

Numerical Methods and .m Files

- In order to use MATLAB routines for the Euler, Improved Euler, or Runge-Kutta Methods, you will need the files `eul.m`, `rk2.m`, or `rk4.m`, respectively. These files are available for download from the course webpage <https://www.math.purdue.edu/ma26600>. Place them in your working folder. You can access MATLAB via *Software Remote* by following the instructions posted at <https://it.purdue.edu/facilities/software/goremote.php>.
- You must first create a .m file for your function. One way to do it is to click on **New Script** in the **Home** tab. For example, to create a .m file for the function $f(x, y) = 6x^3 - e^{2y} + \sqrt{x}/y$, type:

```
function W=fcn1(x,y)
W=6*x^3-exp(2*y)+sqrt(x)/y;
```

(Don't forget the ";" at the end.) Save this file as a .m file with the **same** name as your function. The above example would be saved as `fcn1.m`. You can check if your function has been saved by typing something like the following at a MATLAB prompt:

```
fcn1(0,3)
```

You should get the value of $f(0, 3)$.

- Your initial value problem should have the form:
$$\begin{cases} y' = f(x, y) \\ y(x_0) = y_0 \end{cases}.$$

Assuming $f(x, y)$ was saved as the file `fcn1.m`, the syntax for `eul` (as well as `rk2` and `rk4`, just replace `eul`) will be:

```
eul('fcn1',[x0,xf],y0,h)
```

where `x0` and `xf` denote the initial and final values of x , respectively, `y0` is the initial value of y , and `h` is the step size. (Your version of MATLAB may not utilize brackets. Type `help eul` to find out.) To approximate the actual solution to the IVP at `xf`, with given `h`, using `eul`, just type the following at a MATLAB prompt:

```
[x,y]=eul('fcn1',[x0,xf],y0,h);
```

The approximations $y_0, y_1, y_2, \dots, y_n$ are stored in the matrix `y`

- To print them out, type: `[x,y]`
- To plot them, type: `plot(x,y)`