

A = xy

A(x) = x(400− 4x) = −4x2 + 400x
0 ≤ x ≤ 100(= 400/4)

Solution:

A′(x) = −8x+ 400
= −8(x− 50)

x 0 50 400

A′(x) + 0 −
A(x) ↗ absolute max ↘

Note:
(i) From 1st derivative test, the function takes the LOCAL max at x = 50.

But looking at the global behavior of the function that it is increasing when
0 ≤ x ≤ 50 and that it iss decreasing when 50 ≤ x ≤ 100, we conclude that
the function takes the GLOBAL max at x = 50.

(ii) We do NOT have to compute A′′(x), since we are only interested in finding
the abs. max (i.e., the incease and decrease of the function).

Grand Conclusion

When {
x = 50
y = 400− 4 · 50 = 200

the area A takes its maximum

A = xy = 50 · 200 = 1000 (= A(50)).
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(3) Example Problems
Example Problem 2©

Picture with variables: Picture of a recutangular box with square bot-
tom (side length = w and height = h)

Condition: 2w + h = 64
Objective: Specification of the optimization problem

Maximize the volume

V = w2h

V (w) = w2(64− 2w) = −2w3 + 64w2

0 ≤ w ≤ 32(= 64/2)

Solution:

V ′(w) = −6w2 + 128w

= −6w

(
w − 64

3

)
64

3
=

128

6

w 0
64

3
32

V ′(w) + 0 −
V (w) ↗ absolute max ↘

Note:

(i) From 1st derivative test, the function takes the LOCAL max at w =
64

3
.

But looking at the global behavior of the function that it is increasing when

0 ≤ w ≤ 64

3
and that it is decreasing when

64

3
≤ w ≤ 100, we conclude that

the function takes the GLOBAL max at w = 50.
(ii) We do NOT have to compute V ′′(w), since we are only interested in finding

the abs. max (i.e., the incease and decrease of the function).

Grand Conclusion

When  w =
64

3

h = 64− 2w =
64

3
the volume V takes its maximum

V = w2h =

(
64

3

)2

· 64

3
.
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Example Problem 3© (Difficult ! and Optional !)
Picture with variables: Picture of going from the starting point S on

a circular pond of radius 1 mile to the finishing point F on the opposite side,
first by swimming from the starting point S straight to the point P (central angle
∠SOP = θ) at the speed of 2 mi/hr and then walk along the pond from the point
P to the finishing point F (central angle ∠POF = τ) at the spped of 3 mi/hr.

Condition: θ + τ = π
Objective: Specification of the optimization problem

Minimize the time

T =

2 sin

(
θ

2

)
2

+
τ

3

T (θ) = sin

(
θ

2

)
+
π − θ

3
0 ≤ θ ≤ π

Note: Explantion for SP = 2 sin

(
θ

2

)
.

Solution:

T ′(θ) = cos

(
θ

2

)
· 1

2

=
1

2

{
cos

(
θ

2

)
− 2

3

}

θ 0 2 cos−1

(
2

3

)
π

T ′(θ) + 0 −
T (θ)

π

3
↗ ↘ 1

Note:

(i) cos

(
θ

2

)
=

2

3
−→ θ

2
= cos−1

(
2

3

)
−→ θ = 2 cos−1

(
2

3

)
(ii)

T (0) = sin

(
0

2

)
+
π − 0

3
=

π

3
∨

T (π) = sin
(π

2

)
+
π − π

3
= 1

Grand Conclusion

When θ = π, the time T takes its minimum T (π) = 1 over [0, π].
That is to say, swimming all along to the finish point (and no running) will

achieve the minimum time.
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Lesson 24

Topics: Optimization Problem, Part 2
Section Number: 4.5
Lecture Plan:

(1) Use the first 10 minutes to discuss some difficult problems from MyLabMath HW
for Lesson 23. This should serve as a review of Lesson 23.
• Review of Lesson 23
• MyLabMath Homework for Lesson 23

(2) Example Problems
Example Problem 4©

Picture with variables: Picture of a ladder over an 8-foot-tall fence,
which is 3 feet away from the wall of a house

Condition: b : (3 + x) = 8 : x i.e.,
b

3 + x
=

8

x
−→ b = 8 · 3 + x

x
Objective: Specification of the optimization problem

Maximize the length of the ladder

L =
√

(3 + x)2 + b2.

This is equivalent to maximizing

L2 = (3 + x)2 + b2

‖

f(x) = (3 + x)2 +

(
8 · 3 + x

x

)2

= (3 + x)2

(
1 +

64

x2

)
0 < x <∞ i.e., (0,∞)

Solution:

f ′(x) = 2(3 + x)

(
1 +

64

x2

)
+ (3 + x)2

(
−2 · 64

x3

)
= 2(3 + x)

{(
1 +

64

x2

)
− (3 + x)

64

x3

}
= 2(3 + x)

(
1− 3 · 64

x3

)
= 2(3 + x)

x3 − 192

x3

x 0 3
√

192

f ′(x) − 0 +

f(x) ↘ absolute min ↗

Note:
(i) From 1st derivative test, the function takes the LOCAL min at x = 3

√
192.

But looking at the global behavior of the function that it is decreasing when
0 < x ≤ 3

√
192 and that it is increasing when 3

√
192 ≤ x, we conclude that

the function takes the GLOBAL min at x = 3
√

192.
(ii) We do NOT have to compute f ′′(x), since we are only interested in finding

the abs. min (i.e., the incease and decrease of the function).

Grand Conclusion

When x = 3
√

192, the length L =

√
(3 + 3

√
192)2

{
1 +

64

(x = 3
√

192)2

}
is the

(absolute) minimum.
Example Problem 5©
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Picture with variables: Picture of a water tank in the shape of a right
circular cylinder with radius r and height h

Condition: πr2 · h = 32000
Objective: Specification of the optimization problem

Minimize the cost of cleaning (twice as much to clean the wall as to clean the
floor, no claening the top)

C = 2 · 2πrh+ πr2

C(r) = 4π · 32000

πr2
+ πr2

=
128000

r
+ πr2 0 ≤ r

Solution:

C′(r) = −12800

r2
+ 2πr

=
2πr3 − 128000

r2

=

2π

(
r2 − 64000

π

)
r2

(
64000

π
=

128000

2pi

r 0

√
64000

π
=

80
√

10

π
C′(r) − 0 +

C(r) ↘ absolute min ↗

Note:

(i) From 1st derivative test, the function takes the LOCAL min at r =
80
√

10

π
.

But looking at the global behavior of the function that it is decreasing when

0 < r ≤ 80
√

10

π
and that it is increasing when

80
√

10

π
≤ r, we conclude that

the function takes the GLOBAL min at x = 3
√

192.
(ii) We do NOT have to compute C′′(r), since we are only interested in finding

the abs. min (i.e., the incease and decrease of the function).

Grand Conclusion

When r =
80
√

10

π
, the cost C = C(

80
√

10

π
) is the (absolute) minimum.
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Lesson 25

Topics: Linear Approximaation and Differentials
Section Number: 4.6
Lecture Plan:

(1) Use the first 10 minutes to discuss some difficult problems from MyLabMath HW
for Lesson 24. This should serve as a review of Lesson 24.
• Review of Lesson 24
• MyLabMath Homework for Lesson 24

(2) Review of the Slope-Point Formula
• Picture !
• Slope-Point Formula
Line

with slope: m
passing the point (a, b)

y − b = m(x− a)

−→

y = b+m(x− a)

(3) Linear Approximation of f(x) at x = a
• Picture !

Graph of a function y = f(x) with the tangent at the point (a, f(a))
• Equation of the line representing Linear Approximation of f(x) at x = a

L(x) = f(a) + f ′(a)(x− a)

• Main Idea
L(x) approximates f(x), i.e., L(x) ≈ f(x) when x is close to a

• Examples
Example Problem 1©:

√
1.01 ≈ ?

Answer:
We use the linear approximation of f(x) =

√
x at a = 1 (which is close to 1.01).

Note that f ′(x) =
1

2
√
x

.

L(x) = f(a) + f ′(a)(x− a)

=
√

1 +
1

2

√
1](x− 1)

= 1 +
1

2
(x− 1)

L(1.01) = 1 +
1

2
(1.01− 1) = 1.005.

L(1.01) ≈ f(1.01)

Conclusion

The value
√

1.01 = f(1.01) can be approximated by 1.005 = L(1.01).
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Remark:
(i) We can also use the linear approximation of g(x) =

√
1 + x at a = 0 (which

is close to 0.01). Then
√

1.01 = g(0.1) ≈ L(0.1).
(ii) We can use any linear approximation, as long as the given value can be

described as f(x) where x is “close” to a.

Example Problem 2©:

√
3.98 ≈ ?

Answer:
We use the linear approximation of f(x) =

√
x at a = 4 (which is close to 3.98).

Note that f ′(x) =
1

2
√
x

.

L(x) = f(a) + f ′(a)(x− a)

=
√

4 +
1

2

√
4](x− 4)

= 2 +
1

4
(x− 4)

L(3.98) = 2 +
1

4
(3.98− 4) = 1.995.

L(3.98) ≈ f(3.98)

Conclusion

The value
√

3.98 = f(3.98) can be approximated by 1.995 = L(3.98).

(4) Differentials
• Picture of the graph of a function f and its tangent at the point (x, f(x))
• Notations

∆x = (x+ ∆x)− x : increase of the value x
∆y = f(x+ ∆x)− f(x) : increase of the value of the function
dy : increase of the value on the tangent line
dx = ∆x : increase of the value x

• Observation
Since the tangent line is a straight line (of course !), we have

the slope =
increase of the value on the line

increase of the value x
Therefore, we conclude

f ′(x) = the slope of the tangent =
increase of the value on the tangent line

increase of the value x
=
dy

dx
Note: So far, we just understood that equation

f ′(x) =
dy

dx
is a matter of symbolic notation, where neither dy nor dx had its meaning by itself.
Now the equation has the meaning, where dy (as well as dx) has its meaning by
itself.
• Application to approximation
∆y = f(x+ ∆x)− f(x) can be approximated by dy = f ′(x)dx when ∆x = dx

is closed to 0.
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• Example 

f(x) = 3 cos2 x
f ′(x) = 3 · 2 cosx · (− sinx)

= −3 · 2 cosx sinx
= −3 sin(2x)

dy = f ′(x)dx
= −3 sin(2x)dx

We consider the particular case of

x =
π

4
and dx = ∆x = 0.1.

−→
x+ ∆x =

π

4
+ 0.1

−→
∆y = f(x+ ∆x)− f(x)

= f
(π

4
+ 0.1

)
− f

(π
4

)
= 3 cos2

(π
4

+ 0.1
)
− 3 cos2

(π
4

)
can be approximated by (i.e., ∆y ≈ dy)

dy = f ′(x)dx

= f ′
(π

4

)
· 0.1

= −3 · 0.1 = −0.3

Note: f ′(x) = f ′
(π

4

)
= −3 sin

(
2 · π

4

)
= −3.
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Lesson 26

Topics: L’Hospital’s Rule
Section Number: 4.7
Lecture Plan:

(1) Use the first 10 minutes to discuss some difficult problems from MyLabMath HW
for Lesson 25. This should serve as a review of Lesson 25.
• Review of Lesson 25
• MyLabMath Homework for Lesson 25

(2) L’Hospital’s Rule
• Statement

lim
x→a

f(x)

g(x)
= lim
x→a

f ′(x)

g′(x)

provided

limx→a f(x)

limx→a g(x)

formally
=

0

0
,
±∞
±∞ .

Note: We call
limx→a f(x)

limx→a g(x)
“the provisional form” below.

(3) Examples
Example Problem 1©:

limx→0
sinx

x
; provisional form =

(
0

0

)
L.H.
= limx→0

cosx

1
= 1.

Example Problem 2©:

limx→0
ex − x− 1

x
; provisional form =

(
0

0

)
L.H.
= limx→0

ex − 1

2x
; provisional form =

(
0

0

)
L.H.
= limx→0

ex

2
=

1

2
Example Problem 3©:

limx→∞
x2

ex
; provisional form =

(∞
∞

)
L.H.
= limx→∞

2x

ex
; provisional form =

(∞
∞

)
L.H.
= limx→∞

2

ex
= 0

(4) Calculating the limits of indeterminate forms
• Indeterminate Form: ∞× 0
Example Problem 4©

limx→∞ x
2 · sin

(
1

4x2

)
↓ ↓
∞ × 0

= limx→∞

sin

(
1

4x2

)
1/x2

; provisional form =

(
0

0

)
L.H.
= limx→∞

cos

(
1

4x2

){
1

4�
�
��

(−2)
1

x3

}
���

�
(−2)1/x3

= limx→∞ cos

(
1

4x2

)
· 1

4
=

1

4
.
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Remarks:

(i) (Warning) Some student might think that, since whenever we multiply 0,
the limit of the form ∞× 0 must be equal to 0. As observed above, this is NOT
the case. One can also see the failre of “the limit of the form∞×0 must be equal
to 0” in the following easy example.

limx→∞ x · 3

x
= 3

↓ ↓
∞ × 0 6= 0.

(ii) (FAQ) If we see the limit of the form∞×0, which factor should one bring
it to the denominator, after taking its reciprocal ?

Answer: There is no universal rule. If the factor you happen to choose does
not work, just take the other one !

Look at the following example.
limx→∞ x

2 · ex

↓ ↓
∞ × 0

= limx→∞
ex

1/x2
; provisional form =

(
0

0

)
L.H.
= limx→∞

ex

(−2)1/x3

= limx→∞−
1

2
x3ex

With this choice of the factor, the resulting limit limx→∞−
1

2
x3ex is more

complicated and haarder to compute than the original limx→∞ x
2 · ex.

We try the other one.
limx→∞ x

2 · ex

↓ ↓
∞ × 0

= limx→∞
x2

1/ex

= limx→∞
x2

e−x
; provisional form =

(∞
∞

)
L.H.
= limx→∞

2x

−e−x ; provisional form =
(∞
∞

)
L.H.
= limx→∞−

2

−e−x = 0
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• Indeterminate Form: ∞−∞
Example Problem 5©

limx→∞ x −
√
x2 − 3x

↓ ↓
∞ ∞

= limx→∞ x ·

(
1−

√
1− 3

x

)
↓ ↓
∞ × 0

= limx→∞

1−
√

1− 3

x
1/x

provisional form

(
0

0

)
L.H.
= limx→∞ −

(−3)

(
�
��− 1

x2

)
2

√
1− 3

x

/

(
�
��− 1

x2

)

= − (−3)

2
=

3

2

Remark: We can compute the above limit in a different way by multtiplying
the “conjugate”:

limx→∞
{
x−
√
x2 − 3x

}
= limx→∞

{
x−
√
x2 − 3x

}{
x+
√
x2 − 3x

}{
x+
√
x2 − 3x

}
= limx→∞

x2 −
(√
x2 − 3x

)2{
x+
√
x2 − 3x

}
= limx→∞

3x{
x+
√
x2 − 3x

}
= limx→∞

3x/x{
x+
√
x2 − 3x

}
/x

= limx→∞
3

1 +

√
1− 3

x

=
3

2

• Indeterminate Forms: 1∞, 00,∞0

Example Problem 6©: Compute the following limit

lim
x→0+

xx; of form 00

Solution:
Set

y = xx.

Want to compute

lim
x→0+

y.

Instead we compute first

lim
x→0+

ln y.
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Observe

ln y = ln(xx) = x lnx.

Now we compute

limx→0+ ln y = limx→0+ x · lnx
↓ ↓
0 × (−∞)

= limx→0+
lnx

1/x
provisional form

(
0

0

)
L.H.
= limx→0+

1/x

−1/x2

= limx→0+(−x) = 0

That is to say, we conclude

lim
x→0+

ln y = 0.

Now we go back to the computation of limx→0+ y.

lim
x→0+

y = lim
x→0+

eln y = e0 = 1.

Example Problem 7©: Compute the following limit

lim
x→∞

(
2x+ 1

2x− 1

)4x+5

; of form 1∞

Solution:
Set

y =

(
2x+ 1

2x− 1

)4x+5

.

Want to compute

lim
x→∞

y.

Instead we compute first

lim
x→∞

ln y.
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Observe

ln y = ln

(
2x+ 1

2x− 1

)4x+5

= (4x+ 5) ln

(
2x+ 1

2x− 1

)
Now we compute

limx→∞ ln y = limx→∞ (4x+ 5) · ln

(
2x+ 1

2x− 1

)
↓ ↓
∞ × 0

= limx→∞

ln

(
2x+ 1

2x− 1

)
1/(4x+ 5)

provisional form

(
0

0

)
L.H.
= limx→∞

{ln(2x+ 1)− ln(2x− 1)}′

{1/(4x+ 5)}′

= limx→∞

{
2

2x+ 1
− 2

2x− 1

}
/

{
− 4

(4x+ 5)2

}
= limx→∞

{
2(2x− 1)− 2(2x+ 1)

(2x+ 1)(2x− 1)

}
/

{
− 4

(4x+ 5)2

}
= limx→∞

��−4(4x+ 5)2

��−4(2x+ 1)(2x− 1)
= 4

That is to say, we conclude

lim
x→∞

ln y = 4.

Now we go back to the computation of limx→∞ y.

lim
x→∞

y = lim
x→∞

eln y = e4.
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Lesson 27

Topics: Antiderivatives
Section Number: 4.9
Lecture Plan:

(1) Use the first 10 minutes to discuss some difficult problems from MyLabMath HW
for Lesson 26. This should serve as a review of Lesson 26.
• Review of Lesson 26
• MyLabMath Homework for Lesson 26

(2) Antiderivative
• Definition
F (x) such that F ′(x) = f(x) is called an antiderivative of f(x).
• Example

F (x) = x3 and F ′(x) = (x3)′ = 3x2.
Therefore, we say F (x) = x3 is an antiderivative of f(x) = 3x2.

• Important Observation
Observe{

(x3 + 2)′ = 3x2

(x2 − 5)′ = 3x2

and hence both x3 + 2 and x3 − 5 are antiderivatives of 3x2.

In general,

an antiderivative of f(x) is determined only up to a constant

in the following sense:
(i) If F (x) is an antiderivative of f(x), then so is F (x) + C for any constant C.

(ii) If F (x) and G(x) are both antiderivatives of f(x), then they only differ by a
constant. That is to say, there exists a constant C such that G(x) = F (x)+C.

We write ∫
f(x) dx = F (x) + C.

(3) Examples ∫
ex dx = ex + C∫
cosx dx = sinx+ C∫
sinx dx = − cosx+ C∫
xn dx (n 6= −1) =

1

n+ 1
xn+1 + C∫

xn dx (n = −1) =

∫
1

x
dx = ln |x|+ C∫

bx dx (b > 0) =
bx

ln b
+ C(

e.g.

∫
2x dx =

2x

ln 2
+ C

)
∫

sec2 x dx = tanx+ C∫
secx tanx dx = secx+ C
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Note: We will deal with more difficult questions such as∫
tanx dx = ?∫
lnx dx = ?

later.
(4) Example Problems

• Purely computational
Example Problem 1©:∫

x2 − 3

x2 + 1
dx =

∫
1 · (x2 + 1)− 4

x2 + 1
dx

=

∫ (
1− 4

x2 + 1

)
dx

= x− 4 tan−1 x+ C

Example Problem 2©:

∫ (
3x5 + 2− 5

√
x
)
dx =

∫
3 · 1

6
x6 + 2 · x− 5 · 1

1 +
1

2

x1+ 1
2 + C

=
1

2
x6 + 2x− 10

3
x

3
2 + C.

• Easy Differential Equation
Example Problem 3©: We have a function satsifying

f ′(x) = x2 − 2x, f(1) =
1

3
.

Determine f(x).

Solution.

f(x) =

∫
f ′(x) dx

=

∫
(x2 − 2x) dx

=
1

3
x3 − x2 + C.

f(1) =
1

3
13 − 12 + C =

1

3
.

−→
C = 1

Final Answer: f(x) =
1

3
x3 − x2 + 1.

Example Problem 4©: We have
a(t) = −9.8
v(0) = 40
s(0) = 100.

That is to say, in terms of the function s(t), we

have


s′′(t) = −9.8
s′(0) = 40
s(0) = 100.

Determine s(t).

Picture of a guy standing on top pf a cliff 100 m high, throwing a rock upward
at the initial speed of 40 m/s, where the gravitational acceleration is −9.8 m/s2.
Note that the negative sign indicates the acceleration is downward (of course !).
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Solution.

a(t) = v′(t) = −9.8
−→

v(t) = −9.8t+ C
&

v(0) = −9.8 · 0 + C = 40 −→ C = 40
−→

v(t) = −9.8t+ 40
‖

s′(t)
−→

s(t) = −9.8 · 1

2
t2 + 40t+D

&

s(0) = −9.8 · 1

2
02 + 40 · 0 +D = 100 −→ D = 100

Final Answer: s(t) = −9.8 · 1

2
t2 + 40t+ 100 = −4.9t2 + 40t+ 100.
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Lesson 28

Topics: Approximating the area under curve (Riemann Sum)
Section Number: 5.1
Lecture Plan:

(1) Use the first 10 minutes to discuss some difficult problems from MyLabMath HW
for Lesson 27. This should serve as a review of Lesson 27.
• Review of Lesson 27
• MyLabMath Homework for Lesson 27

(2) Explanation by example
• Situation
We consider the area enclosed by the line y = 2x, x = 3 and the x-axis.
Of course, the area is easily computed to be that of the right trangle

A =
1

2
3 · 6 = 9.

We are going to compute the area in the following very complicated way:
◦ Draw the picture of the line y = 2x over the interval [0, 3].
◦ We devide the interval into n equal subintervals, each of which, therefore, has

the length
3

n
.

◦ We construct the k-th column over the k-th subinterval of height 2·k· 3
n

, which

is the value on the line y = 2x of the right end point x = k · 3

n
(k = 1, . . . , n).

We compute the area of the k-th column to be

height× width = 2 · k · 3

n
× 3

n
.

◦ We compute the sum An of the areas of all the columns.

An = 2 ·
(

1 · 3

n

)
· 3

n

+2 ·
(

2 · 3

n

)
· 3

n

· · ·

+2 ·
(
k · 3

n

)
· 3

n

· · ·

+2 ·
(
n · 3

n

)
· 3

n

=
∑n
k=1 2 ·

(
k · 3

n

)
· 3

n

= 2 · 3

n
· 3

n
· (1 + 2 + · · ·+ (n− 1) + n)

= 2 · 3

n
· 3

n
·
∑n
k=1 k

= 2 · 3

n
· 3

n
· n(n+ 1)

2

= 9 · n(n+ 1)

n2
.
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◦ Main Idea
The sum An gives an approximation of the genuine area, and as n gets bigger
and bigger, the estimation becomes better and better.
When n→∞, we expect An → A.
Let’s check.

lim
n→∞

An = lim
n→∞

9 · n(n+ 1)

n2
= 9 = A!

BINGO !

(3) Distraction: How to compute

Sn = 1 + 2 + · · ·+ n =

n∑
k=1

k.

Solution (Gauss).

Sn = 1 + 2 + · · · + (n− 1) + n
+) Sn = n + (n− 1) + · · · + 2 + 1

2Sn = (n+ 1) + (n+ 1) + · · · + (n+ 1) + (n+ 1)

−→
2Sn = n · (n+ 1)

−→
Sn =

n · (n+ 1)

2

Grand Conclusion

Sn =
n(n+ 1)

2
(4) General setting for the Riemann Sum

• Situation
Want to compute the area between

the graph of a function (continuous and ≥ 0) over the interval [a, b]
and

the x-axis.

We are going to compute the area in the following way:
◦ Draw the picture of the graph of the function y = f(x) over the interval [a, b].
◦ We devide the interval into n equal subintervals, each of which, therefore, has

the length ∆x =
b− a
n

◦ We construct the k-th column over the k-th subinterval of height f(x∗k), which
is the value of the function y = f(x) at some point x = x∗k in the k-th interval
(k = 1, . . . , n). We compute the area of the k-th column to be

height× width = f(x∗k) ·∆x.
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◦ We compute the sum An of the areas of all the columns.

An = f(x∗1) ·∆x
+f(x∗2) ·∆x

· · ·

+f(x∗k) ·∆x

· · ·

+f(x∗n) ·∆x
=

∑n
k=1 f(x∗k) ·∆x

◦ Main Idea
The sum An gives an approximation of the genuine area, and as n gets bigger
and bigger, the estimation becomes better and better.
When n→∞, we expect An → A.

lim
n→∞

An = lim
n→∞

n∑
k=1

f(x∗k) ·∆x = A.

Warning: When y = f(x) is continuous over [a, b], the limit actually exists,
and this is the definition of the “genuine” area A. That s to say, we define the
geneuine area by the Riemman sum.

(5) One more example for Riemann Sum
• Situation
We consider the area enclosed by the parabola y = x2, x = 1 and the x-axis.
We are going to compute the area in the following way:
◦ Draw the picture of the line y = x2 over the interval [0, 1].
◦ We devide the interval into n equal subintervals, each of which, therefore, has

the length ∆x =
1− 0

n
=

1

n
.

◦ We construct the k-th column over the k-th subinterval of height

(
k

n

)2

,

which is the value on the parabola y = x2 of the right end point x = k · 1

n

k

n
(k = 1, . . . , n). We compute the area of the k-th column to be

height× width =

(
k

n

)2

× 1

n
.
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◦ We compute the sum An of the areas of all the columns.

An =

(
1

n

)2

× 1

n

+

(
2

n

)2

× 1

n

· · ·

+

(
k

n

)2

× 1

n

· · ·

+
(n
n

)2

× 1

n

=
∑n
k=1

(
k

n

)2

× 1

n

=
1

n3
(12 + 22 + ·+ n2)

=
1

n3
·
∑n
k=1 k

2

=
1

n3
· n(n+ 1)(2n+ 1)

6

=
n(n+ 1)(2n+ 1)

6n3
.

◦ Main Idea
The sum An gives an approximation of the genuine area, and as n gets bigger
and bigger, the estimation becomes better and better.
When n→∞, we observe An → A.

A = lim
n→∞

An = lim
n→∞

n(n+ 1)(2n+ 1)

6n3
=

2

6
=

1

2
.

(6) Distraction (Optional !): How to compute

Sn = 12 + 22 + · · ·+ n2 =

n∑
k=1

k2.

Solution (Gauss).

Tn = 12 + 22 + · · · + (n− 1)2 + n2

+) Tn = n2 + (n− 1)2 + · · · + 22 + 12

��‖ ��‖ · · · ��‖ ��‖
2Tn 6= (n+ 1)2 + (n+ 1)2 + · · · + (n+ 1)2 + (n+ 1)2

We can NOT conclude 2Tn = n · (n+ 1)2.
So our previous method to compute Sn does NOT work with Tn.

We need a different idea !



68

Step 1. We consider

���1 · 2 · 3 − 0 · 1 · 2
+ ���2 · 3 · 4 − ���1 · 2 · 3

· · ·
+ ((((

(((k(k + 1)(k + 2) − ((((
((((k − 1)k(k + 1)

· · ·
+ n(n+ 1)(n+ 2) − ((((

((((n− 1)n(n+ 1)

= n(n+ 1)(n+ 2).

Step 2.
What we computed in Step 1 can be written∑n

k=1 {k(k + 1)(k + 2)− (k − 1)k(k + 1)}
=
∑n
k=1 3k(k + 1)

= 3
∑n
k=1 k(k + 1)

= 3
∑n
k=1(k2 + k)

= 3
{∑n

k=1 k
2 +

∑n
k=1 k

}
= 3(Tn + Sn)

Step 3.
From Step 1 and Ste 2, we conclude

n(n+ 1)(n+ 2) = 3(Tn + Sn)
−→

n(n+ 1)(n+ 2)

3
= Tn + Sn

−→
Tn =

n(n+ 1)(n+ 2)

3
− Sn

=
n(n+ 1)(n+ 2)

3
− n(n+ 1)

2

= n(n+ 1)

{
n+ 2

3
− 1

2

}
= n(n+ 1)

{
2(n+ 2)− 3

6

}
= n(n+ 1)

{
2n+ 1

6

}
=

n(n+ 1)(2n+ 1)

6
.

Grand Conclusion

Tn =
n(n+ 1)(2n+ 1)

6
.
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Lesson 29

Topics: Definite Integrals
Section Number: 5.2
Lecture Plan:

(1) Use the first 10 minutes to discuss some difficult problems from MyLabMath HW
for Lesson 28. This should serve as a review of Lesson 28.
• Review of Lesson 28
• MyLabMath Homework for Lesson 28

(2) Definite integral
• Picture of the graph of a function y = f(x) (continuous and ≥ 0) over the

interval [a, b]
• Definition∫ b

a

f(x) dx : the area between the graph andd the x-axis

over the interval [a, b]

Remark: Relation between

∫ b

a

f(x) dx and

∫
f(x) dx

Note that we use the symbol

∫
f(x) dx to indicate a (general) antiderivartive

of f(x). Here the symbol

∫ b

a

f(x) dx indicates the area specified as above.

The relation between them will be clear when we discuss
Fundamental Theorem of Calculus.

• the case when the value of f(x) is not necessarily positive.
◦ Picture of the graph of the function where the values over [a, b] are not

necessarily positive
◦ In this case,∫ b

a

f(x) dx: the sum of the areas ABOVE the x-axis MINUS the sum of

the areas BELOW the x-axis
Remark: In any case (stay positive or not), the Riemann Sum formula holds.

That is to say,

∫ b

a

f(x) dx = lim
n→∞

n∑
k=1

f(x∗k) ·∆x

(3) Example Problems

Example Problem 1©:

∫ 4

3

√
1− (x− 3)2 dx = ?

Solution.

Set y =
√

1− (x− 3)2.

Then y2 = 1− (x− 3)2.
−→

(x− 3)+y2 = 1 the circle with center (3, 0) and of radius 1

When 3 ≤ x ≤ 4, and when y =
√

1− (x− 3)2, it sweeps out the upper right
quarter of this circle.

The area between this curve and the x-axis is, therefore,
1

4
π · 12 =

π

4
.

−→ ∫ 4

3

√
1− (x− 3)2 dx =

π

4
.
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Example Problem 2©: Compute

∫ 2

0

(x3 + 1) dx using the Riemann Sum.

Solution.

∫ 2

0

(x3 + 1) d = limn→∞
∑n
k=1 f(x∗k) ·∆x

∆x =
b− a
n

=
2− 0

n
f(x) = x3 + 1
x∗k ; we choose it to be the right end point

of the k-th interval

= k · 2

n

= limn→∞
∑n
k=1

{(
k · 2

n

)3

+ 1

}
· 2

n

= limn→∞
2

n

{(
2

n

)3∑n
k=1 k

3 +
∑n
k=1 1

}

= limn→∞
2

n

{(
2

n

)3

· n
2(n+ 1)2

4
+ n

}
= limn→∞

{
16

4
· n

2(n+ 1)2

n4
+ 2

}
= 4 + 2 = 6.
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Lesson 30

Topics: Fundamental Theorem of Calculus
Section Number: 5.3
Lecture Plan:

(1) Use the first 10 minutes to discuss some difficult problems from MyLabMath HW
for Lesson 29. This should serve as a review of Lesson 29.
• Review of Lesson 29
• MyLabMath Homework for Lesson 29

(2) Fundamental Theorem of Calculus
• Picture
The graph of a function f continuous over the interval [a, b].
We use the letter x for the value in [a, b], i.e., c ∈ [a, b].
• Statement

Set A(x) =

∫ x

a

f(t) dt.

Part 1

A(x) is an antiderivative of f(x),
i.e.,

A′(x) = f(x),
i.e.,

d

dx

(∫ x

a

f(t) dt

)
= f(x).

Part 2

Let F (x) be any (your favorite) antiderivative of f(x).
−→

A(x) = F (x) + C
−→ ∫ b

a

f(t) dt = A(b)

= A(b)−A(a)
= {F (b) + C} − {F (a) + C}
= F (b)− F (c)

i.e., ∫ b

a

f(t) dt = F (b)− F (a).

• Reasons

Part 1

Why A′(x) = f(x) ?

Picture: Again draw the picture of the graph of a function f continuous over
the interval [a, b].

Emphasis is on the region over the interval [x, x+h], whose area represents the
difference A(x+ h)−A(x).

When h is small (h ∼ 0), this region almost looks like the column with height
f(x) and width (x+ h)− x = h.
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A′(x) = limh→0
A(x+ h)−A(x)

h

= limh→0

∫ x+h

a

f(t) dt−
∫ x

a

f(t) dt

h

= limh→0
the area of the region ≈ f(x) · h

h
= f(x).

Part 2

Part 2 follows immediately from Part 1, saying that A(x) is an antiderivative
of f(x) and hence that A(x) = F (x) + C where C is some constant.

(3) Example Problems for Part 1

Example Problem 1©:
d

dx

(∫ x

1

sin2 t dt

)
= ?

Solution.

d

dx

(∫ x

1

sin2 t dt

)
= sin2 x

Example Problem 2©:
d

dx

(∫ 5

x

√
t2 + 1 dt

)
= ?

Solution.

d

dx

(∫ 5

x

√
t2 + 1 dt

)
=

d

dx

(
−
∫ x

5

√
t2 + 1 dt

)
= −

√
x2 + 1

Example Problem 3©:
d

dx

(∫ x4

1

sec t dt

)
= ?

Warning (Wrong Solution !):
d

dx

(∫ x4

1

sec t dt

)
6= sec(x4)

Solution.

Set x4 = u.

d

dx

(∫ x4

1

sec t dt

)
=

d

dx

(∫ u

1

sec t dt

)
=

du

dx
· d
du

(∫ u

1

sec t dt

)
= 4x3 · secu
= 4x3 · sec(x4)

In the above solution, we are actually using the Chain Rule as follows:

d

dx

(∫ x4

1

sec t dt

)
=

dy

dx

=
du

dx
· dy
du

=
du

dx
· d
du

(∫ u

1

sec t dt

)
= 4x3 · secu
= 4x3 · sec(x4)
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(4) Example Problems Part 2
• Formula∫ b

a

f(x) dx = F (b)− F (a)

Example Problem 4©:

∫ 3

1

ex dx = ?

Solution.

Choose F (x) = ex.
Then we have∫ 3

1

ex dx = e3 − e1

Example Problem 5©:

∫ 3

−1

1

x2
dx = ?

Solution (????)

Choose F (x) = − 1

x
.

Then we have∫ 3

−1

1

x2
dx =

(
−1

3

)
−
(
− 1

−1

)
= −1

3
.

But WAIT A MINUTE !

Since we always have
1

x2
≥ 0, wouldn’t that imply

∫ 3

−1

1

x2
dx ≥ 0 ?????

But the above computation says it is negative ????

WHAT IS HAPPENING HERE ?

Explanation: In order to use the Fundamental Theorem of Calculus, the func-
tion f(x) has to be defined and continuous for the whole interval [a, b]. Here it is

NOT defined at 0 ∈ [−1, 3] (and hence not continuous). Setting F (x) = − 1

x
, we

have F ′(x) = f(x) when x 6= 0, but not over the whole interval [−1, 3]. Trouble
happened because we used the F.T.C. when we cannot.

(5) Difficult Problem
Example Problem 6©: What value of b (> −1) maximizes the integral∫ b

−1

x2(5− x) dx ?

Solution.

Step 1. Change of letters so that it will fit into our statement of F.T.C.: What
value of x (> −1) maximizes the integral

F (x) =

∫ x

−1

t2(5− t) dt ?

Step 2. Compute F ′(x) using the F.T.C.

F ′(x) =
d

dx
F (x)

=
d

dx

(∫ x

−1

t2(5− t) dt
)

= x2(5− x).
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Step 3. Construction of the table as in the optimization problem

x −1 0 5

F ′(x) + 0 + 0 −
F (x) 0 ↗ ↗ max ↘

Step 4. Grand Conclusion
F (x) takes its (absolute) maximum when x = 5.
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Lesson 31

Topics: Working with Integrals
Section Number: 5.4
Lecture Plan:

(1) Use the first 10 minutes to discuss some difficult problems from MyLabMath HW
for Lesson 30. This should serve as a review of Lesson 30.
• Review of Lesson 30
• MyLabMath Homework for Lesson 30

(2) Even function
• Picture
• Definition

f even ⇐⇒ f(−x) = f(x)
⇐⇒ symmetric w.r.t. y-axis

• Property about the integral
◦ Picture

◦
∫ a

−a
f(x) dx = 2

∫ a

0

f(x) dx

◦ Example 1©:

∫ 2

−2

x4 dx = 2

∫ 2

0

x4 dx = 2

[
x5

5

]2

0

=
64

5

◦ Example 2©:

∫ π/2

−π/2
cosx dx = 2

∫ π/2

0

cosx dx = 2 [sinx]π/20 = 2

(3) Odd function
• Picture
• Definition

f odd ⇐⇒ f(−x) = −f(x)
⇐⇒ symmetric w.r.t. the origin

• Property about the integral
◦ Picture

◦
∫ a

−a
f(x) dx = 0

◦ Example 3©: ∫ 2

−2

3x3 dx = 0

◦ Example 4©:

∫ π/2

−π/2
sinx dx = 0

◦ Example 5©: ∫ 1

−1

tanx

1 + x2 + x4
dx = 0
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(4) Average of a function
• Picture
Draw the graph of a function y = f(x) (continuous) over the interval [a, b].
Show the picture of a “wave” machine.
• Definition and formula

fave =
1

b− a

∫ b

a

f(x) dx

(5) Mean Value Theorem for Integrals
• Picture

Draw the graph of a function y = f(x) (continuous) over the interval [a, b].
• Statement

f(x) a continuous function over the interval [a, b]

fave =
1

b− a

∫ b

a

f(x) dx

=⇒
∃ c ∈ (a, b) s.t. f(c) = fave

• Proofs
Proof I: Obvious from the picture !

Proof II: Reduction to the usual Mean Value Theorem

Set A(x) =

∫ x

a

f(t) dt.

−→
A(x) continuous over [a, b], and differentiable over (a, b)
Actually we have A′(x) = f(x) for x ∈ (a, b).

−→ (via the usual Mean Value Theorem)

∃c ∈ (a, b) s.t. A′(c) =
A(b)−A(a)

b− a .

Observing

A′(c) = f(c)

A(b)−A(a)

b− a =
1

b− a

∫ b

a

f(t) dt = fave,

we finally conclude

∃ c ∈ (a, b) s.t. f(c) = fave.
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• Example

Consider f(x) = 2x(1− x) over the interval [0, 1].

Picture !

We compute

fave =
1

1− 0

∫ 1

0

2x(1− x) dx

=

∫ 1

0

(2x− 2x2) dx

=

[
x2 − 2

3
x3

]1

0

=
1

3
.

Now the Mean Value Theirem for Integrals says

∃ c ∈ (0, 1) s.t. f(c) = fave.

Let’s check if such c ∈ (0, 1) really exsists.

We should have the equation

f(c) = 2c(1− c) =
1

3−→
−2c2 + 2c =

1

3−→
2c2 − 2c+

1

3
= 0

−→

c =
2±

√
(−2)2 − 4 · 1

3
2 · 2

=
2±

√
(−2)2 − 4 · 1

3
2 · 2

=
2± 2

√
1

3
2 · 2 =

1±
√

1

3
2

Therefore, we cnclude that, for c =
1±

√
1

3
2

, we have f(c) = fave, as stated in

the M.V. Th. for Integrals.
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Lesson 32

Topics: Substitution Rules
Section Number: 5.5
Lecture Plan:

(1) Use the first 10 minutes to discuss some difficult problems from MyLabMath HW
for Lesson 31. This should serve as a review of Lesson 31.
• Review of Lesson 31
• MyLabMath Homework for Lesson 31

(2) Substitution Rule
• Formula ∫

f(u) · du
dx
· dx =

∫
f(u) du

• Examples
Example 1©: ∫

2x
√

1 + x2 dx{
u = 1 + x2

du

dx
= 2x

=

∫ √
u · du

dx
· dx

=

∫ √
u du = u

1
2 du

=
1

1 + 1
2

u1+ 1
2 + C =

2

3
u

3
2 + C

=
2

3
(1 + x2)

3
2 + C

Example 2©:∫
x3 cos(x4 + 2) dx{

u = x4 + 2
du

dx
= 4x3

=

∫
cosu · 1

4

du

dx
· dx

=

∫
cosu · 1

4
du =

1

4

∫
cosu du

=
1

4
(sinu+ C) =

1

4
sinu+ C(

We replace
1

4
C with a new C, which by abuse of notation,

is denoted by the same C.)

=
1

4
sin(x4 + 2) + C.
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Example 3©:

∫ √
2x+ 1 dx

=

∫ √
2x+ 1 · 1 · dx{

u = 2x+ 1
du

dx
= 2

=

∫ √
u · 1

2

du

dx
· dx

=

∫ √
u · 1

2
du =

1

2

∫ √
u du =

1

2

∫
u

1
2 du

=
1

2

(
2

3
u

3
2 + C

)
=

1

3
u

3
2 + C(

We replace
1

2
C with a new C, which by abuse of notation,

is denoted by the same C.)

=
1

3
(2x+ 1)

3
2 + C =

1

3
(2x+ 1)

√
2x+ 1 + C

Example 4©:

∫ √
1 + x2 · x5 · dx{

u = 1 + x2 −→ x2 = u− 1
du

dx
= 2x∫ √

1 + x2 · x4 · x · dx∫ √
1 + x2 · (x2)2 · x · dx

=

∫ √
u · (u− 1)2 1

2

du

dx
· dx

=

∫ √
u(u− 1)2 · 1

2
du =

1

2

∫ √
u(u− 1)2 du =

1

2

∫ √
u(u2 − 2u+ 1) du

=
1

2

∫ (
u

5
2 − 2u

3
2 + u

1
2

)
du

=
1

2

(
2

7
u

7
2 − 2 · 2

5
u

5
2 +

2

3
u

3
2 + C

)
=

1

7
u

7
2 − 2

5
u

5
2 +

1

3
u

3
2 + C

=
1

7
(1 + x2)

7
2 − 2

5
(1 + x2)

5
2 +

1

3
(1 + x2)

3
2 + C

(3) Substitution Rule for Definite Integrals
• Formula

∫ b

a

f(u) · du
dx
· dx =

∫ u(b)

u(a)

f(u) du

• Important Remark
Substitution Rule for Indefinite Integrals: We have to come back

from the u-world to the x-world.
Substitution Rule for Definite Integrals: Once we go to the u-world,

we carry out all the computation there, without ever coming back to the x-world.
• Examples
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Example 5©: ∫ 4

0

√
2x+ 1 dx

x u = 2x+ 1
4 9
0 1

du = 2 dx

=

∫ 9

1

√
u · 1

2
du =

1

2

∫ 9

1

√
u du

=
1

2

[
2

3
u

3
2

]
=

1

3

[{
(9)

1
2

}3

− 1

]
=

1

3
[27− 1] =

1

26
.

Example 6©: ∫ e

1

lnx

x
dx
x u = lnx
e 1
1 0

du =
1

x
dx

=

∫ 1

0

u du

=

[
1

2
u2

]1

0

=
1

2

[
u2
]1
0

=
1

2

[
11 − 02

]
=

1

2
.
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Lesson 33

Topics: Exponential Models (Growth & Decay)
Section Number: 7.2
Lecture Plan:

(1) Use the first 10 minutes to discuss some difficult problems from MyLabMath HW
for Lesson 32. This should serve as a review of Lesson 32.
• Review of Lesson 32
• MyLabMath Homework for Lesson 32

(2) Population Growth
• Common Sense Observation

Population P Birth Rate
dP

dt
(babies per year)

1000 20

2000 40

· · · · · ·
5000 100

dP

dt
/P =

20

1000
=

40

2000
=

100

5000
= k = constant

◦ Basic Differential Equation
dP

dt
= kP

◦ How to solve the differential equation
dP

dt
= kP

−→
1

P

dP

dt
= kP

−→ ∫
1

P

dP

dt
dt =

∫
k dt

‖ ‖∫
1

P
dP kt+ C

‖
lnP (actually ln |P | but |P | = P since P > 0.)

−→
lnP = kt+ C

−→
elnP = ekt+C

−→
P = ekt+C = ekteC

= Aekt (A = eC)

That is to say, we have

P (t) = Aekt.

What is the constant A ?

P (0) = aek·0 = A · 1 = A

Grand Final Conclusion

P (t) = P (0)ekt = P0e
kt

where
P (0) = P0 : initial population
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• Example Problem for the population growth:
Example Problem 1©:

Stats

t year Population (billion)

0 1999 6.0

18 2017 7.4

Find the formula for P (t).
Solution.

From the general formula, we have P (t) = P (0)ekt = 6.0ekt

What is k ?

P (18) = P (0)ek·18

7.4 = 6.0ek·18

7.4

6.0
= e18k

ln

(
7.4

6.0

)
= 18k

−→

k =
1

18
ln

(
7.4

6.0

)
= 0.01165 billion/year

Conclusion

P (t) = 6.0ekt with k = 0.01165 billion/year

(3) Radioactive Decay

Situation

m: mass
dm

dt
: rate of decay

◦ Basic Differential Equation
dm

dt
= km

◦ the same process as before to solve the differential equation

Grand Final Conclusion

m(t) = m(0)ekt = m0e
kt

where

m(0) = m0 : initial mass

Note: The only difference between the population growth and the radioactive
decay is:

Population Growth: k > 0
Radioactive Decay: k < 0

• Example Problem for the radioactive decay
Example problem 2©: Radium 226 has the half-life of 1590 years.
That is to say,

yaer t mass m

0 1

1590
1

2
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Find the formula for m(t), when the initial mass is m(0) = 100 mg.

Solution.

From the general formula, we have m(t) = m(0)ekt = 100ekt

What is k ?{
t = 0 : 100 = m(0) = 100ek·0

t = 1590 : 100 · 1

2
= m(1590) = 100ek·1590

−→
1

2
= ek·1590

−→
ln

(
1

2

)
= ln

(
ek·1590

)
‖ ‖
− ln 2 k · 1590

−→
k = − ln 2

1590

Conclusion

We obtain the mathematician’s formula

m(t) = 100 · e

− ln 2

1590

t

Half-Life: Physicist’s formula

• Simple Observation

t m

0 100

1590 · 1 100 ·
(

1

2

)1

1590 · 2 100 ·
(

1

2

)2

1590 · 3 100 ·
(

1

2

)3

· · · · · ·

m(t) = 100 ·
(

1

2

) t
1590

= 100 ·
(
2−1
) t

1590

= 100 · 2−
t

1590

Grand General Formula in tems of Half-Life h

m(t) = 100 · 2−
t

1590 = m(0) · 2−
t
h
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Remark:
Mathematician’s formula and Physicist’s formula are the same !

m(t) = m(0) · e

− ln 2

1590

t
Mathematician’s formula

= m(0) ·
(
eln 2

)− t
1590

= m(0) · 2−
t

1590

Physicist’s formula


